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SYMPLECTIC INTEGRATION WITH PROCESSING:
A GENERAL STUDY*

S. BLANEST, F. CASAS#, AND J. ROST

Abstract. The number of conditions to be satisfied by the operators K and P in symplectic
integrators with processing, given by ePe " e—P is determined for a Hamiltonian of the form
H = A+ B. The conditions for K are explicitly written up to order six and used to obtain more
efficient methods with fewer evaluations per step than other symplectic integrators. Special cases in
which the number of conditions for the kernel is drastically reduced are also studied. It is shown
that the kernel completely determines the optimal method one can obtain by processing.
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1. Introduction. During the last few years the search for symplectic integrators
has met with good success. As is well known, these are methods designed to solve
Hamiltonian equations in classical mechanics numerically, while at the same time
preserving the symplectic character of time evolution. For many problems this has
proved to be essential, and it is important to look for the most efficient methods of
this type [23]. All that is discussed in this paper referring to classical mechanics rests
exclusively on the Lie algebraic structure of the theory. Therefore it also applies to,
among other fields, quantum mechanics, with only the obvious replacement of Poisson
brackets by operator commutators, symplectic transformations by unitary operators,
etc.

The problem of the time evolution of a classical system with Hamiltonian H(q, p)
is basically reduced to evaluating the action of the operator

(1) Mt tg) = e~ (il

where t is the evolution parameter which we take to be the time, tg is the initial
instant (henceforth, tg = 0), and Ly is the Lie operator associated with H. It acts
on an arbitrary analytic function f(q, p) according to the rule Ly f = {H, f}, where
{H, f} stands for the Poisson bracket. Often, it is possible to separate

(2) LH:A+B,

tA tB

where the action of e™** and e™*” can be exactly evaluated. This parallels the
separation H = A+ B and A = Ly, B = Lg. In most of the cases, but not
all, A and B correspond, respectively, to the kinetic energy depending only on the
momentum variables p and the potential energy, a function of the q coordinates.
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These Hamiltonians are sometimes said to be separable. This terminology should not
be confused with Stéckel separability in a Hamilton-Jacobi equation which ensures
integrability of the Hamiltonian system.

One usual procedure to evaluate the action of the operator (1) is to approximate it
by a product of exponentials of simpler elements of the Lie algebra which we know how
to apply exactly (or at least up to a desired order). This is the idea behind composition
methods, which have been extensively studied by using either the Baker—Campbell—-
Hausdorff (BCH) formula [10, 12, 14, 18, 24, 29] or, alternatively, the rooted trees
techniques [7, 20, 21].

Recently, a new modification has been proposed: the so called processing method.
This technique as a tool to improve the efficiency of Runge Kutta methods can be
traced back to the work of Butcher [5] as early as 1969 and has more recently been
incorporated into the context of symplectic integrators by Rowlands [22], Wisdom,
Holman, and Touma [28], and McLachlan [17]. In order to reduce the number of
evaluations per time step h = ¢t/N in the integration process, a composition given by

(3) o—hH(h) — P —hK P

is considered. After N steps we see that e tln = ¢—tH(h) — P (e*hK)Ne*P. At
first we apply e, then e "% acts once per step, and e ¥ will be evaluated only when
output is desired. This fact makes it especially interesting to look for an expression
of e "MK as simple as possible and let e” help in attaining the desired order of
approximation. Usually e~"X is called the kernel or basic method and e’ the corrector
or processor. Observe that the exactly symplectic character of the integration scheme
is preserved.

When this idea has been applied to slightly perturbed systems or to Hamiltonians
with quadratic kinetic energy, it resulted in very efficient integration methods being
produced [2, 13, 14, 17, 22, 28]. Nevertheless, in the general case, some doubts about
the usefulness of the processing method have been cast [17, 25]. The situation, then,
calls for a general study of the problem in order to know whether and when it is
worthwhile to use the processing technique.

This is the task undertaken in the present paper. In particular, we obtain the
number of conditions to be satisfied by the kernel of a symplectic processing method
of any order and construct explicitly these conditions up to order six [8]. Once a
permissible kernel has been fixed we analyze the optimization of the processor in
order to get more efficient symplectic schemes. Our main result in this respect is that
the minimum error which can be achieved by the whole method is solely determined
by the kernel [3]. The analysis is carried out by employing exclusively Lie algebraic
techniques.

The preceding study allows us to construct fourth-, fifth- and sixth-order sym-
plectic integrators which require fewer evaluations per step than most of the usual
methods while producing more efficient algorithms. This is so both for H = A+ B
and Hamiltonians with quadratic kinetic energy.

The main results of the paper are contained in sections 2 and 4. Explicit symplec-
tic integrators are built in section 3 which are then tested in practice on two numerical
examples in section 5. Finally the main conclusions are collected in section 6.

2. Analysis of the processing methods.

2.1. Notation and general setting. Let L(A, B) be the free Lie algebra gen-
erated by A and B. In what follows we denote by [L;, L;] the commutator product of
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the two elements L; and L; of the Lie algebra and use the notation [Lq, Lo, ..., L] =
[Ly,[La,...,Ls]]. Let L™(A, B) be the subspace of L(A, B) generated by the inde-
pendent brackets of order m. We call ¢(m) its dimension, its first 8 values being 2,
1, 2, 3, 6,9, 18, 30 (see [15]) and denote by {Eml}f(:”f) a basis of L™(A, B). Our
explicit choice of basis is given in the appendix.

The two basic ingredients of an integrator with processing are the processor e
and the kernel e~*%. From a practical point of view it is generally not necessary
to use an exactly symplectic processor because its effects are not propagated by the
numerical integrator [14]. Nevertheless in this work we take as processors the strictly
symplectic composition

P

S
(4) eP — HehZZA ehyiB
i

characterized by the number s of B evaluations. As far as the kernel is concerned, we
use two types of compositions:

(i) Nonsymmetric kernel with m appearances of the B operator, which will be
denoted by NS-m: (37" ja; =>.1" b; =1),

m
(5) eihK = HeihbiB e*haiA.
i=1
(ii) Symmetric kernel, referred to as S-m:
— m odd: (22::1 a; = by + 22;*11 bi=1, r= m+l)’

= 2

6) ¢hE — g=harAo=hbiB  o=harA =hbrB  —harA . ,=hbiBo—hai A,

meven: (2337 @i =bop1+2Y0 bi=1, r=1),

(7) o—hK _ ,~hbiB  —hayA —hbyi1B ,—hay A —~hbiB

By repeated application of the BCH formula the kernel and processor generators
K and P in L(A, B) can be written as a power series in h:

c(i c(i

00 ) 00 )
(8) K= Z hi71 ki,jEi,j 5 P= Z hi pi,jEi,j
=1 1 =1 1

Jj= Jj=

The consistency conditions k1,7 = k1,2 = 1 originate from the constraints on the a;
and b; coefficients given in (5)—(7).
The basic equation (3) of the processing method will lead us to

H(h) = exp(ad P)K = K + [P, K] + L [P.P.K] + -

00 c(t)
(9) = Z hlilZfMEi,j = fi1A+ fi12B
=1 ji=1

+hf2,1 [AaB} + h2 {f371 [AaAa B] + f372 [BaA)B]} +

where ad P stands for the adjoint operator of P [26]. If equations (8) are used, the
fi;j coefficients are given in terms of polynomial relations involving k; ; and p; ; with
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the structure

c(i—1) i—1 c(l)

(10) fi,] k’J‘i‘ Z Q5 sPi— 1S+szlszTH pq, 512,

=1 m=1

where we have, for later convenience, explicitly separated in [P, K] the contributions
from [P, A+ B]. Here a;j , and 7, are numerical coefficients and the condition

(11) 1+> qn{) =i
q,S

has to be satisfied for 1 <1 < i —1 and all r values appearing in (10). Furthermore,
fi1=fi2=1

Specific integration nth-order methods are obtained by requiring the f; ; to vanish
up to i = n, which amounts to approximating e "7 by e """ to the desired order
n:

c(n+1)
(12) H(h) =Lg+h" Z fn+1,jEn+1,j + O(h71+1),
j=1

where f,41,; already take into account the solution of the cancellation of the previous
coefficients. As a criterion to estimate the error of a method the following quantity is
usually introduced:

c(n+1)

Z | fatrl*

j=1

(13) E, =

To include somehow the computational cost of the algorithm one defines the effective
error as By = mErl/ " where m is the number of B evaluations per time step. Observe,
however, that the numerical value of F, depends on the vector basis used in the Lie
algebra.

2.2. The general case of H = A + B Hamiltonians. The equations f; ; =
0, 7« < n, cannot be solved for an arbitrary kernel using only the processor coefficients.
There are restrictions on the permissible form of K. The following theorem, which
parallels the one for Runge Kutta methods obtained by Butcher and Sanz-Serna [6],
fixes the number of these conditions for a processing method.

THEOREM 1. The number k(n) of necessary conditions to be satisfied by the
kernel generator K of a nth-order symplectic integrator with processing for n > 2 is

(14) k(n) =c¢(n) — 1.

To prove this statement we observe that by (9) to obtain a method of order n we
only have to consider terms in P until order n — 1. The number of p; ; coeflicients
involved is then Y/~ ' ¢(i), while the number of k; ,j which appear coincides with the
number of f; ; to be cancelled and is Y., ¢(i). We proceed by induction: for n = 2
the only condition fz1 = 0 simply forces k21 — p12 +p1,1 = 0 and any k3, will do.
Thus k(2) = 0. Suppose k(n) has been determined; then to go to order n + 1 we
increase the number of f; ; to be cancelled by ¢(n + 1), but we have only ¢(n) extra
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TABLE 1
Conditions to be satisfied by the kernel up to order 6 for a Hamiltonian H = A+ B. If
[B, B, B, A] =0, only the starred conditions survive.

Order 3 | () Nz1=ks1—ks2—5k3, =0

Order 4 Nujy =kas+kaz — ko + k3, =0

Order 5 (*) N5 1 =ks2—ks1+ka1ka1 — %k?%,l =0

(¥*) Ns2 =ks3+ksa+kaoko1 —ksoks1 =0

_ 1
N5,3 = k55— ks,6 — ka,3ka1 — §k§)2 =0

Order 6 | (x) Ng,1 =5(ke,1 — ke,2) — 3(ke,3 — ke,5) + 2ka,1k3,1—
(k5,3 — 3ks,2 + bks,1)k2,1 — ka2k3 1 + %k4,1k§71 - k§71/€2,1 =0

Ne,2 = 5(ke,0 — ke,8) — 3(ke,7 — k6,6 + %k6,4) — 2ky4,3k3 2+
(k5,4 — 3ks,5 + Bks,6)k2,1 — ka,2k3 2 + %k4,3k§,1 + k§,2k2,1 =0

Ne,3 = ke,1 — ko2 — k6,3 + ke,a + ke,5 — k6,6 + k6,7 + k68—
k6,9 — (k5,3 4+ k5,4 — k5,2 — k5,5) k2,1 + %ng =0

pi,; coeflicients to do the job. More specifically, (10) can be written as

c(n)
(15) fn+1,j = kn+1,j + Z Qj sPn,s + Gj(k2,1a ceey kn,c(n))a j = 1a ce ,C(TL + 1)7

s=1

where G; are polynomials in which the p; j, ¢ < n — 1, have been eliminated in favor
of the k; ; coefficients. To eliminate the p,_ s coefficients from the system f,,11; =0,
the rank of the ¢(n+1) X ¢(n) matrix o with elements «; , should be ¢(n). But this is
indeed the case because, in the free Lie algebra generated by A and B, one can always
obtain a basis for the ¢(n 4+ 1) dimensional subspace which includes the elements
[A,E,;], i=1,...,¢(n). This guarantees that o has a lower triangular submatrix in
¢(n) dimensions with no zero elements in the main diagonal and then has rank c¢(n).
So we conclude k(n + 1) = k(n) + ¢(n + 1) — ¢(n). The telescopic character of this
recurrence allows one to write down its solution as k(n) = k(2) + ¢(n) — ¢(2), which
s (14) because ¢(2) = 1. For n = 3,...,8 this gives k(n) =1, 2, 5, 8, 17, 29.

Table 1 collects the explicit form of these conditions up to the sixth order using
the basis given in the appendix.

The meaning of Theorem 1 should be clear: it states the number of necessary
conditions to be satisfied by the kernel coefficients k; ;. For each solution of these
equations one still has to solve for a;, b; in the kernel composition. The theorem
by no means ensures that real solutions exist for these coefficients. In some cases,
then, one can be forced to take more complicated forms for exp(—hK) than originally
guessed.

Once a kernel with real coefficients satisfying the system of k(n) equations is
proposed, we still must fix the corrector to ensure f; ; = 0 for i« < n. If we denote
by p(n) the number of equations to be solved for the processor coefficients, we have
k(n) 4+ p(n) = Y., c(i). Taking into account the previous result, we have p(2) = 1
and

(16) p(n) =1+ Z c(i), n>2,
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which for n = 3,4,5,6,7 gives p(n) = 2,4,7,13,21.

Before presenting some examples of integration methods built along these lines
we discuss the simplifications we get in two particular cases: when a more elaborated
but symmetric kernel is considered, and when the terms A and B of the Hamiltonian
have some special properties. A particular simplifying analysis could also be made
for slightly perturbed Hamiltonians, H = A + B, with e < 1 [2, 17, 19, 27, 28].

2.3. The case of symmetric kernels. Let us now take a symmetric kernel,
(6) or (7). It can be proved that in this case the expansion (8) has

(17) kan,i =0, i=1,2,...,c¢(2n).

In particular, when the condition f>; = 0 for a second-order method is imposed, this
leads to p1,1 = p1,2 and we are free to choose, for example, p; 1 = p1 2 = 0. With this
choice we can specify further the operator P in the processor as follows.

THEOREM 2. The expansion coefficients for the P operator of the processor of an
nth-order symplectic integrator with symmetric kernel must satisfy

(18) Pom—1,=0, i=12....¢2m-1), m=2,..,[2],

provided we choose p11 = p1,2 = 0. Here [z] stands for the integer part of x.

The proof proceeds by induction: we have taken p; ; = p12 = 0 and let us assume
Pay—1,; = 0 for uw < r. The coefficients pa,_1; will appear in f,,; for m > 2r. In (10)
for ¢ = 2r and symmetric kernel only odd values of [ will contribute to the last sum
on the right. But then Z%S qn,(;g = 2r — [ =odd and at least one factor pg , with odd
q must appear which makes zero the whole contribution. So finally we are left with

c(i—1)

forj = E Qj,sP2r—1,s
s=1

for r < [%], Jj = 1,...,¢(2r). When conditions fa,; = 0 are imposed to have a
symplectic integrator of the required order we get a homogeneous system of ¢(2r)
equations with ¢(2r — 1) unknowns which certainly has the solution pa,—1; =0. 0O

The announced simplification for symplectic integrators with symmetric kernels
follows from the next theorem.

THEOREM 3. The number k(2n) of necessary conditions to be satisfied by the
kernel generator K of an even order symplectic integrator with processing and a sym-
metric kernel for n > 2 satisfies

k(2n) = k(2n —1).

To prove this result let us observe that the conditions on the kernel coefficients
are independent of the specific form taken for the P operator. Then we can choose
without loss of generality pory1,;, =0,7=1,...,¢(2r+1), for all 7. When this is used
with a symmetric kernel then only even powers of h will appear in H in (9). This
means that fo,,; vanish identically for i = 1,...,¢(2r), and so these coefficients will
not, count when looking for conditions on the kernel coefficients.

As a consequence of this theorem the number of conditions for the k;; coeflicients
in a symplectic integrator with symmetric kernel is

k(2r+1)=1+ XT: {c(2s+1) —¢(25)},
k(2r+2) = k(QTS;- 1),
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TABLE 2
Conditions to be satisfied by a symmetric kernel up to order 6 for a Hamiltonian H = A+ B.
If [B, B, B, A] = 0, only the starred conditions survive.

Order 3 (*) Ng,l = k3,1 — k3,2 =0

Order 5 | (%) Ns1 =kso—ks1— %k?% 1=0

(*)  Ns,2=ks3s+ksa—ksaks1 =0

— 1
Ns3=kss5—Fks6 — §k:§72 =0

which gives 1,1,4,4,13,13 for orders 3,...,8. Table 2 collects the only conditions
from Table 1 which survive for symmetric kernels.

These results, together with Theorem 2, give extremely simple conditions for the
processor coefficients. The only nonzero values are, for methods up to sixth order,

1
(19) P21 =k31, pa1=ks1, Ppa2=ksa— §k§,1a P13 = ks 6.

As is well known [23], a general nonsymmetric scheme can be composed with its
backward form to yield a method of at least the same accuracy but requiring one fewer
evaluation of the action of each of the two parts of the operator and thus reducing
the effective error. If this symmetrization procedure is applied only to the kernel, a

new analysis of the processor and kernel conditions could be necessary.

2.4. Hamiltonians with quadratic kinetic energy. There are cases in which,
besides e "4 and e "B we can also evaluate exactly the action of e hCr.c with Che =
bB+h?c[B, A, B], b and ¢ being free parameters. This is the case for instance when we
deal with nonrelativistic Hamiltonians and A and B are the Lie operators associated,
respectively, with the kinetic and potential energy. (. is usually referred to as
modified potential. Then one can replace in the kernel and processor compositions
all e factors by the more general ones e~"“b.c, which allows us to introduce two
parameters with only one exponential.

In these cases the actual number d(n) of independent commutators involving
n operators one can build with A and B satisfies, for n > 3, d(n) < ¢(n). For
example, let C; denote either A or B operators, and let us assign to C; an index
r; with values —1 and 1, respectively. Then one can see that [C1,Cs,...,Cy] will
vanish identically as soon as, starting from the right, the sum of r; adds up to 2.
In particular, [B, B, B, A] = 0 and the eight first values of d(n) are in principle 2,
1, 2, 2, 4, 5, 10, 15, while the number of conditions for the kernel is considerably
reduced: k(i) = 1,1,3,4,9,14 for i = 3,...,8. Notice that in this particular case
Theorem 1 still holds with d(n) replacing ¢(n), and the starred entries in Table 1 give
the equations to be satisfied by the kernel coefficients up to order 6 for this type of
Hamiltonian. Furthermore, if a symmetric kernel is used then k(i) = 1,1,3,3,8,8
for i = 3,...,8. These reductions for the kernel have a counterpart in the processor
structure: in (16) one has also to substitute ¢(#) with d(i) which for n = 4,5,6,7 gives
p(n) =4,6,10, 15.

3. New symplectic integrators with processing. We apply now the anal-
ysis of the previous section to the construction of new and efficient symplectic inte-
gration algorithms with processing, both in the general H = A + B case and when
[B, B, B, A] = 0 (Runge-Kutta—Nystrom or RKN case, for short). For comparison
with other well-established efficient symplectic integrators we also report their error
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calculated, obviously, in the same basis used in this work. Further details can be
found in [1].

In order to present our new methods in as concise a form as possible we designate
a method of order n by the label

(n:X-m,s)

in which m and s have been introduced in (4)—(7), and X=NS, S, NSRKN, SRKN
indicate the nonsymmetric or symmetric character of the kernel both in the general
and the RKN case. In the last instance the replacements y; B — Cly, v,, ;B — Cy, c,
have to be made in P and K and the criterion for estimating the computational
effort required has to be reformulated. It turns out, however, that for a number of
problems the evaluation of Cj . can be done at the cost of at most two independent
B evaluations and typically even cheaper because of reuse of certain calculations in
the computer [14].

Table 3 below collects the coefficients (with the last a; and b; omitted) and effec-
tive errors of our new methods. We also include, in parentheses, the effective errors of
those unprocessed symplectic algorithms with the best efficiency at each order existing
in the literature.

3.1. The general case of H = A + B Hamiltonians.

Fourth order. The shortest symmetric kernel we can use is of the form (6)
with m = 3. One free parameter is still present for optimization because only the
first equation in Table 2 has to be satisfied. For the processor there are p(4) = 4
equations to solve. A choice which ensures the existence of real solutions is to take
(4) with s = 3. The effective error of the best method we found with this processor
[1] is Ef = 0.7959. Observe that this kernel has the same structure, and then the
same computational cost, as the well-known fourth-order method used in [29] with
E; = 1.3352. This clearly shows the great improvement one obtains when processing
is implemented.

Fifth order. The kernel has to satisfy the five first equations in Table 1, so we
propose a composition of eight exponentials and six parameters, i.e., an NS-4 kernel.
Again there is a free parameter for optimization purposes. For the processor we have
p(5) = 7 equations to be satisfied and we consider (4) with s = 4. After solving all
the equations and searching the solutions that give the minimum error we get the
method (5:NS-4,4) given in Table 3.

Sixth order. Again it is advantageous to consider a symmetric kernel, so that
only the four equations in Table 2 have to be satisfied. On the other hand we have
fourteen equations to be solved for determining the processor. Thus we propose the
composition (6:5-5,7). In Table 3 we present the best method we were able to find.
The effective error Ey = 1.8880 has to be compared with Ey = 2.1351 achieved by
the symmetric method given by McLachlan [18] with nine evaluations of B.

3.2. Hamiltonians with quadratic kinetic energy.
Fourth order. The simplest symmetric composition that satisfies the single
condition for the kernel at this order is

(20) e—hK — 6_%hA€_hcl’1/24€_%hA,
which has been studied in detail in [2, 13, 14, 22]. For determining the processor

it is necessary to solve four equations, so that one possible choice for the method is
(4:SRKN-1,2).
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TABLE 3
Coefficients and effective errors of the new symplectic integrators with processing.

a1 = —3.068877096032787 by = —0.0188
Order 5 az = 0.069136863057925 ba = 0.228020026949214
a3z = 2.132236793077397 bz = —0.274397602327546
(5:NS-4,4) z1=0 y1 = —0.831482178617918
() z2 = —0.058741792287332  y2 = 0.869497654626095
Ey =1.4573 z3 = —0.155682248638743  y3 = —0.694638307539625
z4 = —1.739396727797721  y4 = 0.003491184157440
=2 by = 4ZE/I350
(NSRKN-2.2) 1 = 202Gl Ao e = BOGEEIS
(E; = 0.9840) 21 = —0.2508277426708327 11 = —0.6249287013618940
E; € (0.4577,0.9154) 2 = —0.8789034357785656 12 = 0.0087247119259793

v1 = —0.0156990164295207 vz = —0.0008843356433671
a1 = 0.528734306841523 b1 = 2.223125692756331
az = —0.227224814678775 b2 = 0.047256775178394
Order 6 z1 = 0.520443768753836 y1 = 0.113599703192743
zo = —0.112258504451409  y = —0.194068392832917
(6:8-5,7) z3 = —0.973494161013953  y3 = —0.033895302345452
(Ey = 2.1351) z4 = 0.362347738903427 ya = 0.303351445876588

B = 1.8880 25 = 0.212540146576188  y5 = 0.700101572328687
zg = —0.018738314192914  ye = —1.946137373022707
== yr=—30 ui
a1 = —0.0682610383918630 b1 = 0.2621129352517028
c1 =0 c2 = 0.0164011128160783
z1 =0.1 y1 = 0.2537166197209512
zg = —0.4023008059870294  y2 = 0.0128486628306805

(6:SRKN-3,5) z3 = —2(z1 + 22) Y3 = —Y2
(Ef = 1.0345) 24 = 22 Ya = —Y1
Ey € (0.7203,0.9603) 25 = 21 ys =0

v1 = —0.0415641538822374 v = —0.0098385717021198
vz = 0.0108739542111000 vg = 0.0361124178022208
vs =0

With this prescription we get two sets of real solutions for the coefficients in closed
form. More specifically, if we denote s = (1/6)/3 + 2v/3, then

Y1 = FV/3s, vy = £5/24, z =+(1—/3)s,

(21) Y2 = 07 V2 = 07 2y = F8,

and the effective error is Fy = 0.2736 m.

Fifth order. The kernel must satisfy the first three starred conditions in Table
1. This can be done by the composition NSRKN-2 which in principle could also serve
for a sixth-order method, but in this case no real solutions exist. With respect to
the processor, p(5) = 6 equations must be solved. Thus we propose a (5:NSRKN-
2,2) composition and obtain the method given in Table 3. The effective error Ey €
(0.4577,0.9154), depending on the weight we give to the Cj . evaluations, which is
favorably compared with the value 0.9840 obtained by the scheme proposed in [16],
with six evaluations of B per step.

Sixth order. With a symmetric kernel only the three starred conditions in Table
2 have to be fulfilled. We consider the composition (6:SRKN-3,5) and the solution
we have found is collected in Table 3. The effective error Ey € (0.7202,0.9603), in
contrast with the value 1.0345 achieved by the best symmetric RKN scheme with
m = 7 designed by Okunbor and Skeel [21].
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4. Optimal processing.

4.1. General considerations. The effective error Ef was defined in section
2.1 as a measure of the efficiency of a symplectic integrator. From the examples
of the previous section we see that equations N; ; = 0, i < n, of section 2 are far
from uniquely fixing all the coefficients characterizing a method. In this section we
systematically study an optimization procedure in order to get for a given kernel
the most efficient methods of a prescribed order n. We prove that the kernel itself
determines the minimum effective error one can achieve by processing [3]. Even more,
this minimum error can be written directly in terms of the functions IV, 1 ; which
would appear in the conditions for the kernel at order n + 1.

From (13) and (15), the coefficients p,, s which minimize E, are

(22) Pn) = 75710/11 (k(nJrl) + G(kQ,l; ceey kn,c(n)))’

where the vector notation

Pn) = (pn,la ce 7pn,c(n))7
(23) Kty = (Bnt1,15 - Fngte(ns1)),
G = (Gl, Ceey Gc(n+1))

has been used and 3 = a’'a. When solution (22) is substituted in (15) we get for the
optimal nth-order method

(24) foryy = (I = aB'a”) (ke + G)
with £, = (/%1 1o f7 ) )

It is interesting to remark that, from this equation, the minimum error is entirely
determined by the kernel, as we anticipated. We can prove the following theorem.

THEOREM 4. The coefficients fsﬁl,j can be written as a linear combination of
the functions Ny11 ; which determine the conditions for the kernel at order n + 1:

c(n+1)—c(n)
(25) = D YisNatie j=1,....c(n+1).

s=1

We prove this statement for n = 3 using the basis given in the appendix. From
(24) we can write

Ti5 = 1,3 kas + prje kao + pga kay + F( k2, kan),

where condition N3 ; = 0 has been used to eliminate k3 », F' is a polynomial expression,
and p1;;, are numerical coefficients. Taking Ny from Table 1 we have

f25 =13 Nag + Q( ka1s ks, kay, kag),

where () is another polynomial expression. Up to this point k4 ; are still com-
pletely free parameters. Suppose now we impose the fourth-order kernel condi-
tion Ny1 = 0 and use it to express one of the k4 j;, say, k43, in terms of the
set {k2,1, k31, k4,1, ka2}. Then with p(,) given by (22) we would build a fourth-
order method. But this means ffg- = 0. As this has to be true for any choice of
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TABLE 4
Optimal coefficients for processing methods up to order 6.

n=3| fi=F5=~ Zﬁ* 1N41
n=4| fh=—fn=1 N5t f5ls = f5a = 3 No2i ff = —F5ls = 5Nss
foh=—feh= 1772 (227Ng,1 — 99Ne6,2 — 411Np,3)
fgg = — g% = 1772 (83Ng,1 — 165Ng,2 — 285Ng,3)
n=>5 fgfj1 = 443 (52Ns 1+ 50Ng,2 + 221Ng 3)
o = —fo's = a5 (—76N6,1 + 39Ng,2 + 323Ng 3)
folo = —fos 4}13 (—28Ne,1 + 61Ng,2 + 119Ng 3)
n=06 | [f7% = |f72]|—%|N7,j| j=1,...,9

{k2,1, k31, ka1, kao}, we must conclude that Q( ka1, k31, ka1, ka2) = O identi-
cally and then fy% = pj3 Ny which, with ;1 = p; 3, is (25) we wanted to prove.

The generalization to higher orders is straightforward and basis independent. In
the optimized nth order, one has to consider the conditions for the kernel to order
n+1, (Npy1,s, s=1,...,¢(n+1)—c(n)). From these expressions we choose the
same number of independent k£, 1 ; coefficients and repeat the process carried out for
the third order.

Observe that the coefficients v;, in (25) can be obtained from the linear term of
(24), i.e., from the ¢(n + 1) X ¢(n + 1) matrix

MP =] —ap tal.

Table 4 collects the results for Hamiltonians of the general type H = A+ B up
to order n = 6.

Notice that case n = 6 involves N7 ; which are not given in Table 1. They have
been obtained in the form N7 ; = k7,25 — k7,251 + G(k), where G(k) is a polynomial
expression of k; ; with ¢ < 7, using the codes of [11].

For the RKN case there is a trivial simplification in third, fourth, and sixth orders.
For fifth order we have

-3
(26) ft(;,pl = fg 68N61’ fé’,ng— é’,?;:@Ne,l; f64—

4.2. Fourth-order examples. We present here some optimized methods as an
illustration of the procedure just discussed. Our strategy for method building will be
similar to the one used in section 3, except that now the processor has to be chosen
so as to minimize the error. For this to be the case p°?(n) = p(n + 1) equations have
to be satisfied by processor coefficients.

The general case of H = A + B Hamiltonians.

(i) Method I. We have considered the symmetric kernel S-3 and found the optimal
method for b; = —0.175, with effective error £y = 0.5653. For the processor, in
principle, we have to solve eight equations, but to have a real solution we take a
composition (4:S-3,5). One possible set of solutions for the optimized method is given
in Table 5.

(i) Method I1. To get still better results we have also considered a (4:5-4,4) method.
Now, we have two parameters for minimizing the error. We have found different sets
of solutions with similar minimum values. One of them is b; = 0.24 , by = —0.1
which gives effective error £y = 0.4041, improving the corresponding of the previous
scheme. The corresponding coefficients can be read from Table 5.
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TABLE 5

Coefficients and effective errors of the new optimized fourth-order processing methods.

a — V1646169147 by = T
Order 4 1= 1680 1= 720
21 = —1.450228208075020  y1 = —0.026109696957887
(4:5-3,5) 2o = 0.470250210499111 y2 = 0.066841578109894
(B = 0 622’7) 23 = 1.480280303520878 y3 = 2.989840731091553
Ef = 0.5653 24:_(ZI+Z2+Z3+Z5) y4:_(y1 +y2+y3)
f . _ 1 _
5 = —35 ys =0
__ 57++18069 6
@ =55 br =25
b2 =—15
(4:5-4,4) 21 = —0.1171835753202670  y1 = —0.5903105192555323
_ , 2o = 0.8785444960116207 Y2 = 0.00137327945651155115
(Ey = 0.6227)
By = 0.4041 23 = —0.8972532123604465  y3 = 0.3958521503201655
24 = —(21 + 22 + 23) ya = —(y1 + y2 + y3)
c1 =54
21=0 y1 = —0.1859353996846055
(4:SRKN-1,4) 2o = —0.8749306155955435  y2 = —0.0731969797858114
(Ep = 0.4764) 23 = 0.2371066801510219 y3 = 0.1576624269298081
E; € (0.1624,0.3248) 24 = 0.5363539829039128 ya =0
v, =0 i=1,2,34
m =1 h=1-Vi%
c1=c2=0
(4:NSRKN-2,4) 21=0 1 = 0.1937696215758170
(Ef = 0.4764) 2o = 0.5349755290809216 y2 = 0.9311511462564267
Ey = 0.3467 23 = —0.3086327690445878  y3 = —0.1053624334726687
24 = 0.1428375011411086 ya =0
v, =0 i=1,2,34

These errors should be compared with the value 0.6227 obtained by the best of
the symmetric symplectic methods built by McLachlan in [18] (S, m = 5).

Hamiltonians with quadratic kinetic energy.

(i) Kernels with modified potentials. Let us counsider the kernel given by (20),
which gives N51 = Nso = 1/1440 and E, = 1/1440, while the effective error is
E¢ € (0.1624,0.3248). Once completed with the processor we get the (4:SRKN-1,4)
method given in Table 5. The resulting scheme is essentially as effective as the method
designed in [14] with the S-2 kernel and ¢; = 0.

(ii) Kernels without modified potentials. Tt might be useful also to have available
some RKN symplectic processed methods which do not consider modified potentials
in the composition. As an example we give in Table 5 a (4:NSRKN-2,4) method
which has Ey = 0.3467. It improves the best of the RKN symplectic methods without
modified potentials, built by Calvo and Sanz-Serna in [7] with Ey = 0.4764.

5. Numerical examples. We illustrate the practical performance of some of
the above processing methods and error calculations with some brief examples. As
usual we check the degree of exactness in the preservation of the energy and the
pointwise accuracy in the determination of the trajectory.

Ezample 1. The one-dimensional generalized harmonic oscillator is perhaps one
of the simplest examples of a Hamiltonian system that can be separated, in different
ways, into two nontrivial pieces, H = A + B, with the flows corresponding to A and
to B explicitly and exactly computable. In addition, the exact time evolution of H is
also at hand, so comparison with the approximate solution obtained by the different
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p-5

Average Distance

6.6 7 74 7.8 8.2
Number of evaluations

F1G. 1. Average distance between exact and numerical trajectories vs. number of B evaluations
for the generalized harmonic oscillator with X = 0.9. Solid lines denoted by s-n correspond to
standard (unprocessed) symplectic integrators of order m and dashed lines stand for the new nth-
order symplectic schemes with processing (p-n), respectively.

numerical algorithms is possible.
If we take

1
(27) A= §(p2+q2)-, B = Xpq+q*),

then all the elements £; ; of our basis are nonvanishing and thus we test our methods
in a nontrivial case. We choose A = 0.9 and determine numerically the periodic
trajectory with initial conditions go = pp = 1 (energy E = 2.8) for a large number
of periods (39,741) and compute the mean error in the Euclidean distance in phase
space between the exact and the approximate solutions.

Figure 1 shows this average distance in terms of the number of evaluations of
B. Solid lines denoted by s-n correspond to the fourth- (S, m = 5) and sixth- (SS,
m = 9) order symmetric methods given by McLachlan [18] (effective errors given in
Table 3), whereas dashed lines p-n stand for processing schemes (4:5-4,4), (5:NS-4,4),
and (6:S-5,7) of Tables 3 and 5. It is worth noting the superiority of the processing
algorithms over the standard symplectic compositions. The processing method (5:NS-
4,4) performs as a sixth-order integrator due to the influence on the global error of
higher order terms for the time steps used. On the other hand, the optimized fourth-
order processing scheme works significantly better even than the other processing
methods considered for this example. This outstanding improvement encourages the
construction of optimized higher order methods by following a similar procedure.
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Number of evaluations

F1G. 2. Relative error in energy vs. number of B evaluations for the Hénon-Heiles Hamiltonian
with E = 0.1. For this example one evaluation of Cy . is approrimately equivalent to 1.1 evaluations
of B. The codes are similar to those used in Figure 1.

Ezxample 2. Next we consider the well-known Hénon—Heiles Hamiltonian [9]

(28) H(q,p) = %(p? +p3) + %(qf +a3) +aiaz — %qg
with energy £ = 0.1 and integrate the trajectory with initial conditions (¢1 = 0,
¢ = —0.36, pr > 0, pp = 0.12) up to a final time ¢y = 2.95 x 10°. The mean
relative errors in the energy are shown in Figure 2 as a function of the number of B
evaluations. This number is determined by considering that, on average, 1 evaluation
of Cy . is approximately equivalent to 1.1 evaluations of B [2]. The processing methods
considered are the (5:NSRKN-2,2) and (6:SRKN-3,5), together with the optimized
(4:SRKN-1,4) schemes.

Observe the large advantage of the new processing schemes over the standard
RKN symplectic integrators whose effective errors are given in Tables 3 and 5. This
improvement is particularly noticeable for our optimized fourth-order method. Con-
cerning the fifth-order processing algorithm, it behaves as a sixth-order method for
h > 0.03 because seventh-order terms f7; dominate the leading error terms fg ; (at
least by a factor 2).

Figure 3 displays the same results as Figure 2 but now considers the more conser-
vative estimation that one (. evaluation is equivalent to at most two independent
B evaluations. Even in this case the processing methods perform better than the
standard ones. The results attained by the optimized fourth-order schemes with and
without modified potential (not shown in the figure) are very similar in this situation.
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Error in Energy

.13 1 1 1
6.4 6.8 7.2 7.6 8
Number of evaluations

Fic. 3. Same as Figure 2 if we consider that one evaluation of Cy . is equivalent to two
independent B evaluations.

6. Conclusions. In this paper we have analyzed the processing technique to
obtain symplectic integrators for Hamiltonians which can be split into two exactly
solvable parts, H = A+ B. We have determined the number of equations to be
satisfied by a kernel to build an algorithm of order n. These conditions have been
explicitly written up to sixth order. When symmetric kernels are used or when A and
B satisty specific algebraic relations the number of conditions is lowered. Our results
are summarized in the following table:

‘Kernel Hn:S‘n=4‘n:5‘n:6‘n:7‘n:8‘
General 1 2 5 8 17 29
Symmetric 1 1 4 4 13 13
RKN 1 1 3 4 9 14
RKN, symm. 1 1 3 3 8 8

Following this approach we have presented actual realizations of several symplectic
integrators up to sixth order which have better efficiency than alternative symplectic
methods found in recent literature. It is important to observe that in general this
improvement is obtained by the reduction in the number of evaluations of the kernel
operator.

We have also presented an optimization procedure which leads directly to the
minimum error one can get in terms of the kernel coefficients. This fact can give
further momentum to the construction of higher order optimized integrators with
processing [4].

In order to give further evidence for these conclusions two Hamiltonian systems
have been treated by our methods as test-bench. The comparison with other ap-
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proaches confirms the better performance of our processed integrators, as theoretically
expected.

Appendix. Lie algebra elements.
As stated in the text we denote by {E,}°™) a basis of L"(A, B). In this work

we have taken the following:

n=1 E171 =A E172=B

n=2 Ea1 =[A, B

n=3 | Es,=[AAB] Es;=B A D]

n=4 Es1 =[A/AJA,B] Es2=[B,A/A,B] Es3=|[B,B,B,A]
Es1 =[A,Es1] Es2=[B,Es1] FEs3=—[A Esp»]
Es4=[B,Es2] Ess=[AEs3] Ese=|[B,E43]

Es1 =[A,E51] FEep2=|[B,E51] Es3=][A E5;2]

n=6 | FEga=I[AFEs4] Fe¢s5=I[B,E52] FE¢p=][A F5;5]

Es,7 =[B,Es55] FEes=[AEs56] FEs9=|B,FEs5z]

n="7 E7,2j,1 = [A, Es,j] E772j = [B7E6,j} i=1,...,9

n=2>5
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