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Abstract. The so-called Fer's expansion is proposed as a solution for the time-
evolution operator of classical time-dependent Hamiltonian systems. The quadratic
Hamiltonians treated as examples show that, under very different regimes, the second-
order approximation already gives extremely good results.

1. Introduction

The time evolution of a classical Hamiltonian system can be described by a one-
parameter group of canonical transformations acting on the initial values of phase
space variables. If we adopt this point of view then the purpose of dynammics is to
compute the action of this group for a given Hamiltonian. It is accomplished by solv-
ing the evolution equation for the operators that carry out the transformation. Such
an equation is equivalent to the usnal Hamiltonian equations of motion for which a
number of approximate methods have been devised over the years. One possible reso-
lution scheme is to seek explicitly time-dependent canonical transformations in terms
of infinite products of exponentials of Lie operators. This type of approach has been
applied to different topics in the literature [1]. In particular, it has been extensively
used to solve beam dynamics in particle accelerators [2]. However, the arguments in
these exponentials correspond to a unique power of the expansion parameter (or any
equivalent label). Thus, it can actually be considered as an exponential perturbation
theory.

In the present study we elaborate an adaptation of the so-called Fer’s expansion
[3, 4] to classical Hamiltonian systems. Unlike the previously mentioned approach the
arguments of the exponentials contain an infinity of orders in the expansion parameter.
The interest of Fer’s iterative expansion has been emphasized for quantum mechanical
time-dependent problems [4]. We shall see that its classical version also gives very
good results, even with a few iterations. The analysis is performed by means of Lie
transform techniques. The use of Lie operators in the context of classical dynamics
already has a long history [5]. These tools enable one to transform Poisson brackets
of functions into commutators of operators, and vice versa. As a consequence the
procedure can benefit from well established results in quantum mechanies.
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In section 2 we set up the notation concerning Lie transforms and derive Fer’s
expansion for classical systems. In section 3 we apply the method to some physical
examples given by quadratic Hamiltonlans, Finally, section 4 contains the conclusions.

2. Fer’s expansion for classical Hamiltonian systems

T.et nus consider a nhase snare T of dimenceion 2N Intraduce the vectar £ whage 9N
ALY U WAIMI AL O plIUeGL Opriluie & AL VALIIIVIAOLIVLL LV . RITUL U LG UL FOL LU s LUUDTC iy
components are the generalized coordinates and momenta: (¢;,...,qy5,Py,- -, PN) =
(&,,..-1€an)- The set of regular real-valued time-dependent functions on the phase

space is an infinite-dimensional Lie algebra under the Poisson bracket composition
law which we denote by (0. We consider two elements of (7 to be equivalent if their
difference is a function of time only. Then O is divided into equivalence classes,
-f(_.'.. fe ('31 which form the quotient set . Now with each element (" £ O we
assomate the Lle operator : f: from O to O defined by

af o of o
:f--z_f___ilu‘z.z aflJ aj. 2.1)
ti=

Here we follow the notation of [2]. What we call the Lie operator : f: is also known as

the Lie derivative generated by f and dencted by L g J s the symplectic 2N x 2N

matrix (_(} {)) Then, the action of : f: on any function ¢ € O is : f: ¢ = {f, g], where
the square bracket stands for the Poisson bracket of classical mechanics. It is clear
that : f: is independent of the representative element of C s considered. Besides, the
commutator of two Lie operators, {: f:,:g: }, equals the Lie operator associated with
the Poisson bracket of both functions, i.e. {: f:,:¢:} =:{f, g]:.

It is also important to realize that as zn operator on O : f: inherits the linear
character of the derivative operators in equation (2.1), : f:(ag, + bg,) = a: f: g9, +
b: f:g,; but as a new element of O, (: f: g) is in general by no means a linear function
onT.

Let H(E, t) be an exphcltly tlme-dependent Hamiltonian and M(t,t;) the sym-
plCthL Hiap that generaies the uf&jéCbOilES CU.} in plld.bt: spade startmg from the initia
conditions £(t,), namely

&(t) = M(t, )8(to)- (2.2)
This symplectic map is governed by the evolution equation {6]:
M=-M:H: M(tg,tg) = expre(ty):. (2.3)

The dot stands for the time derivative., The initial condition guarantees M to be
continuously connected with the identity operator provided ¢ is any function of time,
independent of ¢ and p. A formal solution to equation {2.3) may be given in terms of
Dyson’s chronological product but we shall not deal with this topic. An alternative
method based on the Magnus expansion [7] has been proposed in [8]. There, the
solution is wntten as a single exponential of a unique Lie operator

When {L tH(r): dr,: H(t):} = 0, then M = exn[- L : H(r): d7], and this is
clearly the case if H is time-independent. In classical mechanics one can always avoid
explicitly time-dependent problems by increasing the number of degrees of freedom
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by one and appropriately changing the Hamiltonian. However this can complicate the
algebraic structure of the problem.

We proceed in another way. Let us suppose that the exponential is a good approx-
imation and that a solution can be written in the form

M= M, efr (2.4)

where : Fj: = — f:ﬂ H(r): d7 whereas the transformation M, describes the difference
between the approximation and the exact mapping, with M,(t,,1,) = exp:c(ty):.
The question is to find the evolution equation satisfied by M;. Let us substitute
equation (2.4) into (2.3). Taking into account [9] that

1 : . ’
_6_e:F1: — f ex:FJ_:: F'*I:e(l—‘-"')IPﬁ dx (2.5)
ot 0
we obtain
M} =—-M,:H: {2.6)

where : H,:, the Lie operator associated with the transformed Hamiltonian H, reads
1

:Hl:z:[epl,H]:—/ dz : [e"f1, H]:. (2.7)
o

Here [, H] stands for the Taylor series of iterated Poisson brackets: [¢f', H] =
LorwolFE, H)/kY, with
[F]kJH]E[FU[Fle[FIJH]]] [FIO!H]EH (28)
Nr— p—

k times

The procedure can be repeated with equation (2.6) which gives rise to the following
recursive scheme:

M= M eFr | ghr

(r): dr tHy:=:H: (2.9)

iy

1 o0

k
. [R— Fn L - Fn 1 " o— . k .
cHpp=te™ H L /0 de: [e™ "+ ,I-In]._.kg:1 (k+1)!.[Fn+1,Hn].

this is what we call Fer’s expansion for the classical evolution operator.
Suppose that we replace H by eH, where ¢ is a small expansion parameter. Then,

by virtue of the preceding equations, F,, (with n > 1) contains an infinite number of

powers of ¢ beginning with 2" which greatly favours the rate of convergence of the
expansion. This fact somehow suggests [L0] a connection with techniques for accelerat-
ing the convergence of perturbation series in the sense of Kolmogorov-Arnold-Moser
which have also been considered from a Lie algebraic point of view [11].
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When the functions involved in equation (2.8) (or the corresponding Lie operators)
belong to a Poisson subalgebra of @ (or a subalgebra under commutation), then the
calculation can be carried out with compact expressions. Under these circumstances a
finite exponential product of Lie transforms could be attained. In a different context
Wei and Norman [12] proved such a solution to exist, at least locally.

For the sake of completeness, we sketch the form of the infinite exponential product
expansion quoted in the introduction. As a matter of fact, it can be thought of as a
generalization of the Zassenhaus formula [9]. The method has been extensively worked
out by Dragt and co-workers [2, 6]. For the type of Hamiltonian we shall study in the
next section we do not need the full expansion but just a few terms. It is worthwhile
noticing that in this situation the expansion coincides with that of Kumar [13] and a
left-running version by Wilcox [9]. If we denote

'M - ;;;e;K’:e:Klz (2_10)
then the first terms read
1
(K= F: :Kf:%/ (H(), Ky (7)) d7 (2-11)
ta

n4,9 13]. Ase

* )"l <

igher order terms can be found in \s equa
expansion is charactenzed by the fa ct that K is order

G on (2,11) already shows this

3. Illustrative examples

Hamiltonians defined by quadratic forms are of considerable interest in physics. It
turhs out that these Hamiltonians are, in general, especially simple to handle, We
consider, in particular, the unidimensional parametrically driven harmonic oscillator
given by

H=13p*+¢%) +¢()e° (3.1)

where ¢ is a time function to be specified later. This simple, although not trivial,
Hamiltonian will enable us to appreciate the performance of the method. We compute
Fer’s expansion up to second order and compare the obtained approximate trajectories
with the exact numerical results. The scheme provided by equations (2.10) and (2.11)
is also examined. The corresponding formulae for the generalized harmonic oscillator,
H{g,p,t) = A()p* + B(t)gp + C(t)q?, are collected in the appendix.

We suppose that at the initial time ¢, the system is in ¢{ty) = ¢, P(tg) = Po-
According to the formulae in section 2 we get

: Fy:=Tpd, — (2@ + T)qd, (3.2)

where ¢ = f:o ¢(r)dr and T = t — t;. The Lie operator associated with the trans-
formed Hamiltonian given by equation (2.7) yields

H:=
1 2

psin g — cos p)(pd, — ¢0,)

+2 (% - cosp) ((2@ + T)¢8, + Tpd,)] (3.3)
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with g = 24/(2® + T)T. Eventually, we need to know the action on g and p of
a general exponential map £ = expla(pd, — 9.} + P40, +7pd,), with «, § and vy
functions of time. The argurmnent in the exponential is the most general element that
we need since the operators pd, — ¢8,, ¢9,, p8, (or, alternatively, the functions ¢p,

14%, 1p?) span the SU(1,1) algebra. Then we get the canonical transformation

Eq= (cosh n— % sinh 17) q+ %Sinh(q)p

(3.4)
- a B
Ep=|coshn+ 7 sinhy | p+ ;; sinh(n)q
with n? = o? + F7.
The approximate trajectories up to second order furnished by
&(t) = e eiig (1) (i=1,2) (3.5)
are explicitly
- + + _o\oT .
q(t) = (™ go + 5" pg) cos(pe/2) + (cTpy + 5 40)7 sin(p/2)
(3.8)
P() = (c*py + ™ go) cos(1/2) = (¢~ 0 + 5% po) 5 sin(/2).
The following notation has been used
¢t =coshp %sinh n st = %sinhn . 5= %sinh 7. (3.7)

In our case the functions a, & and ~ are integrals of the coefficients of the Lie operators
appearing in equation (3.3)

t —
o= _/ M(l—psin,u—cosp)dt'

to n
PO -T¢ (sinp

ﬂ:—/ N (———cosp) dtf 3.8
T p (3.8)
t .

O—-T¢ (sinpu )
=] —/—— | —X - d¢’
¥ -/tu I T ( p cos f

where T' = t' — ¢, now.

Next we choose three particular forms of #(t) and comnpare the second-order Fer’s
approximant with direct numerical integration of the equations of motion, namely
d+(1+2¢)g = 0; p = ¢. In order to make the three perturbations comparable we fix
#(0) to have the same value in all cases. The results corresponding to equation (2,11)
are also reported. The initial conditions are t; = —1, g3 = 1, py = 1, in all examples.

(i) As a first application we take the symmetrical pulse ¢ = (¢/2}sech((t). Adi-
abatic regimes correspond to sufficiently small values of {, whereas large values of ¢
represent sudden perturbations. The parameter € measures the strength of the pertur-
bation. For up to € =~ 1 our approximate trajectories and the exact numerical results



4042 F Casas et al

are virtually indistinguishable both for small and large (2 1) values of {. Although the
global agreement is impressive there exists, however, a small time-lag between both
the approximate and exact results which can be appreciated only for sufficiently large
time intervals. The more sudden (or weak) the perturbation the smaller this time-lag.

The full curve on figure 1 corresponds to second-order Fer’s approximation {and the
indistinguishable exact trajectory) whereas the broken curve illustrates the alternative
factorization of [5, 6, 9, 13], according to equations (2.10) and (2.11). The input values
are { = 1, € = 0.5 and the time interval considered is —1 < ¢ < 6.

Figure 1. Comparison between the second-order Fer's approximate trajectory (full
curve) and the alternative approach of [8] {broken curve) for the first example with
¢ =05, ¢ = 1. The plotted time interval is —1 < ¢t < 6. The exact numerical result
is indistingnishable from Fer's approximant.

(ii) As a second example we choose an asymmetric pulse: ¢ = (e/2) exp(—(t) for
t > 0,and ¢ = 0 for t < 0. Thus, after the perturbation is suddenly switched on we can
control its effective duration by means of the parameter {. For the sake of illustration
we show in figure 2 the exact (full curve) and second-order Fer’s approximation {broken
curve) trajectories for ~1 < t < 6, ¢ = 0.5 and { = 1. Again, the only observable
difference is a small time-lag at the end of the plotted path.

(i) The third and last case that we analyse here corresponds to the periodic
perturbation given by ¢ = (¢/4)(1 + cos{t). Notice that, unlike the previous cases,
this perturbation does not exhibit a decreasing tail. The corresponding equation of
motion is of the Mathieu type which, as is well known, has been widely applied in
many branches of physics and technology. We use this form of ¢ to check the long-time
behaviour of Fer’s approximate solution. Inputs in figure 3 are: ¢ = 0.9,¢ = 1 and lines
are coded as in figure 2. The plotted time interval is 60 < ¢ < 70, therefore far away
from the initial instant. The trajectories are drawn in a clockwise direction. Albeit the
global agreement is worse than in preceding cases we emphasize the important feature
that the approximation remains very close to the exact trajectory. If we change to
¢ = 0.4 the results greatly improve as shown in figure 4.

On the other hand, the trajectories provided by secular perturbation theory move
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Figure 2. Exact (full curve) and second-order Fer's approximate (broken curve}
trajectories for the second example. Input values are ¢ = 0.5, { = 1, The plotied

P .
timie interval is =1 < ¢ < 6.

2 T T T
1 | -
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Figure 3. Trajectories corresponding to the periodic perturbation (third example).
The exact (full curve) and second-order Fer’s approximant (broken curve) are plotted
in the interval 60 <€ ¢ € 70, with input values ¢ = 4.9, ¢ = 1. The trajectories are
drawn in a clockwise sense.

rapidly away from the exact solution. So, except for very short times, they are out of
range of the figures. For this reason we have not plotted them.

4. Conclusions

We bhave built up Fer’s expansion for the classical evolution operator. This infinite
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Figure 4. Same as in figure 3 except the input value € = 0.4.

repeated action of exponential Lie transformations seems to provide a very good repre-
sentation of the time-evolution operator AM. The examples worked out clearly indicate
that up to second order it gives better results than alternative proposals we know. In
particular, compared to usual perturbative treatments this improvement could be as-
sociated with the fact that our expansion makes a high-order re-summation of the
power series. The computation procedure is iterative.

The various examples have been chosen in order to embrace very different pertur-
bative regimes, even with large coupling constants. The first one describes adiabatic
as well as sudden situations, depending on the value of (. The second example corre-
sponds to an everlasting decaying pulse suddenly introduced. The third case describes
a periodic regime.

Albeit the visual agreement between the exact trajectories and that provided by
the second Fer’s approximant is very good we insist on the fact that the approximation
suffers from a time-lag with respect to the exact solution. Due to the goodness of the
fit it is quite difficult to visualize it directly on the plots unless ¢ is large enough. All
the same, it constitutes an interesting effect that merits to be kept in mind: The point
(q(t), p(t)) of an exact trajectory in phase space is amazingly well fitted by computing
Fer’s approximant at some different instant ¢ + &, where § = 8(¢,(,t) varies in a
smooth and uniform way along the trajectory. The full validity of this observation for
Hamiltonians other than quadratic has to be confirmed.

In summary, Fer’s expansion constitutes a new recipe to expand M as a compo-
sition of exponential mappings. The results in the examined examples show the fast
convergence of the method. As regards multi-dimensional systems (N > 1) investiga-
tions are being carried out, as well as on some other class of Hamiltonians.
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Appendix

In this appendix we calculate the first and second orders of Fer's expansion for the
generalized simple harmonic oscillator, whose Hamiltonian is given by

H(g,p.t) = A(t)p* + B(t)gp + C(t)¢* (A1)

with A(t), B(¢) and C{t) arbitrary tirme-dependent functions. This system has received
considerable attention recently in connection with the geometrical phase factor known
in quantum mechanics as Berry’s phase [14] and its classical analogue (Hannay’s angle

[15)).

For the Hamiltonian (Al) we get
:Fyi= —B(pd, — q9,) — 2740, + 2apd, (A2)

where, now,

a(t) = [ A(rydr  B(t) = [ B(rydr  At)= [ C(r)dr (A3)

to

Let us define 5% = A2 — day, If we denote

) =3B +9")A - efB +2.°C fi12(t) = —BA+ aB

Fo1(t) = 2(BvA — 2avB + aSC) fa2(t) = 2(—=1A + 2C) (Ad)
fa() = 2Y2A ~ ByB + 1(3* + n*)C f32(t) = —yB + BC

and

1 1 1 1 . 1
h(t) = -1-}—5 (fn - §f22) cosh 2n + E (f22 - -2?1'21) sinh 27 + -Z?'fzz

1 i 1 ) 1

ho(t) = n—z-(me — fap) cosh 2 + ;?- (‘2f32 - Ff:«u) sinh 21 + ;{5f32 {A5)
1 1/1 ) 1

hy(t) = F(fu — 2fy;)cosh 2n + ; (;2-1"11 - 2f12) sinh 27 — ;)Efm

then the Lie operator associated with the transformed Hamiltonian H, takes the
compact form

s Hy= hy(pd, — ¢8,) + hyqd, + hypd,. (A6)
Whence we obtain the second-order Fer’s approximant

: Fy: = —I1(p0, — 99,) — 1,48, — I3pd, (AT)



4046 F Casas et al

where

IL(t) = ‘ h,(r)dr. (A8)

tg

The approximate trajectories given by equation (3.5) are explicitly

g(t) = (=m¥ ot +utnT)p + (mFnt —utu)g

(A9)
pt) = (m~n” +u"vt)py = (m™v” 4 u"nt)g,.
Here we have used the following notation:
mt = coshn:t-g-sinhn n* = cosha:i:%sinha
200, .
ut = ?a sinh vh = %smha (A10)

u :glsinhn v =£2-sinho‘.
Ul o

with 0? = I} + II;, (¢ # 0). These expressions are not valid when 5 = (. In that
case the calculation of the corresponding formulae is straightforward.
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