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Abstract. The so-called Fer’s expansion is proposed iu a solution for the time- 
evolution operator of classical time-dependent Hamiltonian systems. The quadratic 
Hamiltonians trrated M eramplesshow that, under very different regimes. the second- 
order approximation already Kives extremely good results. 

1. Introduction 

The time evolution of a classical Hamiltonian system can he described by a one- 
parameter group of canonical transformations acting on the initial values of phase 

compute the action of this group for a given Hamiltonian. It is accomplished by solv- 
ing the evolution equation for the operators that carry out the transformation. Such 
an equation is equivalent to the usual Hamiltonian equations of motion for which a 
number of approximate methods have heen devised over the years. One possible reso- 
lution scheme is to seek explicitly time-dependent canonical transformations in terms 

applied to different topics in the literature [l]. In particular, it has been extensively 
used to solve beam dynamics in particle accelerators [Z]. However, the arguments in 
these exponentials correspond to a unique power of the expansion parameter (or any 
equivalent label). Thus, it can actually be considered as an exponential perturbation 
theory. 

In the present study we elaborate an adaptation of the so-called Fer’s expansion 
[3,4] to classical Hamiltonian systems. Unlike the previously mentioned approach the 
arguments of the exponentials contain an infinity of orders in the expansion parameter. 
The interest of Fer’s iterative expansion has heen emphasized for quantum mechanical 
time-dependent problems [4]. We shall see that its classical version also gives very 
good results, even with a few iterations. The analysis is performed by means of Lie 
transform techniques. The use of Lie operators in the context of classical dynamics 
already has a long history [5]. These tools enable one to transform Poisson brackets 
of functions into commutators of operators, and vice versa. As a consequence the 
procedure can benefit from well established results in quantum mechanics. 
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In section 2 we set up the notation concerning Lie transforms and derive Fer's 
expansion for classical systems. In section 3 we apply the method to some physical 
examples given by quadratic Hamiltonians. Finally, section 4 contains the conclusions. 

2. Fer's expansion for classical Hamiltonian s y s t e m s  

Let us eonside: a phm-e space r of dirrension 2.v. Introdnce the vector E *wbase 2?t 
components are the generalized coordinates and momenta: ( q l , .  . . , q N ,  p,, . . . ,pN)  
((,,. . . , F Z N ) .  The set of regular real-valued time-dependent functions on the phase 
space is an infinite-dimensional Lie algebra under the Poisson bracket composition 
law which we denote by U.  We consider two elements of U to be equivalent if their 
difference is a function of time only. Then U is divided into equivalence classes, 

associate the Lie operator : f: from U to U defined by 
{C;; f E O], which form the qllot,ient, set &. Now with each &mefit c. 6 fl we 

J 

0 11 ~~ , l  Bere we ioiiuw me noiaiion of [Z]. "v'irai we caii ihe Lie operaior : j :  is aiso known as 
the Lie derivative generated by f and denoted by L,. J is the symplectic 2N x 2 N  
matrix (-::). Then, the action of : f :  on any function g E U is :f: g = [f, g], where 
the square bracket stands for the Poisson bracket of classical mechanics. It is clear 
that : f :  is independent of the representative element of C, considered. Besides, the 
commutator of two Lie operators, {: f : ,  :g:}, equals the Lie operator associated with 
the Poisson bracket ofboth  iunctions, i.e. {: j :  , : g :  j =: ij,g]:. 

I t  is also important to realize that as cn operator on U : f :  inherits the linear 
character of the derivative operators in equation (2.1), : f:(agl t- bg,) = a:f:g,  + 
b: f :  9,; but as a new element of U ,  (: f :  g) is in general by no means a linear function 
on I'. 

Let H((, t )  be an explicitly time-dependent Hamiltonian and M ( t ,  t o )  the sym- 
precuc i r r a p  bl lal i  gerrerabas b'iC b r a J " " b " L ' ~ s  C,L ,  111 plL"s" apaLt: soa'rlrrg LIUll l  Ult: 1111b161 

conditions € ( t o ) ,  namely 

-I . -&:-  . L . L  _._._.I.̂ A I ^  e,*\ !- _ L ^ ^ ^  ^ _ ^ ^ ^  /̂̂ _.:__c.._ At.- :-:L:-, 

E ( t )  = M(t, to)E(to) .  (2.2) 

This symplectic map is governed by the evolution equation [6]: 

M = - M :  H :  M( to , to )  = exp:c(to):. (2.3) 

The dot stands for the time derivative. The initial condition guarantees M to be 
continuously connected with the identity operator provided c is any function of time, 
independent of p and p .  A formal solution to equation (2.3) may be given in terms of 
Dyson's chronological product but we shall not deal with this topic. An alternative 
method based on the Magnus expansion [7] has been proposed in [E]. There, the 
solution is written as a single exponential of a unique Lie operator. 

When { L ~ : H ( T ) :  d r , : H ( t ) : )  = 0,  then M = ex:i[-L:,:H(r): d ~ ] ,  and this is 
clearly the case If H is time-independent, In classical mechanlcs one can always avoid 
explicitly time-dependent problems by increasing the number of degrees of freedom 
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by one and appropriately changing the Hamiltonian. However this can complicate the 
algebraic structure of the problem. 

We proceed in another way. Let us suppose that the exponential is a good approx- 
imation and that a solution can be written in the form 

(2.4) M = M,~:FI:  

where :PI: = H ( r ) :  d r  whereas the transformation MI describes the difference 
between the approximation and the exact mapping, with M l ( t o , t o )  = exp:c(t,):. 
The question is to find the evolution equation satisfied by M I .  Let us substitute 
equation (2.4) into (2.3). Taking into account [9] that 

we obtain 

MI = - M , : H , :  (2.6) 

where : H I : ,  the Lie operat,or associated with the transformed Hamiltonian HI, reads 

1 

: HI: =: [eF', HI: - / dz  : [esF1, HI: . (2.7) 
0 

Here [ e R ,  H] stands for the Taylor series of iterated Poisson brackets: [eF1, HI = 
Cr=o=,[F/, H]/k!, with 

IF:, HI [PI, [PI,. . ., [Fl ,  HI.. .]] [ F f ,  HI H. - 
k times 

The procedure can be repeated with equation (2.6) which gives rise to the following 
recursive scheme: 

1 

: F n + l : = - l m : H n ( r ) : d r  : H  =. H: 

1 - k  
: H,+l:=:[eF"+l, Hn]:-/ dz:[eSF"+' ,H,]:=~-.  ( k +  I)!' [F?!+,, H"1: 

k = l  0 

this is what we call Fer's expansion for the classical evolution operator. 
Suppose that we replace H by rH, where f is a small expansion parameter. Then, 

by virtue of the preceding equations, F,, (with n 2 1) contains an infinite number of 
powers of 6 beginning with e'*-', which greatly favours the rate of convergence of the 
expansion. This fact somehow suggests [IO] a connection with techniques for accelerat- 
ing the convergence of perturbation series in the sense of Kolmogorov-Arnold-Moser 
which have also been considered from a Lie algebraic point of view [ll]. 
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When the functions involved in equation (2.8) (or the corresponding Lie operators) 
belong to a Poisson subalgebra of U (or a subalgebra under commutation), then the 
calculation can be carried out with compact expressions. Under these circumstances a 
finite exponential product of Lie transforms could be attained. In a different context 
Wei and Norman [12] proved such a solution to exist, at least locally. 

For the sake of completeness, we sketch the form of the infinite exponential product 
expansion quoted in the introduction. As a matter of fact, it can be thought of as a 
generalization of the Zassenhaus formula [9]. The method has been extensively worked 
out by Dragt and co-workers [2,6]. For the type of Hamiltonian we shall study in the 
next section we do not need the full expansion but just a few terms. It is worthwhile 
noticing that in this situation the expansion coincides with that of Kumar [13] and a 
left-running version by Wilcox [9]. If we denote 

M = I ~ -e:Kz:e:K~: ( Z - l n )  

then the first terms read 

(2.11) 

Higher order terms can he fQ??Ed_ in ['Ij p i  131: As en,uat,ion (2.U) already shows this 

.K . . - . F .  :K,:= 5 ~ o : [ H ( r ) , K l ( ~ ) ] :  I i  dr .  

expansion is characterized by the fact that IC, is order e". 

3. I l lustrat ive examples 

Hamiltonians defined by quadratic forms are of considerable interest in physics. It 
turns out that these Hamiltonians are, in general, especially simple to handle. We 
consider, in particular, the unidimensional parametrically driven harmonic oscillator 
given by 

H = +(P' + q Z )  + d ( t ) q z  (3.1) 

where 4 is a time function to  be specified later. This simple, although not trivial, 
Hamiltonian will enable us to  appreciate the performance of the method. We compute 
Fer's expansion up to second order and compare the obtained approximate trajectories 
with the exact numerical results. The scheme provided by equations (2.10) and (2.11) 
is also examined. The corresponding formulae for the generalized harmonic oscillator, 
H(q,p,t) = A(t)p2 + B( t )qp  + C(t)q2, are collected in the appendix. 

We suppose that at the initial time to the system is in q(to) = q,,, p(to) = p o .  
According to the formulae in section 2 we get 

: Fl :  = Tpaq - (2CP + T)qap (3.2) 

where CP = h: +( r )  d r  and T = t - t o .  The Lie operator associated with the trans- 
formed Hamiltonian given by equation (2.7) yields 

- cosp ((2CP + T)Yap + TP8,)l ) + 2 (* 
P 

(3.3) 
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with p = 2 d m .  Eventually, we need to know the action on q and p of 
a general exponential map & = exp[a(pa, - pa,) + pqa, + ypg,], with a, p and 7 
functions of time. The argument in the exponential is the most general element that 
we need since the operators pa, - Sa,, gap, pa, (or, alternatively, the functions qp, 
f q z ,  $pa) span the SU(1,l) algebra. Then we get the canonical transformation 

with q2 = ua + By. 
The approximate trajectories up to second order furnished by 

~ , ( t )  e e'P"e'F"<i(to) (i = 1 , ~ )  

are explicitly 

(3.5) 

The following notation has been used 

a .  P .  
'1 7 'I 

c* E cosh 7 k - sinh 7 s+ sinhq . 8- E - sinh q.  (3.7) 

In our case the functions a, p and 7 are integrals of the coefficients of the Lie operators 
appearing in equation (3.3) 

'(' - ") (1 - p sin p - cos p )  dt' 

P = - J  t @ - T +  -(--cosp) s inp  dt' 
1 0  P 

cosp) dt' 

where T = t' - to now. 
Next we choose three particular forms of + ( t )  and compare the second-order Fer's 

approximant with direct numerical integration of the equations of motion, namely 
q+  (1 + 24)q = 0; p = 4,  In order to make the three perturbations comparable we fix 
4(0) to have the same value in all cases. The results corresponding to equation (2.11) 
are also reported. The initial conditions are to = -1, qa = 1, po = 1, in all examples. 

(i) As a first application we take the symmetrical pulse 4 = (r/S)sech(Ct). Adi- 
abatic regimes correspond to sufficiently small values of (, whereas large values of C 
represent sudden perturbations. The parameter L measures the strength of the pertur- 
bation. For up to e E 1 our approximate trajectories and the exact numerical results 



4042 F Casas e l  a/ 

are virtually indistinguishable both for small and large (E 1) values of C. Although the 
global agreement is impressive there exists, however, a small time-lag between both 
the approximate and exact results which can he appreciated only for sufficiently large 
time intervals. The more sudden (or weak) the perturbation the smaller this time-lag. 

The full curve on figure 1 corresponds to second-order Fer's approximation (and the 
indistinguishable exact trajectory) whereas the broken curve illustrates the alternative 
factorization of [5, 6, 9, 131, according to equations (2.10) and (2.11). The input values 
are { = 1, 6 = 0.5 and the time interval considered is -1 < t < 6.  

2 

1 

P 
0 

-1 

-2 
-2 -1 0 1 2 

q 
Figure 1. Comparison between the second-order Fer's approximate trajectory (fuU 
curve) and the alternative approach of 16) (broken cwve)  for the first example with 
c = 0 .5 ,  < = 1. The plotted time interval is -1 < t < 6. The exact numerical result 
is indiatin&hable from Fer's approximant. 

(ii) As a second example we choose an asymmetric pulse: 4 = (c /2 )  exp(-{t) for 
t 2 0, and = 0 for t < 0. Thus, after the perturbation is suddenly switched on we can 
control its effective duration by means of the parameter C. For the sake of illustration 
we show in figure 2 the exact (full curve) and second-order Fer's approximation (broken 
curve) trajectories for -1 < 1 < 6 ,  c = 0.5 and C = 1. Again, the only observable 
difference is a small time-lag at  the end of the plotted path. 

(iii) The third and last case that  we analyse here corresponds to the periodic 
perturbation given by 4 = ( ~ / 4 ) ( 1  + coset). Notice that,  unlike the previous cases, 
this perturbation does not exhibit a decreasing tail. The corresponding equation of 
motion is of the Mathieu type which, as is well known, has been widely applied in 
many branches of physics and technology. We use this formof 4 to check the long-time 
behaviour of Fer's approximate solution. Inputs in figure 3 are: c = 0.9, { = 1 and lines 
are coded as in figure 2. The plotted time interval is 60 < t < 70, therefore far away 
from the initial instant. The trajectories are drawn in a clockwise direction. Albeit the 
global agreement is worse than in preceding cases we emphasize the important feature 
that the approximation remains very close to the exact trajectory. If we change to 
6 = 0.4 the results greatly improve as shown in figure 4. 

On the other hand, the trajectories provided by secular perturbation theory move 
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9 
Figure 2. Exact (full curve) and second-order Fer's approximate (broken curve) 
trajectories for the second example. Input values are L = 0.5, ( = 1. The plotted .:-- :_.^__."I :_ -1 . 1 , c u x u =  11115. "a I -  -1 , I , -. 
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-: 

-2 
-2 -1 0 1 2 

q 
Figure 3. Trajectories corresponding to the periodic perturbation (third example). 
The exact (full curve) and second-order Fer's spproximant (broken curve) are plotted 
in the interval 60 < t < 70, with input vdues c = 0.9, { = 1. The trajectories are 
drawn in a clockwise sense. 

rapidly away from the exact solution. So, except for very short times, they are out of 
range of the !@res. For this reason we have not plotted them. 

4. Conclusions 

We have built up Fer's expansion for the classical evolution operator. This infinite 
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9 
Figure 4. Same as in figure 3 except the input value e = 0.4. 

repeated action of exponential Lie transformations seems to provide a very good repre- 
sentation of the time-evolution operator M.  The examples worked out clearly indicate 
that up to second order i t  gives better results than alternative proposals we know. In 
particular, compared to usual perturbative treatments this improvement could be as- 
sociated with the fact that our expansion makes a high-order re-summation of the 
power series. The computation procedure is iterative. 

The various examples have been chosen in order to embrace very different pertur- 
bative regimes, even with large coupling constants. The first one describes adiabatic 
as well as sudden situations, depending on the value of C. The second example corre- 
sponds to an everlasting decaying pulse suddenly introduced. The third case describes 
a periodic regime. 

Albeit the visual agreement between the exact trajectories and that provided by 
the second Fer's approximant is very good we insist on the fact that the approximation 
snKers irom a time-iag with respect to the exact soiution. Due to the goodness o i  the 
fit i t  is quite difficult to visualize it directly on the plots unless 6 islarge enough. All 
the same, it constitutes an interesting effect that merits to  be kept in mind: The point 
( q ( t ) , p ( t ) )  of an exact trajectory in phase space is amazingly well fitted by computing 
Fer's approximant at some different instant t + 6, where 6 = 6 ( t , C , t )  varies in a 
smooth and uniform way along the trajectory. The full validity of this observation for 

In summary, Fer's expansion constitutes a new recipe to expand M as a compo- 
sition of exponential mappings. The results in the examined examples show the fast 
convergence of the method. As regards multi-dimensional systems (N > 1) investiga- 
tions are being carried out, as well as on some other class of Hamiltonians. 

U--:I+-..:-..- -&he- 4h"- - . . -A - -&: -  h.. 4- h.. m--C-...A 
II(LIIIIIY"III(LLLID Y Y L . C I  Y I . (LL I  'I"'YL"Y'C &I- Y" "C C"llll l l l l .z". 
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Appendix 

In this appendix we calculate the first and second orders of Fer’s expansion for the 
generalized simple harmonic oscillator, whose Hamiltonian is given by 

H ( q , p , t )  = A ( t ) p Z  + B ( t ) q p  + C(t)qz (-41) 

with A(t ) ,  B(t )  and C(t )  arbitrary time-dependent functions. This system has received 
considerable attention recently in connection with the geometrical phase factor known 
in quantum mechanics as Berry’s phase [14] and its classical analogue (Hannay’s angle 
1151). 

For the Hamiltonian (Al )  we get 

: F,: = - - z7qap + 2 0 ~ 8 ,  (A2) 

where, now, 

and 

then the Lie operator associated with the transformed Hamiltonian H ,  takes the 
compact form 

: N,:= h , ( p a p  - qaq) + /Izqap + h3paq. 

: F ~ :  = - r l ( p a p  - qa,) - izqap - 13paq 

(A61 

Whence we obtain the second-order Fer’s approximant 

(A7) 
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where 

The approximate trajectories given by equation (3.5) are explicitly 

q ( t )  IT (-m+v+ +.u+n-)po + (m+n+ - "+"-)pa 

p ( t )  IT ( n - n -  + u-u+)p, - (m-U- +u-n+)q,. 

Here we have used the following notation: 

0 .  n* = cosh r) f - sinh 7 n* = cosh u i sinhu 
r) U 

(-49) 

with U' G I: +&I,, (U  # 0). These expressions are not valid when q = 0. In that 
case the calculation of the corresponding formulae is straightforward. 
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