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Fernando Casas,* Wai Chin,Jr Celso Grebogi,T'fF and Edward Ott}
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742
(Received 5 September 1995)

We examine the bifurcations of a piecewise smooth map that captures the universal properties of im-
pact oscillators near grazing. In particular, we study periodic orbits with one impact per period and the
way they are involved in the grazing bifurcations. We also show some phenomena that these orbits ex-

hibit at grazing for some families of parameter values.

PACS number(s): 05.45.+b

I. INTRODUCTION

In the past few years there has been a growing interest
in the study of the so-called impact oscillators. These
arise whenever the components of an oscillator collide
with each other or with rigid obstacles, and occur in
many physical applications such as mechanical devices,
relaxation oscillators, and electronics. Impact oscillators
constitute a subclass of the dynamical systems that do not
satisfy the wusual smoothness assumptions. More
specifically, they are modeled by piecewise continuously
differentiable maps. Although great progress has been
made in understanding the dynamics of impact oscilla-
tors, the complexity and variety of the dynamical phe-
nomena produced by the presence of discontinuities in
the system are such that additional studies are necessary,
and more examples have to be considered.

One of the aspects that has received much attention in
the literature in the recent past is the effect of grazing im-
pacts (i.e., zero velocity impacts) on the dynamics of im-
pact oscillators [1-3], in particular the existence of the
so-called grazing bifurcations observed at grazing [4,5].

In this paper we study this kind of bifurcations for the
Nordmark map (x, 11,5, +1)=F,(x,,y,) [6,7], with

(ax +y +p,—vyx) for x =0

(—Vx +y +p,—y7*x) for x>0. ()

Fp(x, y)=
This is a particular example of a piecewise smooth map
from R? into itself that models the behavior of a
sinusoidally forced linear oscillator experiencing impacts
at a hard wall (see Fig. 1). It is obtained by expanding (to
first order) solutions of the system in the neighborhood of
a grazing orbit [6], so the map is expected to capture the
universal properties of the dynamics near grazing. The
equivalence with the physical system is established as fol-
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lows: x, and y, are transformed coordinates in the
position-velocity space (&,£) of the impact oscillator eval-
uated at times ¢, =2nw/w, where o is the frequency of
the external forcing. The quantity 72 is the restitution
coefficient of the impacts, whereas p is related to the am-
plitude of the external force. The parameters a and y de-
pend on the intrinsic properties of the oscillator in such a
way that the limit ¥ —0 corresponds to large friction
coefficients, and y7>=1 gives the opposite limit of zero
dissipation, and for physically admissible systems (i.e.,
positive friction) we have

o<y<l, —2Vy<a<l+y. @)

The first of Egs. (1) governs the system if there is no im-
pact between time ¢, and ¢, ;. Otherwise, if an impact
takes place between ¢, and ¢, ., the system is described
by the second equation. Thus the effect of impacts is
modeled by a square root nonlinearity.

The Nordmark map is continuously differentiable ex-
cept at x =0, where its Jacobian matrix is singular. This
singularity is responsible for interesting bifurcation phe-
nomena [7,8]. In this system the grazing state corre-
sponds to p=0, and therefore grazing bifurcations occur
as the parameter p is increased through p=0, with y and
a held fixed. These bifurcations have been studied for the
system (1) for 0<a <14y in Ref. [7]. There are three
basic bifurcation scenarios that have been analyzed, and
the corresponding regions in the (y,a) parameter space
where these scenarios take place have been established.
Thus, in region I (2V'y <a <3y +2) there are grazing bi-
furcations from a stable period-1 attractor to a reversed
infinite period adding cascade, systems in region II
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FIG. 1. Physical system modeled by the Nordmark map near
grazing.
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(3y+2<a<l1+y) have bifurcations from a stable
period-1 orbit in p <0 to a chaotic attractor as p increases
through zero, and systems in region III (0 <a <2V'y) ex-
perience local grazing bifurcations from a period-1 at-
tractor to a period-M attractor, with M =3,4,... . In
this case the actual bifurcation is a collision of an unsta-
ble period-M orbit and the period-1 orbit at p=0.

The purpose of this paper is to carry on a similar
analysis for nonpositive values of the parameter a (only
a >0 was considered in [7]). For a <O the system has a
stable period-1 orbit for negative p values, which becomes
a flip saddle for positive p values up to
p=p;=3/[4(1+y7*)]. Here (as in [7]) the maximal
periodic orbits (i.e., periodic orbits for which only one
point per period is in the region x >0) are involved in the
bifurcation at p=0.

J

1
sin@

Xie+1=

Yk +1 sind

with k =1,2,...,M and

r=\/7—/, f=cos™!

Pk 1y, —/x, )sink 0—r*x sin(k —1)6+p

—rky, = x)sin(k —1)0+r*+1x sin(k —2)0—r?p

Since both ¢ and 7? provide energy loss mechanisms, 7
is taken to be 1 for simplicity in the following. Thus Eq.
(1) with ¥ =1 corresponds to a piecewise smooth sym-
plectic map. Our strategy is to find necessary conditions
for the existence of maximal periodic orbits, and the
range of p values in which they are stable. Numerical ex-
periments suggest, however, that these are also sufficient
conditions.

II. ANALYSIS

For a maximal orbit of period M we can assume,
without loss of generality, x; >0, so that x,,x3,...,X,,
are negative and x,,,;=x;. The positions of the points
along the trajectory can be obtained upon repeated itera-
tion of Eq. (1), and are given by

sinf—r*sin(k +1)0+r* Tlsink 6
l1—a+t+y

) (3)

, sinf@—r* "lsink@—r*sin(k —1)8
l1—a+y

, 4)

(5)

If we make x,,,;=x, and y,; =y, in Egs. (3) and (4), we obtain two solutions for the coordinate x; of the maximal

orbit:
—_ (M—1)72
Vixn=l=1+V1=4ckCypy M-
(6)
— (M—1)72
Vixp=[—1-V1-4cHc¥py =ML _—
2C;
whereas for the coordinate y; we have
1 __ sind—rM™ " 1sinM O+ rMsin(M —1)8

I in0+ rMsinM —1)9 | 1P

+rMy/ x sin(M —1)0+rM+1x sin(M —2)0

The general expressions for the coefficients CM and C 2’ in
Eq. (6) are given in [7] [Egs. (38) and (39)], and will be
written down in the following for each particular value of
M considered.

From Egs. (3) and (4) we can now construct the Jacobi-
an matrix and the determinant D and the trace T of this
matrix. D and T determine the eigenvalues A; and there-
fore the stability of the maximal periodic orbit via the ex-
pression

A, =HTEV'T?>—4D) . (8)

It can be shown that

l1—a+y

. )]

rM—l

1 .
<ind —sinM 6

sz 1

D=yM, T=-—

+2rsin(M —1)0 | . 9)

Note that since A;A,=D and D <1 for 0<y <1, the only
possible way for an eigenvalue to pass through the unit
circle (to go from stable to unstable or vice versa) is either
through +1 or through —1, i.e., no Hopf bifurcations
can occur for maximal orbits. The condition that A==1,
from Eq. (8), is
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DF+TH+1=0, (10)

which, once we have inserted Egs. (9) and (6), gives us the
value of the parameter p for which saddle-node (A=+1)
and/or flip bifurcations (A= —1) take place for the maxi-
mal orbit.

With all these ingredients we are now ready to discuss
the different kinds of maximal orbits and the bifurcations
in the region of nonpositive a according to its period M.

(a) M =2. In this case the coefficients in Egs. (6) are
given by

Cf:-{i-\/?(]—ky)z’ Cg=—§\/;(1+a+7/) . an

For a<0 we have C2<0 and Cf, >0. Therefore both
solutions x,; and x;, can exist in the_ range
—2V'y <a<0. Expressions (6) for /x,, and V/x,, and
Eq. (10) indicate that a pair of period-2 orbits are created
in a saddle-node bifurcation at

p=py=—t—= —a’ <0. (12
4C2CE 4(1+y)Y(1+a+ty)

The orbit corresponding to x,; only exists for p <0, and
collapses onto the point (0,0) as p—0~, whereas the orbit
corresponding to x, continues to exist up to the value

_ 1
P=Pa=Ti7 (13)

which is independent of a. At p=p, the periodic orbit is
formed by the points (x;=p3,y;=0) and
(x,=0,y,=—vx,), i.e., it touches the axis x =0. For
p>py it no longer exists, hence the orbit is destroyed
upon crossing the boundary x =0. This is a general
property observed for the periodic orbits of the map (1).
The situation is illustrated in the bifurcation diagram of
Fig. 2, obtained for y=0.8 and a=—1.5. In this case
p,=~—0.578, p,~0.416, and p,; ~0.555.

It can be shown analytically that the maximal orbit
corresponding to x, is stable at p=0, and no flip bifurca-
tion is possible. Therefore we conclude that it is always
stable, whereas the orbit corresponding to x,; remains
unstable. This constitutes a difference with respect to the
region a >0, where it can be shown that a flip bifurcation
occurs to the stable branch for systems with y <1.

For the particular value ¥y =1 the only difference is
ihat, for the orbit corresponding to x,,, we have A;=A3
on the unit circle (here A} denotes the complex conjugate
of A,), and A;=A; 'ER for x,;.

If =0 the expressions (6) and (11) are no longer valid.
Instead [from Egs. (3) and (4)] we have a M =2 maximal
periodic orbit located at

- P Y
1T ety N 1+y(‘/’“1 p) (14)

for 0<p =p,. This orbit can be shown to be stable. In
this case there is a bifurcation from the stable period-1
orbit with coordinates

0.6 T T T

P2 pls pld
-0.6 4 L . S t

-06 -03 0.0 0.3 0.6

FIG. 2. Bifurcation diagram for (y,a)=(0.8,—1.5). A
stable period-2 maximal orbit and an unstable period-2 maximal
orbit are created in a saddle-node bifurcation at p=p, <0. The
dashed curves indicate the locations of the unstable period-2 or-
bit for p <0. The stable period-1 orbit and the stable period-2
orbit are on the solid curves. The unstable period-2 orbit col-
lapses onto the stable period-1 orbit at p=0. The stable
period-2 trajectory is destroyed at the singularity axis x =0.
The period-1 orbit is unstable for 0<p <p, (dashed line for
p>0).

for p <0 to a stable period-2 maximal orbit at p=0. The
unstable branch does not exist here.
(b) M =3. Now the coefficients C2 and C ,3, are

C3=—§I——(l+2ay+y3) ,
a =y

3I_ 2 2__
c,,—;z—f;—[a +(1+p)a+1+y2—y] .

(16)

According to the sign of the product C2C ’3, we can distin-
guish three cases for the analysis:

3
case (i): —2\/; <a<ay= ——1;?3’1,—,

clc’>o0, Ci<o,
case (ii): ag<a<—VYy, CIC}<0, CI>0,

case (iii): —Vy <a<0, C}C}<0, C}<0

Case (ii) does not exist for y =1. In order to analyze the
conditions of existence of period-3 maximal orbits, expli-
cit expressions for the points along the trajectory and the
locations of its zeros are needed. Let us denote by

t_(p) s_(p)
T ey Y Ttay an
and
ty(p) s4(p)
= = 1
2T U gy TR Thay 1%

the x coordinates of the second and third points of the or-
bit corresponding to 1/ x,; and V/x,, respectively, with



53 UNIVERSAL GRAZING BIFURCATIONS IN IMPACT OSCILLATORS 137

172
ty(p)=a|1%x [1— £ +bp , (19)
P3
172
sy(p)=c |1+ [1—L- +dp , (20)
P3
and
3 C3 2
=_Y_ 1+_L b=1— —F =
2n
2 c?
~5C7’—3 a——é‘ ) d=1+a+yc—‘3’. (22)
Then a simple calculation shows that
p=pu(a)5—7’— 2+b—p—— (23)
3

is a solution of x,, =0 if u, =1+ (a /bp;) >0, whereas, in
addition to p=0, p=p, is a solution of x,, =0 only if
u, <0. Concerning the third point of the orbit, analo-
gously,

2+ -5

(24)
dp;

c
p=p,la)=——

is a zero of x3, if u3=1+4(c/dp;) >0, whereas if u; <0,
the solutions of the equation x3;, =0 are given by p=0
and p=p,.
A careful analysis of all these functions in the physical
region of parameters allows us to conclude the following:
(b1) For case (i) both solutions x; and x,, given by Eq.
(6) are real for p >0, so in principle maximal orbits corre-
sponding to v/ x,; and 1/ x,, may exist up to p=p;>0,
whereas for p =0 only the solution x, is real. It turns
out, however, that the only existing period-3 maximal or-
bit is that corresponding to 1 x,. It exists for
— o0 <p=p,, for systems with (y,a) in the region
——2\/;<a<1—-y—~11/—<a0. (25)
In all other cases x,; and x,, are positive. (At the partic-
ular value a=1—y —(1/7), the coefficient b =0, and u,
changes sign). The orbit corresponding to 1/ x,, is al-
ways unstable, with real eigenvalues A;>1and 0<A,<1.
At p=p, with p,70, the orbit points of the periodic tra-
jectory are

(a+1)p,
Xp=—"7T"—"",1,>0|,

1+ay “rxi),

(x2,=0,p,=

(X3 =—yx3+p, <0,y3,=0),

so that one point of the orbit lies on the singularity axis
x =0. The terminal value p, is positive for a in the inter-
val ]—2Vy,—1/y[ and negative for a in
]—1/v,1—y —(1/y)[, whereas for parameter values on
the line = —1/y this period-3 maximal orbit disappears
at p=0, i.e., at grazing. In this case the corresponding

expression for x ;, is given by

12=[l+\/1—4(1—7/)7’2p]2—4 .
4y
Figure 3 shows the x projection of this unstable M =3
maximal periodic orbit for y=0.7 and a=—1.5 as a
function of p. For these values p,=~0.3698 and
p3=1.6192.

(b2) For case (ii) no period-3 maximal orbit exists, re-
gardless of the value of p. The coordinate x,; of the orbit
corresponding to x,;, the only real solution in this case, is
always positive.

(b3) For case (iii), both solutions x;; and x, are real
for p in the interval ]p;,0[, and only x, is real for p>0.
Thus the periodic orbit corresponding to x;; can exist, in
principle, for p <0, whereas the orbit corresponding to
X, can also exist for p positive. Nevertheless, it can be
shown that x,; and x;; (i =1, 2) are not simultaneously
negative for « < —y. Only for a> —y the x coordinates
of the second and third points are negative and period-3
maximal orbits exist. More specifically, let «, be the

(26)

value of a in the interval ]—y,—%?*[ such that
p,(a,)=p;<0. Then it can be shown that
(i) For a<a, (between the curves a=—vy and

a=—y?), then p;<p, <0<p,, and only the orbit corre-
sponding to x,, exists in the range pE|[p,,0[. It is creat-
ed at p=p, on the border x =0 and is unstable. This or-
bit collapses onto the origin as p—0~. For p3;<p<p,
there are no M =3 maximal orbits. In Fig. 4(a) we plot
this periodic trajectory for y=0.5 and a=—0.48. In
this case a,=—0.4262, p3=—0.1082, and
p,=—0.0631.

(ii) If a=a, then the range of existence of the unstable
orbit corresponding to x ; is [p, =p3,0[.

(iii) For a, <a =0 (above the curve a= —y) a pair of
period-3 maximal orbits are created in a saddle-node bi-
furcation at p=p;. The orbit corresponding to x; is un-
stable, and exists up to p=0, at which point it collapses
on to the origin (x =y =0). The stable orbit correspond-
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p

FIG. 3. Unstable period-3 maximal orbit corresponding to
xy, for y=0.7 and a=—1.5, in the region a<1—y—(1/y).
The orbit is destroyed when one of its points touches the singu-
larity axis x =0 at p=p,.
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ing to x|, only exists up to p=p,, where one of its points
(x3,) lies on the axis x =0. The sign of p, depends on the
values of a considered. Thus, for a < —y?, then p, <0,
and the stable orbit disappears before the unstable one.
When a= —2, then p,=0 and the orbit disappears at
grazing, whereas p, >0 for —y%?<a<0. Figure 4(b)
shows a typical bifurcation diagram for (y,a) in this re-
gion of parameters. It is worth noting here that, in a
similar way to the case M =2, no flip bifurcations are
possible for M =3 maximal orbits.

(c) M =4. A similar analysis carried out for period-4
maximal orbits leads to the conclusion that they are not
present in the system for ¢ <0. This result supports the
claim made in Ref. [7] that at most two regions in the pa-
rameter space corresponding to maximal orbits of
different periods can overlap, and allows us to conclude
that no maximal orbits with period M >4 can exist for
a=0.
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FIG. 4. (a) Unstable period-3 maximal orbit corresponding to
x;; for y=0.5, and —y<a=—0.48<a,. It is created at
pP=p, > p3 on the border x =0 and collapses onto the origin as
p—0~. (b) Bifurcation diagram for y=0.5, and
—y2<a=—0.2<0. A pair of period-3 maximal orbits are
created in a saddle-node bifurcation at p=p; <0. One of them
(solid curve) is stable, and the other (dashed curve) is unstable.
The stable period-3 maximal orbit is destroyed at p=p, >0. A
stable period-2 maximal orbit and an unstable period-2 maximal
orbit are created at p=p, <0 in a saddle-node bifurcation. The
unstable period-2 and -3 maximal orbits collapse onto the stable
period-1 orbit at p=0.
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FIG. 5. Regions of the (y,a) parameter space corresponding
to the different cases analyzed in the paper for the Nordmark
map. Only the region @ > —2V'y represents physical systems.

III. SUMMARY AND CONCLUSIONS

We summarize the above results in Fig. 5, which shows
the regions in the parameter space (y,a) corresponding
to the different cases previously analyzed. The parameter
values corresponding to Figs. 2—4 are labeled as points.
Only parameter values above the curve a=—2V'y
represent physical situations (positive friction). In all this
region there are two maximal orbits of period M =2.
They are created in a saddle-node bifurcation, and the
unstable branch collides with the period-1 attractor at
grazing. The curves a=1—y—(1/y) and a=—y are
the boundary of the two regions where period-3 maximal
orbits appear. For a <1—y—(1/y) the M =3 orbits are
unstable, whereas for a> —y it is also possible to have
stable trajectories.

When the parameters (y,a) are in the region where
period-2 and -3 stable maximal orbits coexist (i.e., for
a>a,, above the curve a= —v), at p=0 we have a col-
lision of the unstable M =2 and 3 orbits created at p, and
p3, respectively (p; <p, <0), with a period-1 stable attrac-
tor. The result is that it is always the maximal stable or-
bit of period 2 that the orbit goes to from the fixed point
as p increases from negative to positive values. As an ex-
ample of what happens in this region of parameters, in
Fig. 4(b) we represent the bifurcation diagram of the
Nordmark map for (y =0.5,a= —0.2). Here the grazing
effect consists in the collision of a period-3 and a
period-2 unstable maximal orbit with a period-1 attractor
at p=0, with the result that a bifurcation from a stable
fixed point to a stable period-2 maximal orbit is observed
in the bifurcation diagram.

For « in the range ]—v,a, ] the grazing effect consists
in the collision of a period-2 and a -3 unstable maximal
orbits with a fixed point at p=0. Finally, for
a<l—y—(1/y) the only M =3 maximal orbit is unsta-
ble and disappears when one of its points reaches the
singularity axis x =0.

In addition to these, other interesting phenomena not
observed in the region of positive a are produced at graz-
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ing for some parameter values. In particular, on the
curve a= —y? not only the unstable M =3 maximal or-
bit is destroyed at p=0, but also the stable one. This also
happens to the unstable period-3 orbit for a=—(1/y).

In summary, we have completed the analysis of the
role that maximal periodic orbits play in the bifurcations
of a piecewise smooth map which captures the universal
properties of impact oscillators near grazing. We have
shown the existence of interesting phenomena in the
physical region of parameters for a <0, and clarified how
periodic orbits are created and destroyed in the system.
More specifically, a maximal periodic orbit is destroyed
when one of its points reaches the singularity axis x =0.
Unstable maximal orbits can also be created at the border
x =0 for some values of the parameters, whereas stable
trajectories are always created in a saddle-node bifurca-
tion (with an unstable orbit) for some negative value of p.
Neither Hopf nor flip bifurcations occur for maximal or-
bits.

Besides maximal orbits, other kinds of stable periodic
orbits with multiple impacts also exist in the system with
a <0. In particular, period-3 and -5 orbits with two im-
pacts per period have been detected. The latter, in the
same way as maximal orbits, are created in a saddle-node
bifurcation at some p <0 and destroyed at the border
x =0, whereas period-3 orbits are destroyed at some posi-
tive p in a saddle-node bifurcation and apparently exist
for all p <0.
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