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Abstract

We present new families of sixth- and eighth-order Runge—Kutta—Nystrom geometric integrators with processing
for ordinary differential equations. Both the processor and the kernel are composed of explicitly computable flows
associated with non trivial elements belonging to the Lie algebra involved in the problem. Their efficiency is
found to be superior to other previously known algorithms of equivalent order, in some case up to four orders of
magnitude. © 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most used techniques in geometric integration of ordinary differential equations is to com-
pose one or more low-order basic methods with appropriately chosen weights in order to achieve a higher-
order scheme. The resulting composition algorithm preserves the favorable geometric property the basic
method shares with the exact solution. Often one has a differential equation X = X (x) such that the func-
tion X can be written as a sum of two contributions X = X; + X, and the systems x = X;(x), i =1, 2,
can both be solved analytically. Then the exact flows corresponding to X; are taken as the basic methods.

When this approach is applied to second-order systems of ODE of the special form

x=fx), (D

where x € R/ and f:R’ — R/, the numerical algorithms are usually termed as Runge—Kutta—Nystrom
(RKN) methods. More specifically, introducing the new variables z = (x, v)T, with v = x, and the
functions f, = (v,0) and f 5z = (0, f(x)), Eq. (1) can be written as

z=fat fs 2)
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and the systems z = f, and z = f; can be integrated in closed form with exact flow

z4(t) = €*z24(0) = (xo + tvg, )",
T
zp(t) = e¢'Pz5(0) = (x0, v0+1f(xg)) -
Here x(, vy denote initial conditions (at t =0) and A= f, -V, B= f, - V are the Lie operators

associated with f, and f, respectively (V = (V,, V,)). If we write the exact solution as z(t) =
e!A*B)z,, the evolution operator e/‘A*5 for one time step 4 = t/N may be approximated, for example,

by

3)

N

eh(A+B) ~ ehHL, = H eha,‘/\ehb,‘B (4)
i=1
or
" ATE) ~ e =TT S(w;h), (5)
i=1
where
h h
S(h) =exp EA exp(B) exp EA

is the leapfrog method. The corresponding approximate solution z,(¢) = e'"*z,, « = a, s, evolves then
according to the Lie group whose Lie algebra L(A, B) is generated by A and B with the usual Lie
bracket of vector fields [1]. If A and B are Hamiltonian vector fields, it lies in a subgroup of the group of
symplectic maps and the method is called a symplectic integrator; if A and B are skew-Hermitian, then
the approximation is unitary, etc.

The coefficients a;, b; or w; of this kind of method are determined by imposing that

H,=A+ B+O0(h") (6)

and similarly for H;. This allows us to obtain an nth-order approximation to the exact solution. Observe
that the efficiency of the compositions (4) or (5) is highly dependent of the number of flows involved
and the coefficients appearing in the term O(h"). In practice, methods like (4) are obtained by means
of the Baker—Campbell-Hausdorff (BCH) formula, which makes it necessary to solve a system of
polynomial equations in the coefficients. The solution of this system can be extraordinarily involved
even for moderate values of n, so that various symmetries are imposed on (4) and (5) to reduce the
number of determining equations, especially for high-order methods. For instance, if the composition
is palindromic (also called left-right symmetric or self-adjoint) then H, has not odd powers of k. The
price to be paid is an increment in the number of flows to be composed in each step. Note that in (5) the
individual stages S(¢) are themselves symmetric.

For the special decomposition (2) one can check that the Lie bracket [B, [B, [B, A]]] is identically
zero, and additional simplifications in the analysis occur. One of the most important examples is the class
of Hamiltonian systems of the form H = T (p) 4+ V(q) where T (p) is quadratic in p. Then the function
f in (1) is the gradient of the potential —V (q). The case of a Hamiltonian

H(q,p)=A(q, p) + B(q), (7

with A quadratic in p, is also included.
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The recent literature has devoted much attention to the integration of Eq. (1) by means of high-
order structure-preserving composition schemes. Okunbor and Skeel [13] have constructed explicit
symplectic RKN formulae of the type (4) with five stages and seven stages of orders 5 and 6, respectively.
Yoshida [17] derived explicit, symplectic methods of orders 6 and 8 requiring seven and fifteen function
evaluations per step as a composition of leapfrog steps (5). Calvo and Sanz-Serna [6] designed an
optimized symmetric eighth-order scheme with 24 evaluations which they found to be superior to
Yoshida’s methods in tests. Finally, McLachlan [9], after a thorough analysis, did not find more efficient
sixth-order schemes than the one obtained by Okunbor and Skeel, and built a symmetric composition of
order 8 with seventeen function evaluations more efficient than the previous ones. Interestingly, all these
eighth-order methods are not properly RKN algorithms: they work for all splittings X = X; + X3, not
just for those of the form (2), and the question of the existence of symmetric high-order Runge—Kutta—
Nystrom integrators more efficient than those composed of symmetric steps has been raised [11].

Some steps along this way have been taken recently: the use of the processing technique has allowed
the present authors to develop highly efficient schemes of orders 4 and 6 [2], the improvement with
respect to other algorithms being mainly due to the reduction in the number of evaluations. It has been
suggested [16] that the use of processing is the most economical path to high order, because the number
of determining equations diminishes.

The idea of processing was first introduced in the context of Runge—Kutta methods by Butcher [5]
in 1969 and applied to the symplectic integration of Hamiltonian systems, among others, by Wisdom
etal. [16], McLachlan [10] and Lépez-Marcos et al. [8]. In order to reduce the number of evaluations per
time step & the following composition is considered:

H() _ P K o—P @®)

Then, after N steps, we have /T8 ~ M) = P ("K)Ne=P At first we apply e” (the corrector or

processor), then ¢"X (the kernel) acts once per step, and e ¥ is evaluated only when output is needed.
Both the kernel and the processor are taken as compositions of the flows associated with A and B.

A general analysis of the processing technique in connection with symplectic integration has been
done in [2]. There, the number of conditions to be satisfied by the kernel to attain a given order has
been obtained. It has also been shown that the kernel completely determines the optimal method one can
obtain by processing.

In this paper we apply the above analysis to the RKN case. By combining the processing technique
with the use of several exactly computable flows generated by different elements belonging to the Lie
algebra L(A, B) we obtain a family of optimal sixth-order RKN methods more efficient than others
previously published and some processed eighth-order schemes with less function evaluations per step.
Although only autonomous systems have been mentioned so far, also time-dependent systems can be
included by adding an extra variable.

These new methods are particularly effective when the function f in (1) can be written as

fx, =) g fx), ©)

i=l

where an explicit time dependence has been introduced through the functions g;. This case embraces the
physically important class of time-dependent non-linear oscillators [12].
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2. General analysis

In the Lie algebra L(A, B) generated by the vector fields A and B, we denote by [Ly, Lo, ..., L]
the nested Lie bracket product [L;,[L,, ..., Li]]. Let d(m) be the dimension of the space spanned
by brackets of order m of A and B when [B, B, B, A] =0, its first 8 values being 2, 1,2, 2,4, 5, 10,
and 15 [9] and denote by {Em,,-}flg) a basis of this subspace. Our explicit choice of basis is given in
Appendix A.

In addition to A and B there are other elements in L(A, B) whose flow is explicitly and exactly
computable. For instance, the operator [B, A, B] can be written as
af; a

. =g%¥%x) -V, 10
9x; 30, g7 (x) (10)

!

Vi1=[B,A,B]=2>_ f;
i,j=1
and the corresponding flow is given by an expression similar to the second equation of (3) by replacing
f with g In general, let C; denote either A or B operators, and let us assign to C; an index r; with
values —1 and 1, respectively. Then one can see that [Cy, C, ..., C] has the form of Eq. (10) with an
appropriate function g (x) as soon as, starting from the right, the sum of r; adds up to 1. This only takes
place when there is one more B than A operators, so that the total number s has to be odd.
When s = 5 there is only one independent element in L (A, B) with the required structure, namely

VS,IE[BaBaAaAaB]’ (11)
whereas for s = 7 we have
V7,1 E[B’ A’ B’ BﬂA’A’ B]’ V7,2.E[B’ B’ B’ A’ AﬂA’B]' (12)

The expression of the corresponding functions g are collected in Appendix A. Observe that the
operators given in Egs. (10)—(12) correspond respectively to the basis elements Ez,, Es4, E7g, and
E7 1. For easier reading we use a different notation in the text.

Then it is also possible to evaluate exactly exp(hCp ¢ 4., r), With

Chiedof=bB+hcVsy+h*d Vs, +hoeVr + fV72), (13)

b,c,d, e, and f being free parameters. Therefore, by replacing in the compositions (4), (5) or (8) all e"%i#

factors by the more general ones ¢"¥i<i<i<i i | we introduce several parameters with only one exponential
and reduce the number of evaluations of the overall scheme. Its efficiency is then improved if the
calculation of successive derivatives of f in (11) and (12) is not very expensive in terms of computational
cost.

The operator Cj ¢ 4, s can be considered a generalization of the so-called modified potential used
frequently in the recent literature [8,14,16]. In the rest of the paper it will be referred to as modified
function.

This technique, when combined with processing, constitutes a new way to achieve high order methods
deferring the explosion in the number of stages, which is typical of standard composition schemes. With
this goal in perspective, let us return now to the composition (8).

By repeated application of the BCH formula the kernel and processor generators K and P can be
written as a power series in A:

co (- di) o (- da)
K=A+B+Z{h’12ki,jEi’j}, P=Z{h’2pi,jE,,j}, (14)
i=1 j=1

i=2 j=I
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and therefore
) ' d(i)
H(h)=ePKe—P=A+B+Z{hl—12f,-,jE,,j}, (15)
i=2 j=1

where the f; ; coefficients are given in terms of polynomial relations involving k; ; and p; ; [2]. Particular
nth-order integration methods require that f; ; = 0 up to i =n. These equations cannot be solved for an
arbitrary kernel using only the processor coefficients. More specifically, the kernel of an nth-order (n > 2)
method for Eq. (2) must satisfy exactly k(n) = d(n) — 1 independent conditions [2]. If, in addition, the
kernel is symmetric, then the number of conditions is considerably reduced: k(2n) = k(2n —1). In Table 1
we collect the explicit form, in the basis we are using, of these conditions N; ; = 0 up to eighth-order.

In this case the processor P(h) can be chosen as an even function of /4 and the corresponding
coefficients take very simple forms in terms of k; ; [2]: the only non-zero values are, for methods up
to sixth-order,

D21 =k3 1, pa1 =ks 1, Dap=Ks4 — %kil, (16)

whereas for order 8 we have, in addition,

Po.1 = 3 (kg1 + k72) — Skaiksi,

P2 = 2(ky3 + kug) + 13, + karks) — Skakss,

Pe3 = 3 (ks + ko) — Ska — karks) + kaiks3, (17)
Po4= 2 (ky7 + kas) — £h3),

D65 = %(kw + k710) + %kil + %k31k51 - %k31k53-

gi)tr'llzit]ions to be satisfied by a symmetric kernel of a RKN processing method up
to order 8
Order 3 N3i1=ks1 —k32=0
Order 5 Nsi=ksa—ks,1—5k3, =0
N5 =ks3+ksa—k3oks 1 =0
Order 7 N71=k71 —k12+ ks ks 1=0

N12=k74—k713+ %k;l — ks 1k3, 1 —ks3k3 1 =0
N7a=ks—ki6+ 2k3 | +ks ks —2ks 3k3 1 =0
Nya=ky7—kig+ k;l — 2ks3k31 =0
N7s5=k79—k710+ %kgl + ks k31 — %k5,3k3,1 =0
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It is traditional to compare different integration methods by means of an effective error constant Ejy:
some measure of the first term in the local truncation error E, adjusted for the complexity of the scheme.
In our case E, can be defined as

d(n+1)

Ec= | Y |far1P? (18)
j=1

and the effective error can be taken as Ey = mErl/ ", where m is the number of B (or C) evaluations per
time step. Interestingly, it has been shown [2] that the values of f,;; ; which minimize the value of E,
can be written as linear combinations of the functions N, ; which would determine the conditions for
the kernel at order n + 1. When n = 6 these optimal values read

|f7,2i—1|=|f7,2i|=%|N7,i|, i=1,...,5. (19)

We see, then, that the kernel itself determines the minimum error one can achieve by processing. In the
following we design a complete family of sixth-order optimal processing methods just by considering
different symmetric kernels. The eighth-order case is also considered.

3. The new RKN processing methods

The two basic ingredients of an integrator with processing are the processor e” and the kernel e/X.
From a practical point of view it is generally not necessary to use an element of the Lie group associated
with L(A, B) as a processor because its effects are not propagated by the numerical integrator [8].
Nevertheless, to be fully consistent with the demand of geometric integration, we take as processor the
explicitly computable non-symmetric composition

r
eP — H eh:,'Aeh)‘,'B’ (20)
i=1

where the replacement exp(hy; B) — exp(hCy, ., »;) can be done when necessary. In any case, it is
characterized by the number r of B (or C) evaluations needed to guarantee that the Z,’.’;ll d(i) equations

Di.j = Pi,j (Zks Yk)

have real solutions for the coefficients.

As far as the kernel is concerned, due to the qualitatively different character of the operators A and B,
we have to consider the following two types of composition:

(i) ABA-type composition: (> ] +11 a;=>;_b=1):

=

ehK — ehalAehb]BehazA L. eh“sAehbsBeh”s+lA (21)
with ag,»_; =a; and by _; = b;.
(ii) BAB-type composition (33_,a; =35 b = 1):
ehK — ehb] BehalAehth . ehbsBelmsAehth B (22)
with a;11 ; =a; and byp ; = b;.

We designate the whole method of order n by the label
(n:X-s,r;l)
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where X = ABA, BAB indicates the particular character of the kernel and, as before, we can replace
ehhiB by the exact flow corresponding to Cy, ..., in which case we add a number [ to indicate the
highest order of the nested Lie brackets included. Observe, then, that the criterion for estimating the
computational effort needs to be reformulated. Although the cost of the evaluation of Cj, . 4., y depends
both on the problem being integrated and the number of non-zero coefficients in C, it turns out that,
at least when [ =3 (i.e., d = e = f = 0), one evaluation of C, . can be done at the cost of at most
two independent B evaluations and typically much less because of reuse of certain calculations in the
computer [2,8]. This happens also for a number of problems even if d, e and f are nonvanishing, as is
the case for polynomial f; in Eq. (9) or when the potential depends only on | x]|.

3.1. Sixth-order methods

The kernel has to satisfy the three first conditions in Table 1. We look for different solutions of the
equations N3 | = N5 = Ns» = 0 and take the coefficients which produce the smallest value for the
functions N7 ; (and thus the minimum error). The efficiency of these new methods should be compared
with the value Ef = 7E!/® = 1.0345 achieved by the best RKN scheme with seven B evaluations,
designed by Okunbor and Skeel [9,13]. Table 2 collects the coefficients (with the last ¢; and b; omitted)
and effective errors achieved by the new schemes.

(i) L = 0. The minimum number of B operators needed to solve the kernel conditions is four. We have
not found real solutions with an ABA-type composition, whereas the optimal effective error achieved
by a BAB composition is Ey = 1.0355, which is similar to the best unprocessed algorithm. With five
B evaluations there exist an ABA kernel with E; = 0.7329. If one more B evaluation is considered we
have obtained the (6 : BAB-6,9; 0) scheme given in Table 2 with effective error Ey = 0.64. Obviously,
with seven evaluations we could get a better method because then there are three free parameters. On the
other hand, because a sixth order method satisfy all the conditions for a kernel, we can consider the most
efficient sixth order method given by Okunbor and Skeel. With this kernel we can build a method with
effective error E; = 0.61685.

(ii) I = 3. Three Cy, ., evaluations in the kernel are required to have real solutions and there is still a free
parameter (any of the ¢;). Both types of composition produce exactly the same optimal error E!/¢ = 0.15.
By fixing ¢; = 0 we have the (6 : ABA-3, 6; 3) method which only requires one C and two B evaluations,
giving error E!/® =0.1551 and efficiency 0.4653 < E; < 0.6204, depending of the estimated cost of a C
evaluation.

(iii) / = 5. The three free parameters needed to solve the equations can also be obtained with two Cy, . 4
operators. There are no real solutions with BAB schemes, whereas the resulting ABA composition admits
two sets of real solutions, one of which is used to construct the (6 : ABA-2, 6; 5) scheme of Table 2, with
error £/ =0.2719 and efficiency 0.5438 < E; < 1.0876.

(iv) [ = 7. We can use the complete expression Cy, c, 4;.¢;, f; to reduce significantly the errors attained
by the preceding kernels. More specifically, as the coefficients ¢; and f; appear linearly in the functions
N7 4 and N7 s, they can be chosen to cancel these functions. This is especially useful when N; 4 and N7 5
provide the highest contribution to the error term. For instance, if we replace Cy, ¢,.4, by Cp, c;.d.e, 1IN
the kernel of the (6 : ABA-2, 6;5) scheme, with e; = (215 + 564/15)/1612800, we obtain a method
with error E!/® = 0.2281. When the replacement Cp, ¢, = Ch,.c).0.¢,., is done in the (6 : ABA-3, 6;3)
scheme, i.e., when the kernel

ehK — ehalAehb] BehazA6116‘1,2'(-2_0'52']"2 ehaerhb] Behal A (23)
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Table 2

Coefficients and effective errors of the new sixth-order RKN geometric integrators with processing

by =0.15

by =0.3297455985640361

by = —0.049363257050623707
21 = —0.2079110832137436
24 = 0.009121373956442832
27 = —0.8711855319991359
y1 = —0.015428952113728616
y4 = —0.1611964864865696
y7 = 0.008521397729269797

(6: BAB-6,9;0)
a; =0.316
apy =0.4312992634164797

23 =0.4089657710426152
z5 = —0.5602966606303723
zg = 0.8594189436382758
y2 = 0.4245395527376832
v5 = —0.4258477789489911
yg = 0.008980355902201032

Ep=0.64

z3 = 0.5630192496347863

76 = 0.7988679375711318
9= Z?:l Zi

y3 = 0.1686944980146086

v = —0.008262586834473168

o==32% v

a; =—0.0682610383918630
c1 =0

z1 = 0.07943288242455420

24 = 0.3190423451260838

v1 = 1.3599424487455264

v4 = —0.040129915275115030
v] = —0.034841228074994859

(6: ABA-3,6;3)
by = 0.2621129352517028
7 = 0.0164011128160783
25 = 0.02974829169467665
25 = —0.2869147334299646
vy = —0.6505973747535132
ys = 0.044579729809902803
vy = 0.031675672097525204

Er € (0.4653,0.6204)

z3 = —0.7057074964815896
5

6= i=17%i

y3 = —0.033542814598338416
5

Y6 =—2 j_1Vi

v3 = —0.005661054677711889

vy = 0.004262222269023640 vs =0.005 vg = —0.005
(6: ABA-2,6;5) Ej € (0.5438, 1.0876)
ar =301+, /1+72) o1 = 43 d = 4l
z1 = —0.029784067651958936 72 = 0.9445943038246405 73 = —1.908119437387469
24 = 1.651876569139561 25 = —0.2328222691635203 ==Y,z
y1 =0.1478939879876102 o = —0.042209655271038353 y3 = —0.000873366842778911
v4 = 0.2180721303705606 ys = —0.3228830962443535 Yo=Yy i

v] = 0.007282272774510424

vy =—0.003668108110223575

v3 = —0.000225427508528040

vq =0.02 vs = —0.02 v =0

wi = 0.000384554838931473 wy = 0.000258018664435799 w3 =0

wy =0 ws=0 we=0
(6: ABA-3,6;7) Ef € (0.2238,0.2984)

a; = —0.0682610383918630
c1 =0

dy =0

z1 =0.1604630501234888

z4 = 0.5630722377955035

v1 = —0.012334538446142270
y4 = 0.000181521815949959

v] =0.013816178183636998
v4 = 0.000603819193361427

b1 =0.2621129352517028

¢y =0.0164011128160783

ey =0.0000186194612413481
79 = —0.1222126706298830
z5 = —0.7612758792358986
vo = —0.6610294848488182
v5 = 2.3768244683666757

vy = —0.050288359617427786
vs =—0.01

f> =—0.0000063155794861591
23 =0.1916801124727711

5

6="2 1%

y3 = —0.023112349678219939
5

Y6 = — Zizl Vi

v3 = —0.013462400168471472
ve = 0.01
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Table 3
Kernel coefficients of eighth-order RKN geometric integrators with processing. Coeffi-
cients of a processor are also included for one kernel

(ABA-9: 0)
a; = 0.00004683745923348969 b1 =0.3730012196073597
az = —0.7458919296558489 by =0.039270822365231689
a3 = —0.027911335134073806 b3 = —0.032798861516437888
as = 0.5888685556487076 by =—0.1021725211468956
(ABA-4:7)
a; =0.7129508732570782 b1 =0.5974070023507730
c1 = —0.052876668399475798 ar = —0.4094021154865992
c> =0.012122201874074444 dr» =0.003162537736573353
e2> =0.000516635479956932 fo =—0.000025513037513292
(8: BAB-5,14;7)
b1 =0.2585691647446146 c1 =0.007587869772563802
d; =0.0001219127419188233 e1 = 0.000005741889879702246
f1 = —0.000002271708973531348 a; =0.6954511641703808
by = —0.1945897221635392 c> = 0.0005222572249380952
a; =—0.05
71=0 y1 = 0.3644761259072299
7o = —0.004624860718237988 vy = —0.2849544383272169
73 =0.3423219445639433 y3 = 0.2023898776842639
74 = 0.1760176996772205 v4 = —0.2743578195701579
z5 = 0.3625045293826689 ys = —0.00475975395524748
z6 = —0.2729727321466362 ve = 0.1455974775779454
== y1==30_ i
v1 = 0.016298916362212911 vy = —0.019769812343547362
v3 = 0.004608026684270971 vu=vs=ve=v7=0

is considered, the corresponding (6 : ABA-3, 6;7) method, given in Table 2, attains an error Erl/ 6=
0.0746. Observe that, in this case, only one modified function C has to be evaluated per time step and
then 0.2238 < Ey < 0.2984 for a number of problems.
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3.2. Eighth-order methods

A symmetric kernel must satisfy the eight equations in Table 1. In order to have as many parameters
as necessary to fulfill these conditions we may consider an ABA or BAB composition with at least nine
B operators or include modified functions in the scheme: for instance, the minimum number of flows
is achieved with only two Cj . and Cp ¢ 4.,y €valuations. In any case, the number of possibilities (and
solutions) increases considerably with respect to n = 6.

In principle, a similar analysis can be carried out to obtain new families of optimal eighth-order
methods with processing. This requires considering the space spanned by nested brackets of order 9 and
the number of equations involved becomes prohibitively large (d(9) = 26). Some alternative approach
for characterizing the accuracy of these methods should then be considered, such as some measure of the
magnitude of the coefficients [9].

Concerning the processor P, the coefficients z;, y; in Eq. (20) have to satisfy 26 equations. This
unpractical number of conditions can be reduced by determining the coefficients of the composition
e? =, e“i4eMi® such that

Q(h)=1P(h)+0O(h"). (24)
In this way only 16 equations are involved, but it follows that
QM Q(=h) — oP(h) + O(hs) (25)

because P (h) is an even function of 4. Observe that the same composition that defines Q (4) but reversing
the sign of 4 allows us to obtain Q(—h).

Table 3 collects the coefficients of some compositions we have found for kernels of eighth-order
methods. These include an ABA composition without modified functions, (A BA-9; 0), a kernel involving
the minimum number of exponentials, (ABA-4;7), and a BAB composition with two B, two Cj . and
one Cp ¢ 4. ¢ evaluations. For this case we have also written the coefficients of a possible processor. The
method thus obtained, (8 : BAB-5, 2r; 7), with r =7, should be considered only as a preliminary result
of a more complete analysis which is being carried out at present [3].

4. Numerical examples

In order to test the efficiency of the new methods presented above, they are applied to some test-
bench examples. Comparison is done with other schemes of similar asymptotic consistency. For order
six, these are the most efficient seven-stage method designed by Okunbor and Skeel, OS6 [13], and the
non-symplectic variable step embedded RKN method, DP6, presented in [4] such as is implemented
in the subroutine DO2LAF of the NAG library. Concerning the eighth-order, the methods we use are a
symplectic integrator due to Yoshida [17] (Yos8), with 15 function evaluations, the 17 stages composition
method obtained by McLachlan [9] (McL38) and the optimized symmetric scheme designed by Calvo and
Sanz-Serna [6], with 24 evaluations per step (CSS8).

Example 1. The methods are applied first to the time-dependent Hamiltonian

H=1(p?+q}) +ecos(q)gi (1) + esin(q)ga(r) 26)
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with g, (t) = Y j_, cos(wyt), g2(t) = > i, sin(wyt). It describes the motion of a charged particle in a
constant magnetic field perturbed by m electrostatic plane waves (propagating along the perpendicular
direction of the motion), each with the same wavenumber and amplitude, but with differing temporal
frequencies wy [7].

This Hamiltonian can be treated as an autonomous system by considering the additional coordinate
¢» =t and the corresponding conjugate canonical momentum p; [1]. Then it has the form (7) with

A= pr+3(p+4i).
B

27)

£cos(q1)81(q2) + €sin(q1)g2(q2).

Then, in terms of the variables x = (¢, t), v = (p1, p2), the equations of motion can be written as Eq. (2)
with

fa=1 L, —q1,007,  fp=(0,-V.B)" (28)

and the systems z = f 4, 2 = f » have the exact flows

ehAzA(O) = (q1,c08h + pi,sinh, h, —q,sinh + py,cos h, ps),
e"Bz5(0) = (x0, vo — KV, B(xp)).

Observe that, for this example, the additional computational cost of evaluating the modified functions
g is almost negligible, in particular the most expensive 9,5 is not needed for computing the trajectory.

In order to ensure resonance we choose w; = kwg, with @ an integer. We take as initial conditions
g1, =1, p1, =0 and parameters € = 0.1, wo =7 and m = 10, so that both parts of the Hamiltonian have
a similar contribution. The numerical integration is carried out for 100 periods of the linear oscillator
(up to a final time #; = 100 - 27r) and the average error in distance with respect to the “exact” solution
is evaluated during the last period. Here “exact” means obtained by integrating with a much shorter step
size.

Fig. 1 shows, in a log-log scale, this error as a function of the number of e® evaluations. Dash-dotted
line corresponds to the non-symplectic method DP6, whereas dotted line (OS6) stands for the method
of Okunbor and Skeel. The optimal processed schemes used are (6 : BAB-6,9;0) (broken line, P6)
and (6 : ABA-3,6;7) (solid lines, PM6), with coefficients given in Table 2. Solid lines are obtained
considering that the cost of the evaluation of e“»«.«/ is one and two times the cost of e?, respectively.

Observe the high superiority achieved by the new processed methods, in particular when modified
functions are used regardless the increase of the cost of evaluating these functions, and how the theoretical
efficiency obtained in the last section exhibits in practice.

The rest of the new sixth-order methods have, for this example, performances between the two
processed methods given in the figure.

(29)

Example 2. As a second example we consider the two-body gravitational problem, for which the
equations may be written

. Xi ,

xi——m, i=1,2, (30)

and take as initial conditions

| 12
“’) , 31)

O =1-e,  x(0)=1(0)=0, X2(0)=<1—e
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Fig. 1. Average distance between exact and numerical trajectories vs. number of function evaluations for the first
example obtained with the new methods (6 : ABA-3, 6; 7) (solid lines) and (6 : BAB-6, 9; 0) (broken line). Results
attained with standard symplectic (OS6) and variable-step (DP6) sixth-order integrators are also included.

which produce an orbit with eccentricity e. With the value e = 0.5, this orbit is determined numerically
for 500 periods and the mean error in energy is computed during the last period. It should be remarked that
the results achieved by the new schemes (as well as all symplectic integrators) are largely independent
of the final time f;, because the error in energy does not increase secularly, but this is not the case for the
variable-step method DP6.

When modified functions Cp ¢ 4., r are used into the algorithm, the following map has to be evaluated:

eth,c.d,e.f)'Ci =X, —x;R, (32)

where R = G(b + F(4c + F(28d + F(280e + 3601)))), and G = h/(x? + x3)¥?, F = hG. Notice
that the increment in the computational cost with respect to the evaluation of ¢"?2 (which corresponds
to c=d =e= f =0) is only due to a few additional floating-point operations. In fact, by comparing
CPU times of the same algorithm with and without using modified functions, we conclude that, for this
example, the cost of e“#<d«/ is approximately % times the cost of e®. We will consider this figure when
counting the number of evaluations.

Fig. 2 shows the mean error as a function of the number of e® evaluations for the same methods
as that in the previous example. From the figure it is clear the higher performance of our new optimal
processing methods with respect to the standard symplectic and non-symplectic integrators considered.
This improvement is particularly noticeable when the modified function Cj, 4 ., ¢ 18 incorporated into the
schemes.

In Fig. 3 we compare the results achieved for this problem by the new eighth-order integrator whose
coefficients are given in Table 3 (solid line denoted by pm8) with standard composition schemes. Observe
that, whereas CSS8 and McL8 have been optimized in order to reduce the truncation error, this is not the
case of pm8, and nevertheless it provides better results. This fact gives further momentum to the analysis
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Fig. 2. Error in energy vs. number of function evaluations for the two-body problem with eccentricity ¢ = 0.5
obtained with the methods of Fig. 1. In this case one evaluation of C is approximately equivalent to % evaluations
of B.

Error in Energy
&
T
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5 5.2 54 5.6 5.8 6
Evaluations

Fig. 3. Error in energy vs. number of function evaluations for the two-body problem obtained with the new method
(8: BAB-5, 14; 7) (solid line, pm8) in comparison with other standard symplectic eighth-order algorithms.

and construction of more efficient eighth-order integrators by the combined use of modified functions
and the processing technique.
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Appendix A

As stated in the text we denote by {E,, ; }fi"l) a basis of the space spanned by nested brackets of order n
of A and B when [B, B, B, A] = 0. In this work we have taken:

n=1 E\ =A E =B

n=2 E»i=I[A, B]

n=3 E;  =[A, A, B], E5,=[B, A, B]

n=4 E, 1 =[A,A A B], Es»=[B,A A, B]

n=3>5 Es 1 =[A,E4,1], Es2 =B, E41]
Es3;=—[A,E4l, Es4=[B, E4>]

n==6 E¢1 =[A, Es)1], Eso=1[B, Es 1], E¢3=[A, Es]
E¢4=1A, Es4l, E¢5s =B, Es2].

n="7 E7j—1=[A, E¢ ), E72j =B, Es ], j=1,...,5

Next we collect the functions g’ (x) appearing in the operators V; ;, s = 5, 7, for autonomous systems,
which are incorporated into the modified function Cp ¢ 4., . The sum on repeated indices convention is
adopted here:

; 8f1 of; >
® =2 i L Al
(%), =24 fig 2t 2L 2 (A
( (7)) (x)
ofy f; 8’ f; dfx 31 f; 0% fi 8}2-)
=2fm . — 44— = 4 3ff— | A2
f < feox: 0X,, 0X;0X; fkﬁaxmaxlaxk + 0X,, 0X 0X; + kaxmaxk 0x; (A-2)
53 2
(7 f d fm af] )
=6 m 3 — . A3
(827),) fkﬁ(f Dxmdxns | 9x0%5 (A-3)
It should be stressed that these expressions are also valid for the more general case
¥X=Ax+h(x)+ f(x), (A.4)

where A is a constant matrix and the system X = Ax + h(x) is exactly solvable.
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