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Abstract. From the exact solution of certain time-dependent classical harmonic oscillators
in one dimension we investigate the behaviour of the adiabatic invariant J{t). For a
subclass of such potentials A J = J(4c0) — J(—occ) = 0 whatever the regime. We show
that this does not necessarily imply a breakdown of the commonly accepted asymptotic
exponential law for A J.

Although the classical harmonic oscillator (H0) with time-dependent frequency is a
very old subject of study in applied mathematics and physics it continues to receive
attention nowadays, often as a way of checking the validity of new approximation
methods, but also to illustrate ideas or concepts. It is therefore not surprising that
original remarks concerning the time-dependent HO appear regularly in the literature.
The present note has been motivated by one of these recent observations [1-3].

To be precise, in the first part of this letter we solve exactly the equation of
motion associated to the one-dimensional time-dependent Hamiltonian

H(t) = ip* + w(et)d?] (1)

for a particular one-parameter family of analytic functions w(ez), where 1/¢ stands
for the time scale of the system. It is commoaly accepted that when the system evolves
adiabatically the asymptotic variation of the variable J = H /w is exponentially small.
Nevertheless, for certain values of the parameter characterizing these frequencies the
change in J(t) from —oc t0 400 exactly vanishes for any value of ¢. We shall discuss
below this paradoxical phenomenon.

For the Hamiltonian in (1) the variation with time of the variable J is a topic
frequently discussed in the literature. As is well known, J is an adiabatic invariant
which means that its value remains approximately constant during a time interval
of order 1/¢ [4]. A slightly different question arises when considering the variation
AJ = J(+400) — J(—o0) over the infinite time interval (—oo0,+o0), instead of the
whole history of J(t). It is tacitly supposed that the limiting values J(Zoo) exist,
which is ensured provided w tends sufficiently fast to definite limits as ¢ — *oo. If
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w(et) is an analytical function then AJ ~ e~*/¢, with k a real positive constant and
e € 1, It is common practice to express this result by saying that the asymptotic
variation of the action is exponentially small. Studies on the accuracy in the
conservation of J({} when ¢ < 1 have been performed with different techniques,
giving generally very elegant results [6-9].

There are, however, potentials for which AJ = 0, irrespective of whether
the regime is sudden or adiabatic. These cases are usually said to correspond
to reflectionless potentials [2,3] in analogy with one-dimensional quantum scattering
problems. Here we adhere to this terminology. Of course, in the context of classical
mechanics neither a reflected nor a transmitied wave is referred to at all.

We are interested in understanding why the variation of the adiabatic invariant
vanishes rather than being exponentially small, in the adiabatic regime; and moreover,
why the above result holds in fact for any regime. In this note we prove these features
for a family of Hamiltonians of the form givea in (1).

The particular class of frequencies we study is

oo —1)é

Het) =1
wilet) + cosh? et

2
where o > 1 is a real arbitrary parameter. The frequency considered in [3]
corresponds to o = 2.

The change of variable

z = (14 tanhet) /2 3)

transforms the equation of motion § + w?q¢ = 0 into Riemann’s differential equation
. 1-2z 1 o(o— 1)) _

7=+ z(1- z)q + 4€2z2(1 - 2)? + 2(1-2z) 9=0 @

with (regular) singular points z = 0,1,00. In the above expressions the dot stands
for the time derivative while the prime represents the derivative with respect to z.
The real solution that presents the adequate behaviour when o = 1 is given by

g(t) = ae'i’2F1(6,1—0;1—i/e;z)-{-CC (%)

in terms of the hypergeometric function , F;. Here « is an arbitrary complex constant
to be fixed by initial conditions and cc indicates the complex conjugate of the
preceding term. Let us analyse the asymptotic behaviour of ¢(t), p(t) = ¢(?).
When z — 0 (ie. t — —co), then ,Fy, — 1 and q(t), p(?) are simply the free HO
solutions

q(1) =~ ce + cc p(t) ~ —ice™ 4 CC. (6)

The free oscillation character of ¢(¢) whea z — 1 (i.e. 1 — +00) can be readily seen
by taking into account the following analytic continuation [5}:

M)l (c—a—b) _, ( e ._l)
P(c—a)l"(c—b)z fi\@e-ethetboetll z

I'(e)T(a+b-
T(a)T(B)

1 Fila, b6 2) =

<) (1-2)°"9%2%%F (3—01 l-a;c—a~b+1; 1—%) .
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After some algebra we get the asymptotic form

g(t) ~ (e R +e%S5) + cC (8)
with
_ P{l-ife)T(—ife) _ (1 -i/e)T'(ife)
k= o ~ife)I (1o —ife) 5= Fo){l~o) ° ©)

A similar expression holds true for p(t). Consequently the solution given by (5) may
be seen as the product of the asymptotic (oscillatory) solution times a function (,.F7)
describing the finite time corrections to the former. Changes of variables other than
(3) may lead to alternative forms of (4) [10]. Nevertheless, the solution no longer
necessarily admits such a factorization.

Next we obtain an exact formula for AJ. From (6) we have J(—o0) = 2|ef2. To
obtain an expression for J{+o0) from (8) we use the property

I'(l-2)I(z)=x/sinm= ' (10)
and a straightforward calculation yields

AJ = 4o plV/1+ p2c0s(2¢ + ¢) + o] (11)

where ¢ = arg(«), p = |sin(wo )}/ sinh(sx /) and

(12)

¢ = 2[argl{(o + i/e) + argl(1 - i/€)] + tan™? (tanhfr/e) _

tan o

A special situation occurs when o takes on integer values »n > 1. Then, the
above equations give AJ = 0 irrespective of the ¢ value. This property is sometimes
referred to as reflectionlessness, even in the context of classical mechanics [3].
Furthermore, for these particular frequencies the hypergeometric series in (5) reduces
to a Jacobi polynomial [5]

, -1 -i/eite)
Fi(n1-ml-ifez) = =D piaild_gnery. (13
251 (1 — lle)n-—l 1 ( ) ( )

Once (13) is substituted in (5), the exact solution ¢(t) is expressed in terms of
simple algebraic functions. We note in passing that our exact (AJ = 0) solution
coincides with the reflectionless solution obtained wig the factorization method in
soliton theory [11].

Let us now go back to the case of arbitrary ¢ and suppose that ¢ < 1, which
corresponds to the adiabatic regime. If ¢ is not an integer then A J does not vanish.
Since w(et) is analytic AJ must be proportional to exp(—k/e€) with k some positive
real parameter, according to the general rule stated above. In this limiting case we
have from (11)

AJ =~ 8lalcos(2¢ + &) sin{wo)|exp(—x/€) . (14)

Notice that A J is indeed exponentially small for o # n and, what is more interesting,
the vanishing of AJ stems from the pre-exponential factor. The exponential rule for
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AJ is still valid for o values neighbouring ¢ = n but right at this point it is the
pre-exponential factor in the asymptotic formula that becomes the crucial piece.

In summary, we want to stress that by exactly solving the equation of motion
for the one-parameter family of frequencies giver by (2) we have found that AJ
factorizes asymptotically as indicated by (14). The pre-exponential factor depends
continuously on the parameter o whereas the exponential itself is a function of ¢
alone. Just when o = n > 1 we have the likely correlated facts that, whatever the
regime, g(t) is given by a combination of simple algebraic functions and that AJ =0,
ie. reflectionlessness. A similar property has been observed for the structure of the
wavefunction of some one-dimensional time-independent quantum systems [2].

It would be interesting {0 see to what extent these conclusions are valid for other
families of frequencies. Needless to say, this might be a poser in view of the scarcity
of exactly solvable models.
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