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Summary. In this paper we analyze the main features of the so-called Fer expan-
sion as a new method for integrating the ordinary differential equations derived
from explicitly time-dependent Hamiltonian dynamical systems. This method is
based on a factorization of the evolution operator as an infinite product of expo-
nentials of Lie operators and thus exactly preserves the Poincaré integral invari-
ants. Third and fourth-order expansions are considered and numerical results are
presented for a quadratic Hamiltonian with various time-dependent frequencies.
Comparison is done with other numerical integration schemes.
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1. Introduction

A number of techniques have been devised over the years for obtaining ap-
proximate solutions to the ordinary differential equations (ODE) corresponding
to Hamiltonian dynamical systems. In particular, numerical integration meth-
ods for the solution of the initial-value problem have achieved high accuracy
and efficiency. However, standard integration schemes – including the explicit
Runge-Kutta class of algorithms – do not take into account important special
features of the dynamics, such as the symplectic nature of the temporal evolu-
tion, which places severe restrictions on the global behaviour of the geometry of
the dynamics.

Let us consider, for example, a Hamiltonian system withN degrees of free-
dom and a configuration manifoldQ . It is well known that on the cotangent
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bundle T∗Q (the phase space), with canonically conjugate coordinatesξ =
(ξ1, . . . , ξ2N ) = (q1, . . . , qN , p1, . . . , pN ), there exists a closed, non-degenerate,
differential two-form

(1) ω2 =
N∑

i =1

dpi ∧ dqi

such that (T∗Q , ω2) is a symplectic manifold [2]. The formsω2, (ω2)2, . . . , (ω2)N

are referred to as the Poincaré integral invariants and are preserved under the time
evolution. When integrated over an arbitrary region of dimension 2k(1≤ k ≤ N ),
the 2k-form ω2k produces the invariant quantity

(2)
∫

. . .

∫ ∑
i1<...<ik

dpi1 ∧ . . . ∧ dpik ∧ dqi1 ∧ . . . ∧ dqik

which is proportional to the sum of the oriented volumes of projections onto
the coordinate spaces (pi1, . . . , pik , qi1, . . . , qik ), where 1≤ im ≤ N . In particular
whenk = N we have Liouville’s theorem on preservation of phase-space volume
along the evolution. Generally, a transformationϕ on the phase space preserving
these symplectic invariants is called canonical or symplectic and its Jacobian
matrix ϕ′(ξ) has to satisfy [2]

(3) ϕ′T(ξ)Jϕ′(ξ) = J ,

whereJ is the matrix

(4) J =

(
0 IN

−IN 0

)
with IN the identityN -dimensional matrix.

Standard numerical integration techniques do not preserve symplectic invari-
ants and thus they prove useful only in the investigation of short-time quantitative
phenomena whereas long-time predictions about phase-space structures generally
are more problematic [10].

Nevertheless, it is possible to devise numerical integration algorithms that
approximate the time evolution transformation of the exact dynamics to any
desired order in the time step and that are exactly symplectic [31, 16]. These
are called symplectic integration algorithms (SIAs) and an increasing number of
them have been constructed and used in the last years in many different contexts,
such as Celestial Mechanics [37, 24, 19], hydrodynamics [10, 30] or Hamiltonian
partial differential equations [27], just to quote a few examples. Their efficiency is
compared with the standard fourth-order Runge-Kutta algorithm in the references
[10, 5, 19, 28]. In particular, for autonomous Hamiltonian systems it has been
shown that there is no secular change in the error of the total energy (which should
be conserved exactly in the original flow) caused by the local truncation error. If
the integrator is not symplectic, the error of the total energy grows secularly in
general. The reason for this behaviour is that SIAs give the exact evolution of a
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Hamiltonian system with a Hamiltonian function that is close to the Hamiltonian
of interest to any desired order [10, 39]. This perturbed Hamiltonian can be
explicitly constructed for symplectic Runge-Kutta, partitioned Runge-Kutta and
Runge-Kutta-Nystr̈om methods [20].

The research on symplectic integrators has proceeded along three different
lines. The first one, ellaborated by Feng [14], makes use of generating functions to
construct canonical transformations appropriate to carry out each integration step.
This implicit SIA was later applied by Channell and Scovel [10]. The second
way is related to the general class of Runge-Kutta methods. A subclass ofs-
stage implicit Runge-Kutta methods can be made symplectic with an appropriate
election of the constants [32, 33]. As a result, the family of Gauss-Legendre
Runge-Kutta methods are shown to be symplectic. The same is true for the
family of Runge-Kutta-Nystr̈om methods [4, 21] and for partitioned Runge-Kutta
methods [21], which are especially suitable for separable Hamiltonian because
then it is possible to obtain explicit symplectic integrators.

The third general scheme is to expand directly the evolution map as a product
of explicitly computable time-dependent canonical transformations based on Lie
algebraic techniques. This type of approach has been used by Yoshida [38] and
Forest [17] for obtaining higher order explicit symplectic integrators in a simple
way.

Symplectic integrators have a remarkable capacity for describing adequately
the qualitative features of Hamiltonian systems, such as invariant sets and struc-
tures in phase space, even if the orbit is not followed with pointwise accuracy.
Nevertheless, it is also possible to construct symplectic integrators with small
truncation errors that are more efficient than conventional methods, even if one
wants to compute an accurate numerical approximation toξ(T) for a fixed final
time T. An example of such a method can be found in the reference [4], where
a explicit symplectic Runge-Kutta-Nyström method is constructed with a better
performance than some standard variable-step codes.

In this paper we present the so-called classical Fer expansion [15, 7] as a
possible explicit symplectic integrator for time-dependent Hamiltonian systems.
When we apply this iterative procedure to an arbitrary Hamiltonian, we obtain
a factorization of the time-evolution map as a product of exponentials of Lie
operators. These kind of expansions have the advantage that the approximating
systems are also Hamiltonian. A peculiarity of the Fer factorization is that each
argument of the exponentials contains an infinity of orders in the expansion
parameter, which could greatly favour its rate of convergence. Indeed, we will
show that, at least for quadratic Hamiltonians, very few iterations are sufficient to
achieve accurate results both for the orbits and conserved quantities. The analysis
is performed by means of Lie transformations techniques [22, 11].

The paper is organized as follows: in Sect. 2 we review the necessary Lie
algebraic tools and derive Fer’s expansion for Hamiltonian systems. In Sect. 3
we apply the method to an one-dimensional quadratic Hamiltonian with various
time-dependent frequencies and obtain analytic expressions for the successive
approximants and the corresponding solutions. In Sect. 4 we present some nu-
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merical experiments to show the performance of the method. In particular, we
compare the third and fourth order Fer expansion with other numerical integra-
tion schemes, including symplectic ones, for some physically important examples,
such as the Mathieu equation. Finally, Sect. 5 contains the conclusions.

2. Review of the Fer expansion

Let us consider the setA(T∗Q , t) of all analytic real-valued time-dependent
functions on the phase spaceT∗Q . This set has the structure of an infinite-
dimensional Lie algebra under the Poisson bracket composition law. Associated
with each elementf (ξ, t) of A(T∗Q , t) there is a Lie operator which acts on
general functionsg(ξ, t). The Lie operator associated with the functionf will be
denoted by theLf and it is defined by the rule

(5) Lf g = [f , g]

where the square bracket stands for the Poisson bracket of the functionsf and
g. Note thatLf is nothing but the Lie derivative−LXf , whereXf is the vector
field associated withf by means of the two-formω2, because [2, 36]

(6) Lf g = [f , g] = −LXf g = ω2(Xf ,Xg) .

On a bundle chart the operatorLf has the expression

(7) Lf =
N∑

i =1

∂f
∂qi

∂

∂pi
− ∂f

∂pi

∂

∂qi
=

2N∑
i ,j =1

∂f
∂ξi

Jij
∂

∂ξj

whereJij are the elements of the symplectic matrix of the Eq.(4). ThusLf is a
first-order linear partial-differential operator onA(T∗Q , t), but it is important
to realize that in generalLf g is not a linear function on phase space. The set of
Lie operators forms a Lie algebra under the commutator operation{Lf , Lg} =
Lf Lg − LgLf . It can be proved that this commutator equals the Lie operator
associated with the Poisson bracket of both functions, i.e.,{Lf , Lg} = L[f ,g] .

It is possible to deal with power series inLf . Of particular importance is the
power series exp(Lf ), called the Lie transformation associated withf . This is
also a linear operator onA(T∗Q , t) and its action on any functiong is formally
defined by

(8) exp(Lf )g =
∞∑

n=0

1
n!

(Lf )ng =
∞∑

n=0

1
n!

[f , [f , . . . , [f︸ ︷︷ ︸
n times

, g] . . .]] .

In particular, the transformationξ 7→ ξ′ given by

(9) ξ′i (ξ, t) = exp(Lf )ξi , i = 1, . . . , 2N

is symplectic [11].
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Let H (ξ, t) be an explicitly time-dependent Hamiltonian. It is well known
that the time-evolution associated withH is a local canonical flow that preserves
all the Poincaŕe integral invariants [36]. Letξ(ξ0, t , t0) denote the (in general
nonlinear) mapping which gives the dynamic state at timet of a particle which
was atξ0 at time t0. We can identify a time-evolution operatorM(t , t0) with
this canonical mapping according to the prescription

(10) (M(t , t0)g)(ξ0, t0) = g(ξ(ξ0, t , t0), t) ,

whereg ∈ A(T∗Q , t). In words, the action of the operatorM is to evaluate
the functiong at the mapped point. In particular, we have

(11) M(t , t0)ξi (t0) = ξi (t) , i = 1, . . . , 2N .

The time derivative ofM is defined in the usual way,

(12)
∂M
∂t

g = lim
τ→0

M(t + τ, t0)g −M(t , t0)g
τ

and if g has no explicit time dependence, we obtain [6, 13, 16]

(13)
∂

∂t
M(t , t0) = M(t , t0)L−H (ξ0,t) .

Solving Eq. (13) with the initial conditionM(t0, t0) = I , where I denotes
the identity map in phase space, is obviously equivalent to the resolution of the
Hamilton equations of the motion.

When [∫ t

t0

H (ξ0, t
′)dt′,H (ξ0, t)

]
= 0

then

(14) M(t , t0) = exp(LA(ξ0,t)) , A(ξ0, t) = −
∫ t

t0

H (ξ0t ′)dt′ ,

and this is the case ifH is time-independent. In classical mechanics one can
always drop out an explicit time dependence in the Hamiltonian by increasing
the number of degrees of freedom. However this may complicate the algebraic
structure of the problem. In particular, ifH (ξ, t) is a quadratic form, the dynamics
expressed in the resultant 2(N + 1)-dimensional phase space becomes in general
nonlinear.

We can solve perturbatively Eq. (13) by means of the Neumann iterative
procedure. Then one finds

(15) M(t , t0) = I +
∞∑

n=1

∫ t

t0

dt1

∫ t1

t0

dt2 . . .
∫ tn−1

t0

dtnL−H (tn) . . . L−H (t2)L−H (t1),

whereH (ti ) ≡ H (ξ0, ti ). An important drawback of this approach is that when
expansion (15) is truncated, the corresponding approximation to the evolution
operator does not preserve symplecticity.



288 F. Casas

Another possible scheme in order to find a formal solution of Eq. (13) is
to expressM as an infinite product of Lie transformations. As a first step we
suppose that a solution can be written in the form

(16) M(t , t0) = M1(t , t0) exp(LF1) ,

whereF1 = A(ξ0, t). The mapM1, is subject to the initial conditionM1(t0, t0) =
I and verifies equation [7]

(17) Ṁ1 ≡ ∂M1

∂t
= M1L−H1 ,

with

(18) H1 ≡ H1(ξ0, t) =
∞∑
k=1

k
(k + 1)!

(Lk
F1

H ) .

Therefore the problem of determiningM1 has in principle the same difficulties
than that ofM. However it is worth noting that an expansion of the type (15)
for M1 begins with a double integral, so we can expect that, at least for small
values oft , the mapM1 − I is closer to zero thanM − I . What is more
important, the above procedure forM can be repeated withM1 which leads
to the following scheme:

(19) M = Mn exp(LFn ) . . . exp(LF2) exp(LF1) ,

with Mn such that

(20)

Ṁn = MnL−Hn , Mn(t0, t0) = I ,

H0 ≡ H (ξ0, t) , Hn ≡ Hn(ξ0, t) =
∞∑
k=1

k
(k + 1)!

(Lk
Fn

Hn−1)

Fn(ξ, t , t0) = −
∫ t

t0

Hn−1(ξ0, t
′)dt′ , n ≥ 1 ,

that is called Fer’s expansion for the classical evolution operatorM [7]. In this
way we can express the mapM(t , t0) as an infinite product of Lie transforma-
tions whose high order terms presumably are close to the identityI . Now we
suppose we replaceH by εH , whereε > 0 is a small parameter. Then, as we can
see in Eq. (19),Fn (n ≥ 2) contains an infinite number of powers ofε beginning

with ε2n−1
. When our Hamiltonian is of the formH = H0 + εH1 this can always

be done with the new HamiltonianεH1 in the so-called interaction picture [13].
When the functions involved in Eq. (19) belong to a solvable Lie subalgebra

of A(T∗Q , t) then a finite product of Lie transforms is attained for the evolution
map. Otherwise, we must truncate the infinite product of Eq. (19) forM in the
nth term,n = 1, 2, . . .. Obviously, this is accomplished by doingMn = I . Thus
we obtain an approximate expression for the evolution map in the form

(21) M(t , t0) ' exp(LFn ) . . . exp(LF2) exp(LF1)
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with Fi ≡ Fi (ξ0, t , t0).
There are two comments to be considered concerning Eq. (21): first, this ap-

proximation is still symplectic in character and secondly, all the dependence of
M in the parameterε is included up to orderε2n−1. Thus, when the product of
n Lie transformations of Eq. (21) is applied to the initial condition, we obtain a
solution which is correct up to orderε2n−1, provided the action of the Lie trans-
formations can be exactly evaluated. Such a property is called ‘superconvergence’
in the context of classical perturbation theory [23].

3. Application to quadratic Hamiltonians

In this section we apply the above deduced Fer expansion to a simple but non-
trivial Hamiltonian. We consider a one-degree-of-freedom parametrically driven
harmonic oscillator given by

(22) H (q, p, t) =
1
2

[p2 + Ω2(t)q2]

whereΩ2(t) is a real-analytic function and whose corresponding equation of
motion reads

(23)
d2q
dt2

+ Ω2(t)q = 0 .

As it is well known, in general it is not possible to find an exact solution of
Eq. (23) for an arbitrary functionΩ(t). We can instead apply Fer’s expansion
and obtain an approximate solution for the corresponding initial value problem.
This will enable us to appreciate the performance of the method by comparing
with other analytical and numerical approximate schemes.

In appendix A we derive a recursive procedure for obtaining the functions
Fi and their associated Lie operatorsLFi , i ≥ 1, corresponding to the more
general one degree of freedom linear Hamiltonian systemH (q, p, t) = A0(t)p2 +
B0(t)qp + C0(t)q2. If we suppose that at the initial timet0 the system is in
ξ(t0) ≡ (q(t0), p(t0)) = (q0, p0) we have for the Hamiltonian of Eq. (22)

Fi (q, p; t , t0) = −αi (t , t0)p2 − βi (t , t0)qp− γi (t , t0)q2

LFi = −βi (p∂p − q∂q)− 2γi q∂p + 2αi p∂q

with i ≥ 1. In particular

(25) αi =
1
2

(t − t0) , β1 = 0 , γ1 =
1
2

∫ t

t0

Ω2(t ′)dt′

and the expressions forαi , βi , γi , (i ≥ 2), are given in Eq. (54) in terms of
quadratures.

Eventually we need to know the action of the Lie transformations exp(LFi )
on the coordinatesq, p. For the Hamiltonian (22) this can be exactly evaluated.
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Indeed, the subalgebra ofA(T∗Q , t) involved in this case isso(2, 1), which is
known to be non-solvable. A straightforward calculation shows that

(26) exp(LFi )q = m+
i q + u+

i p , exp(LFi )p = m−
i p− u−i q ,

where

(27) m±
i ≡ coshηi ± βi

ηi
sinhηi , u+

i ≡
2αi

ηi
sinhηi , u−i ≡ 2γi

ηi
sinhηi

for ηi = [β2
i − 4αi γi ]1/2 /= 0. If ηi = 0 thenm±

i = 1± βi , u+
i = 2αi , u−i = 2γi .

From Eqs. (21, 24, 26) we can construct an approximation to the classical
evolution operatorM(t , t0) and therefore an explicit approximate solution of
the Eq. (23) to an arbitrary order in terms of quadratures. In particular, the third-
order Fer expansion gives the solution in the following way:

(28)

q31 = m+
3 q0 + u+

3 p0 p31 = m−
3 p0 − u−3 q0

q32 = m+
2 q31 + u+

2 p31 p32 = m−
2 p31− u−2 q31

q3 = m+
1 q32 + u+

1 p32 p3 = m−
1 p32− u−1 q32

whereas the fourth-order solution is given by

(29)

q41 = m+
4 q0 + u+

4 p0 p41 = m−
4 p0 − u−4 q0

q42 = m+
3 q41 + u+

3 p41 p42 = m−
3 p41− u−3 q41

q43 = m+
2 q42 + u+

2 p42 p43 = m−
2 p42− u−2 q42

q4 = m+
1 q43 + u+

1 p43 p4 = m−
1 p43− u−1 q43

The quantitiesq0 and p0 are initial values andqj , pj , j = 3, 4 constitute the
solution at timet . From Eq. (9) it is readily seen that the transformation fromq0,
p0 to qij , pij for all i , j is symplectic. Therefore the mappings

(q0, p0) 7→ (q3, p3)

(q0, p0) 7→ (q4, p4)

are canonical.
Thus we obtain an approximate analytical solutionq(t), p(t) to Eq. (23) that

preserves symplecticity and that is the exact solution for a Hamiltonian system
H̃ which is close in some sense to the original Hamiltonian of Eq. (22) [39].
As a matter of fact, it can be shown that thenth-order approximate expression
given by Eq. (21) is nothing but the exact evolution map corresponding to the
Hamiltonian

(30) H̃ = H − e−LF1 e−LF2 . . . e−LFn−1

( ∞∑
k=1

(−1)k+1

(k + 1)!
Lk

Fn
Hn−1

)
, n > 1 ,

the main properties of which will be the subject of future study [8].
On the other hand, Eqs. (28) and (29) can be seen from a computational

point of view as the expressions of an explicit symplectic integrator. In fact, if
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we considerq0, p0 as the solution in timet then Eqs. (28) and (29) provide the
approximate solution in the timet + h, whereh is the time step. Then we take
this solution as the new initial condition and repeat the process. In this way we
get a systematic procedure with all the characteristics of a symplectic integration
scheme. This approach is expected to give good results because a high-order
re-summation of the power series is considered in the expressions (28) and (29).

In the case of quadratic Hamiltonians it is not difficult to obtain an estimate
of a quantityr such that with time intervals (t − t0) < r the factorization of
Eq. (19) converges to the exact evolution mapM(t , t0). This means thatMn

tends to the identity mapI when n goes to infinity fort ∈ [t0, t0 + r ] [15]. In
particular, for the Hamiltonian (22) this ‘radius of convergence’r is given by
the following equation

(31) e4k0r − 4k0r − 1 =
2k2

0

Ω2
max

ζ ,

where k0 = max{Ω2
max, 1}, Ω2

max is the maximum value ofΩ2(t) and ζ is the
non-zero solution of the equation ex = 2x + 1, that is,ζ ∼ 1.256431.

If we denoteKi (t) ≥ 0 a function with the property that‖LFi +1ξ‖ ≤ Ki (t)‖ξ‖,
i ≥ 1, then an estimate of the rate of convergence of the expansion (19) can be
determined through that of the sequence{K1,K2, . . .}. Indeed, it can be shown
that

(32) Kn+1 ≤ 1
4

[
e4Kn − 4Kn − 1

]
, n ≥ 1

if K1 < ζ/4, so the convergence to zero is rather fast. In particular we can take

(33) Ki (t) ≡ sup{|βi +1(t)|, 2|αi +1(t)|, 2|γi +1(t)|} .
In order to do practical calculations when Fer’s factorization is applied as a
SIA, we can choose a time steph < r . In this way our numerical approximate
solution will converge to the exact one for each integration step. Moreover,
we can estimate the rate of convergence by computing the numbersKi (t + h),
i = 1, 2 . . . given by Eq. (33) and therefore an upper bound for the remainder.

Finally, it should be mentioned that the above analysis carried out for the
Hamiltonian of Eq. (22) can be applied directly to the problem of integrating
symmetric Riccati and Lyapunov matrix differential equations. In this case the
positive definite character of the corresponding solutions is preserved [12].

4. Numerical results

In this section we consider the Hamiltonian of Eq. (22) with three particular
functions Ω(t), chosen in order to embrace very different behaviours of the
frequency and some cases of physical relevance. Our purpose is to show the
performance of the Fer factorization as a symplectic integration algorithm. For
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doing it, we will compare the third and fourth order of the expansion (Eqs. (28)
and (29), respectively) with other numerical integration schemes. In particular
we will consider:

a) the differential equation solver ODEX2 of Hairer and Wanner [21]. This
scheme is based on the Gragg-Bulirsch-Stoer extrapolation algorithm [3, 35]
and the Stoermer rule. It includes an automatic step size control and order
selection;

b) the fourth order symplectic explicit Runge-Kutta-Nyström algorithm (SN4)
given by Calvo and Sanz-Serna [4] for a Hamiltonian of the form

(34) H (q, p) = T(p) + V (q) ,

whereq and p are canonical coordinates andT(p) = 1/2pTp. This method
is especially suitable for second-order Hamiltonian problems, and its perfor-
mance is better than other explicit SIA;

c) the two-stage implicit Gauss-Legendre Runge-Kutta method (SRK4) given by
[30] and [39], which is symplectic [32] and fourth-order accurate.

These two symplectic algorithms are described briefly in Appendix B. It is worth
noting that, for the particular Hamiltonian of Eq. (22), SRK4 is also explicit, be-
cause analytic expressions for the auxiliary vectorsY i of Eq. (61) can be obtained.

We are particularly interested in long time integration intervals, as it is in
these conditions that the advantages of a better qualitative behaviour of the nu-
merical scheme are more prominent. For short time intervals, local error con-
siderations become more important in order to determine the performance of a
given integration algorithm [4].

All the simulations have been run in a VAXstation 4000-90, the codes have
been written in Fortran and the arithmetic is in double precision. In all the
examples we have analyzed, a 4-points Gauss-Legendre formula [1] has been
employed in order to evaluate numerically the quadratures of the Fer algorithm.

Example 1. As a first application we take

(35) Ω2(t) =
4a cos 2t

1 + a cos 2t
,

with 0 < a < 1. ClearlyΩ2 is a periodic function oft with periodπ. Equation
(23) with Ω2 given by Eq. (35) belongs to the special class of Hill equations for
which an analytical solution can be found. In particular

(36) q(t) =
1 + a cos 2t

1 + a

is a solution of the Eq. (23) with initial conditionsq0 = 1, p0 = 0 att0 = 0 [9]. This
fact can be used to check the pointwise accuracy of the integration methods over
the time, as well as the long-term stability of the different numerical procedures,
just by comparing the solution given by the approximate schemes with the exact
resultq = 1 at t = 2nπ, n = 1, 2, . . ..
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In Fig. 1 we have plotted the quantity∆q = log10 |qappr(tf )−1| for a = 0.5 and
a final timetf of 2000 periods as a function of the computational effort measured
in CPU time (in seconds). Hereqappr(tf ) denotes the value of the coordinate at
the timetf obtained by means of the different numerical schemes and therefore
∆q can be seen as an estimate of the final error introduced by them.

The points in the figure are obtained by:

a) the extrapolation method (ODEX2) with variable step size in each 2π-interval
and tolerances for relative/absolute error test of 10−9, 10−10, 10−11, 10−12

(squares joined by a solid line);
b) the implicit SRK4 symplectic integrator with timesteps 2π/1000, 2π/1250,

2π/1750, 2π/2000 (circles joined by a dash-dotted line);
c) the explicit SN4 with timesteps 2π/750, 2π/1000, 2π/1250, 2π/1500 (trian-

gles joined by a dashed line);
d) the third-order Fer expansion (F3) with timestepsh1 = 2π/15, h2 = 2π/25,
h3 = 2π/27, h4 = 2π/30 (plus signs joined by a square-dotted line). The estimate
(31) for the radius of convergence is in this caser ' 0.3412(> hi , i = 2, 3, 4).

Regarding Fig. 1 some comments are in order. First, SN4 provides a more accu-
rate result than SRK4 with the same computational effort. This illustrates the well
known fact that symplectic Runge-Kutta-Nyström methods are more appropriate
than symplectic Runge-Kutta methods for the problem at hand. Secondly, the
performance of F3 is even better than that of SN4. The reason for this behaviour
is that F3 uses a step size about 50 times larger than that needed by SN4 and
SRK4 for obtaining a similar accuracy, and this globally compensates the greater
number of floating point operations per step required by the Fer procedure. On
the other hand, the convergence of the expansion is guaranteed in each integration
step, at least forh2, h3 and h4. Finally, the performance of ODEX2 is superior
for this example to the other integration algorithms we have tested.

Example 2. Next we consider the frequency given by

(37) Ω2(t) = 1 +
2ε2

cosh2 εt
,

with ε > 0. This example allows us to analyze adiabatic and sudden perturbations
according to the value of the parameterε. The solution of Eq. (23) is in this case

(38) q(t) = Re[A(tanhεt + i/ε)e−it ] ,

whereA is an arbitrary complex constant.
For the time-dependent harmonic oscillator with frequency (37) there is a

constant of motionJ of the form [25]

(39) J (t) = J (t0) =
1
2

[ρ−2q2 + (ρp− ρ̇q)2] ,

whereρ is given by [18]
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Fig. 1. Value of∆q = log10 |qappr(tf )− 1| at tf = 2000π vs. the CPU time of calculation (in seconds)
for the Example 1 witha = 0.5. qappr(t) is computed by means of: ODEX2 with variable step size
(solid line), SRK4 (dash-dotted line), SN4 (dashed line) and F3 (square-dotted line)

(40) ρ(t) =

√
1 + ε2 tanh2 εt

1 + ε2
,

and is a particular solution of the non-linear equation ¨ρ + Ω2(t)ρ− ρ−3 = 0.
Now we can study the errors that the different integrators generate in the

determination of the integral of motion (39). In particular, we chooseq0 = p0 = 1
as initial conditions at the timet0, then integrate the equations of the motion up
to tf with different symplectic schemes and finally compute the quantity

(41) ∆J ≡ log10

∣∣∣∣J (tf )− J (t0)
J (t0)

∣∣∣∣
for various values ofε. We taket0 = −tf = −20/ε, so thatΩ(t0) ' 1 in all cases.

Figure 2 shows the function∆J (ε) defined by Eq. (41). Dash-dotted line is
obtained by SRK4 with a step sizeh = 0.009, dashed line corresponds to SN4
with h = 0.0125 and square-dotted line is determined by means of F3 with
h = 0.3. With this choice of timestep sizes the computational effort required
by the different methods is similar. It has been shown [32] that the Gauss-
Legendre Runge-Kutta methods conserve all quadratic first integrals of a given
autonomoussystem. As we can see in Fig. 2, this is true for our time-dependent
system (excluding round-off errors) only for very small values of the parameter
ε. For ε > 0.9 the error introduced by SRK4 is larger than that generated by SN4,
although both of them follow the same pattern. On the other hand, the behaviour
of ∆J (ε) obtained by F3 is highly dependent on the value ofε considered.
For ε < 0.05 the results achieved by F3 and SRK4 are very similar and more
accurate than those obtained by SN4. For 0.05< ε < 2, the relative error in the
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Fig. 2. Function∆J (ε) for the second example obtained by the symplectic integrators SRK4 with
h = 0.009 (dash-dotted line), SN4 withh = 0.0125 (dashed line) and F3 withh = 0.3 (square-dotted
line)

integral of the motion is stabilized about 10−8, 10−9, whereas for larger values
of the parameterε this error grows almost linearly withε. This is so because
for this value ofε the timestep size is too large in comparison with the width
of the perturbation. If, on the other hand, we consider smaller values ofh then
we obtain more accurate results, but then, obviously, the computational effort
increases. The same is true for the fourth order of the Fer expansion: we can
obtain accurate results even with very large values ofε(' 8), but the price to be
paid is a dramatic increment in the CPU time. In any case, it is worth noticing
that, for the whole range of the parameterε analyzed, the quantityr , solution of
Eq. (31), is smaller than the step size, so the convergence of the Fer expansion
is not guaranteed at all. Nevertheless, for some values ofε, its performance is
better than that of the other symplectic algorithms we have considered.

Concerning the standard extrapolation solver, ODEX2 with tolerance 10−10

achieves results that are very similar to that obtained by SN4, but with a CPU
time that is about twice shorter.

Example 3. As a third and last example we take

(42) Ω2(t) = ω0 − 2ε cos 2t ,

with ω0 > 0, ε > 0. This corresponds to the Mathieu equation, which has
been studied widely for the last hundred years. As it is well known, the space
of parameters (ω0, ε) is divided into the so-called stable and unstable regions
according to the nature of the solutions of the equation (23). More specifically,
the point (ω0, ε) belongs to the unstable region if there exists at least one solution
which is unbounded with time, whereas it belongs to the stable region when
the two linearly independent solutions are bounded. These bounded solutions
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Fig. 3. Value of ∆D (Eq. (43)) at tf = 2000π vs. the CPU time (in seconds) when the Mathieu
function q(t) ≡ ce15(t , 20) is considered. Curves are obtained by: ODEX2 with variable step size
(solid line), SN4 (dash-dotted line), F3 (square-dotted line) and F4 (dashed line)

are doubly-periodic. The transition from stability to instability is shown by the
existence of a periodic solution with periodπ or 2π [29]. This kind of solutions
are expressed in terms of special functions (the so-called Mathieu functions),
which must be obtained numerically or from the various published graphs and
tables [1, 26]. In general, those functions are difficult to work with, not only
analytically, but also numerically. Therefore it is useful to have both numerical
algorithms for computing the solution and approximate analytic expressions for
the Mathieu functions.

For this example we shall compute the quantity

(43) ∆D ≡ log10‖x(tf )− xappr(tf )‖

at tf = 2000π by means of ODEX2, SN4, F3 and F4. Here,x(t) = (q(t), p(t)),
q(t) is the particular Mathieu function whose value we want to approximate with
the different numerical procedures‖ · ‖ and denotes the Euclidean norm ofR2.

i) Firstly we considerq(t) = ce15(t , ε) with ε = 20. As it is well known [1, 26],
this is an even Mathieu function with exactly 15 zeros in any half-open interval of
lengthπ on thet-axis. It constitutes the solution of the Sturm-Liouville problem
involving Eq. (23) and the boundary conditionsp(0) = q̇(0) = q(π/2) = 0 with
period 2π. The characteristic value ofω0 is ω0 ≡ a15 ' 225.89515341 and
q(0) ≡ ce15(0, ε = 20) ' 1.04708434 [1]. With these tabulated values we can
solve the initial value problem and compute∆D at the final timetf . Figure 3
shows∆D against the CPU time obtained by:

a) ODEX2 with variable step size in each 2π-interval and tolerances 10−7, 10−9,
10−10, 10−13 (squares joined by a solid line);
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Fig. 4. Value of∆D at tf = 2000π for the Mathieu functionq(t) ≡ se15(t , 10). Curves are coded as
in Fig. 3

b) SN4 with timesteps 2π/1000, 2π/2000, 2π/3000, 2π/4000 (circles joined by
a dash-dotted line);

c) F3 with time steps 2π/50, 2π/60, 2π/70, 2π/75 (plus signs joined by a
square-dotted line);

d) the fourth-order Fer expansion (F4) with time steps 2π/14, 2π/15, 2π/20,
2π/25, 2π/30, 2π/35 (triangles joined by a dashed line).

In this case the estimate (31) for the radius of convergence of the Fer expansion
givesr ' 0.00612, much smaller than any of the step sizes tested. Nevertheless,
the performance of the method (especially F3) is clearly better than that any
other integration algorithm we have studied, including the extrapolation proce-
dure ODEX2. Although convergence is not guaranteed, the fourth order of the
expansion is more efficient than SN4 for the time interval we are considering.
Its performance is also better than that of ODEX2 when high precision in the
result is required.

ii) Now we take q(t) = se5(t , ε), with ε = 10. This is an odd 2π-periodic
Mathieu function, solution of the boundary value problem given by Eq. (23)
and the conditionsq(0) = q̇(π/2) = 0. The tabulated characteristic value of
ω0 is in this caseω0 ≡ b5 ' 26.76642636 andp(0) = d

dt se5(t , 10)(t = 0) '
3.4072268. Figure 4 shows the quantity∆D as a function of the CPU time when
∆D is calculated by means of ODEX2 (tolerances 10−9, 10−10, . . . , 10−14),
SN4 (timesteps 2π/750, 2π/1000, 2π/1250, 2π/1500, 2π/2000, 2π/2500), F3
(timesteps 2π/50, 2π/60, 2π/70, 2, π/75, 2π/80, 2π/85) and F4 (timesteps
2π/15, 2π/16, . . . , 2π/20). The same code as in Fig. 3 has been used for points
and lines.

The estimate of the radius of convergence of the Fer expansion isr ' 0.0257,
about three times smaller than the minimum step size used by F3.
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In this case the results obtained by F3 and ODEX2 practically coincide when
high tolerances are considered in the ODEX2 algorithm, whereas, once again,
F4 is the most performant integrator when high precision is required in the final
result.

5. Conclusions

We have analyzed the main features of the Fer expansion as a method for ob-
taining an approximation to the evolution map in time-dependent Hamiltonian
systems. When this systematic scheme is applied,M(t , t0) is factorized as an
infinite product of Lie transformations. This factorization is such that, aftern it-
erations, all the dependence ofM in the expansion parameterε is ε2n−1 included
up to order.

In the simple but non-trivial case of a one-dimensional time-dependent har-
monic oscillator, Eq. (22), we have constructed the Lie operatorsLFi of arbitrary
order i and the third and fourth orders of the full expansion. Thus it is possible
to have approximate analytical expressions forq(t), p(t) in terms of quadratures.
They appear to converge to the true solution for an arbitrary frequencyΩ(t), but
with a finite radius of convergence. It is important to notice also that this approx-
imation is symplectic, so we expect that it shall provide meaningful long-time
predictions about phase-space main characteristics.

On the other hand, the above deduced approximate expressions forq(t), p(t),
Eqs. (28) and (29), can be seen from a computational viewpoint as the succes-
sive steps of an explicit symplectic integration algorithm. We have analyzed its
performance in some particular examples. Examples 1 and 3 have been chosen
in order to study the long-term behaviour of the method, whereas with Example
2 we have tested the properties of conservation of the integrals of the motion.
We have applied the third (F3) and fourth order (F4) Fer expansion to solve
the initial value problem, and compared the corresponding results with those
obtained by means of the explicit fourth order symplectic Runge-Kutta-Nyström
SN4, the implicit SRK4 and by a ODE solver based on the extrapolation method
(ODEX2). It has been shown that Fer expansion provides very accurate results
both in the preservation of integrals of the motion and in the determination of
the phase space trajectories with a reasonable computational effort.

Although the method, such as it has been considered here, can be applied
in principle to any time-dependent Hamiltonian system, it is clear ihat severe
restrictions must be imposed on the Hamiltonian functionH (ξ, t) in order to
get closed expressions for both the successive Lie operatorLFi and the Lie
transformations exp(LFi ). Nevertheless, for the important class of time-dependent
linear Hamiltonian systems, as we have shown, its performance is clearly better
than that of other standard methods when long time intervals are considered.

In summary, Fer’s factorization, such as it is studied here, constitutes a
new symplectic integrator especially well adapted to the study of general time-
dependent systems with quadratic Hamiltonians. Its performance is comparable
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to that of standard extrapolation algorithms with stringent tolerances for periodic
problems and it is much better than that of other explicit and implicit sym-
plectic integration methods. The degree of accuracy attained by Fer’s expansion
encourages to apply this scheme to more complex time-dependent Hamiltonian
systems.

Acknowledgements.The author is indebted to Prof. J. Ros for his very helpful comments and valu-
able suggestions on this work. He also would like to acknowledge an anonymous referee for some
comments that helped to improve a former version of this paper. Partial financial support has been
provided by the Collaboration Programme UJI – Fundació Caixa Castelĺo 1993 and 1994.

A. Appendix

In this appendix we derive the expressions of the functionsFi and their associ-
ated Lie operatorsLFi ≥ 1, corresponding to the more general one-dimensional
quadratic Hamiltonian

(44) H (q, p, t) = A0(t)p2 + B0(t)qp + C0(t)q2 ,

whereA0(t), B0(t) andC0(t) are arbitrary functions of the time. For this Hamil-
tonian we get

(45)
F1 = −α1(t)p2 − β1(t)qp− γ1(t)q2

LF1 = −β1(t)(p∂p − q∂q)− 2γ1(t)q∂p + 2α1(t)p∂q

with

(46) α1(t) =
∫ t

t0

A0(τ )dτ , β1(t) =
∫ t

t0

B0(τ )dτ , γ1(t) =
∫ t

t0

C0(τ )dτ .

In the case of the time-dependent harmonic oscillator, as it is obvious,

(47) α1(t) =
1
2

(t − t0) , β1(t) = 0 , γ1(t) =
1
2

∫ t

t0

Ω2(τ )dτ .

In general, suppose we know thei -th Fer’s approximant (i ≥ 1)

(48)
Fi = −αi (t)p2(t)− βi (t)qp− γi (t)q

2

LFi = −βi (t)(p∂p − q∂q)− 2γi (t)q∂p + 2αi (t)p∂q .

Then, if we denote

(49)

fi 1(t) =
1
2

(β2
i + η2

i )Ai−1 − αiβi Bi−1 + 2α2
i Ci−1 ,

fi 2(t) = −βi Ai−1 + αi Bi−1

fi 3(t) = 2(βi γi Ai−1 − 2αi γi Bi−1 + αiβi Ci−1) ,

fi 4(t) = 2(−γi Ai−1 + αi Ci−1)

fi 5(t) = 2γ2
i Ai−1 − βi γi Bi−1 +

1
2

(β2
i + η2

i )Ci−1 ,

fi 6(t) = −γi Bi−1 + βi Ci−1 ,
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with η2
i = β2

i −4αi γi , we obtain for thei -th transformed HamiltonianHi (q, p, t)
the following compact expression

(50) Hi (q, p, t) = Ai (t)p2 + Bi (t)qp + Ci (t)q
2 ,

where now

(51)

Ai (t) =
−1
2η2

i

(fi 2 − fi 1) cosh 2ηi − 1
2ηi

(
1

2η2
i

fi 1 − 2fi 2

)
sinh 2ηi +

1
2η2

i

fi 2

Bi (t) =
1
η2

i

(fi 3 − 1
2

fi 4) cosh 2ηi +
1
ηi

(fi 4 − 1
2η2

i

fi 3) sinh 2ηi +
1

2η2
i

fi 4

Ci (t) =
1

2η2
i

(2fi 5 − fi 6) cosh 2ηi +
1

2ηi
(2fi 6 − 1

η2
i

fi 5) sinh 2ηi +
1

2η2
i

fi 6

if ηi /= 0, whereas

(52)

Ai (t) =
4
3

fi 1 + fi 2

Bi (t) =
4
3

fi 3 + fi 4

Ci (t) =
4
3

fi 5 + fi 6

when ηi = 0. From Eq. (50) we obtain the expression of the (i + 1)-th Fer’s
approximant in the form

(53)
Fi +1 = −αi +1(t)p2 − βi +1(t)qp− γi +1(t)q2

LFi +1 = −βi +1(t)(p∂p − q∂q)− 2γi +1(t)q∂p + 2αi +1(t)p∂q ,

with

(54) αi +1(t)
∫ t

t0

Ai (τ )dτ , βi +1(t) =
∫ t

t0

Bi (τ )dτ , γi +1(t) =
∫ t

t0

Ci (τ )dτ .

We see thatFn is given only in terms of quadratures and, in this case, is just a
quadratic form in the coordinate and momentum.

B. Appendix

i) Given a Hamiltonian

(55) H (q, p, t) = T(p) + V (q, t) ,

with q = (q1, . . . , qN ), p = (p1, . . . , pN ) and T(p) = 1
2pTp, the corresponding

equations of the motion can be written

(56) q̈ = −∇V (q, t) ≡ f(q, t) ,
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i.e., as a second-order system. For this problem,s-stage explicit Runge-Kutta-
Nyström methods are given by [21]

(57) Qi = q0 + ci hp0 + h2
∑
j<i

āij k′j , k′j = f(Qj , t0 + cj h)

q1 = q0 + hp0 + h2
s∑

l =1

b̄l k
′
l , p1 = p0 + h

s∑
l =1

bl k
′
l ,

where h is a step size. As usual, the quantitiesq0 and p0 are initial values,
whereasq1 andp1 are the numerical solution after a timeh. These methods are
symplectic if the following two conditions are satisfied:

(58)
b̄i = bi (1− ci ) , i = 1, . . . , s

āij = bj (ci − cj ) for i > j .

We have FSAL (first same as last) methods whenc1 = 0, cs = 1 andāsj = b̄j for
1 ≤ j ≤ s− 1. For this class of methods the last stageQs of the current step
coincides withq1, which is the first stage of the next step. Therefore, a step of
an FSALs-stage method requires onlys− 1 evaluations of the functionf.

Calvo and Sanz-Serna [4] derive a fourth-order, symplectic, FSAL Runge-
Kutta-Nystr̈om method whose coefficients are given by

(59)

c1 = 0,

c2 = 0.205177661542286386,

c3 = 0.608198943146500973,

c4 = 0.487278066807586965,

c5 = 1 ,

b1 = 0.061758858135626325,

b2 = 0.338978026553643355,

b3 = 0.614791307175577566,

b4 = −0.140548014659373380,

b5 = 0.125019822794526133.

It requires four functions evaluations per step, and its accuracy per step is com-
parable to that of standard non-symplectic Runge-Kutta-Nyström methods [4].

ii) A Runge-Kutta method for a general system of ODEs

(60)
dy
dt

= f(y, t) , y ∈ Rd

is specified by an integers (the number of stages) and constantsaij , (i ≤ i , j ≤ s),
bi (1≤ i ≤ s). Wheny(tn) is known, auxiliary vectorsY i (1≤ i ≤ s) are defined
through [34]

(61) Y i = y(tn) + h
s∑

j =1

aij f(Y j , tn + cj h)

with

ci =
s∑

j =1

aij , 1≤ i ≤ s .

Then one sets
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(62) y(tn+1 ≡ tn + h) = y(tn) + h
s∑

i =1

bi f(Y i , tn + ci h) .

When aij = 0 for i ≤ j the method is called explicit. Suppose now that (60) is
Hamiltonian. For general Runge-Kutta methods, the map (62) is not symplectic.
Nevertheless, if thes× s matrix with entries

(63) Mij = bi aij + bj aji − bi bj (1≤ i , j ≤ s)

is identically zero then (62) constitutes a symplectic transformation [32]. As a
particular case, we can consider the two-stage (s = 2) Gauss-Legendre Runge-
Kutta method given by [30, 39]

(64)
(aij ) =

( 1
4

1
4 − 1

6

√
3

1
4 + 1

6

√
3 1

4

)
(bi )

T =
(

1
2,

1
2

)
, (ci )

T =
(

1
2 − 1

6

√
3, 1

2 + 1
6

√
3
)

which is implicit and fourth-order accurate.
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