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Abstract.

In this paper new integration algorithms based on the Magnus expansion for linear
differential equations up to eighth order are obtained. These methods are optimal with
respect to the number of commutators required. Starting from Magnus series, integra-
tion schemes based on the Cayley transform and the Fer factorization are also built in
terms of univariate integrals. The structure of the exact solution is retained while the
computational cost is reduced compared to similar methods. Their relative performance
is tested on some illustrative examples.

AMS subject classification: 65L05, 65170, 65D30.

Key words: Geometric integrators, linear differential equations, initial value problems,
Lie groups.

1 Introduction.

In recent years there has been a renewed interest in designing numerical schemes
for solving the linear matrix differential equation

B —anx, X(0) = Xo,

(1.1)
particularly in the context of geometric integration. The main goal in this field is
to discretize equation (1.1) in such a way that important geometric and qualitative
properties of the exact solution are retained by the numerical approximation. Here
A(t) stands for a sufficiently smooth matrix to ensure existence and uniqueness of
an n-by-n matrix solution X (¢).
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It is generally recognised that geometric integrators provide a better description
of the original system than standard integration algorithms, both in the preser-
vation of invariant quantities and in the accumulation of numerical errors along
the evolution [4]. For this reason there has been a systematic search of efficient
geometric integrators for equation (1.1), especially when it evolves in Lie groups
or a homogeneous space (see [12] for a review). In particular, the classical Magnus
[14] and Fer [8] analytic expansions have been turned into very effective numerical
methods, even for nonlinear matrix differential equations in Lie groups and homo-
geneous spaces [10, 20, 21], whereas other schemes based on the use of the Cayley
transform [6, 11, 15] and (conveniently modified) Runge-Kutta methods [16] have
also been proposed.

Although some preliminary analysis of complexity issues related to this class of
integration algorithms are already available [5], it is clear that much work along
this direction is still to be done. In particular, a detailed study is needed in order
to clarify under which circumstances a particular method is preferable to others.
This requires, as a first step, some optimization strategy to bring to a minimum
the computational cost of the different geometric integrators, in particular by re-
ducing the number of function evaluations and matrix operations (products and/or
commutators) involved.

In a recent publication [2], the authors presented a technique that reduced the
number of commutators required for methods based on the Magnus expansion up
to order eight. Here that technique is improved and put on a sound basis. At
the same time we extend the treatment to geometric integrators based on the
Fer expansion and the Cayley transform. We show how this class of integration
methods can be easily constructed from the Magnus expansion, both in terms of
univariate analytic integrals and symmetric quadrature rules. We also discuss the
use of diagonal Padé approximants to evaluate the matrix exponential and report
on our experience when the new methods are applied to some illustrative examples.

Given the initial value problem (1.1), it is well known that the matrix solution
X can, in a neighborhood of ty, be written in the following forms:

(1.2)  X(to+ h) = WX, Magnus

(1.3) = F1WeFe(h) . x Fer

(1.4) = 51N S2(h) . pSa(h)eSi(h) X Symmetric Fer
—1

(1.5) = (I-3C(h))  (I+3C(h))Xo Cayley

and these expansions are convergent for sufficiently small values of h [1, 11, 21].
Observe that if A(t) belongs to a Lie algebra g then schemes (1.2)—(1.4) and the
numerical integrators based on them provide approximate solutions staying in the
corresponding Lie group G if Xy € G, whereas this is true for the Cayley transform
(1.5) only when G is a J-orthogonal (also called quadratic) Lie group [18]. The
choice of the representation (1.2)—(1.5) is dictated by the requirement that the
solution stays in G. If on the other hand this requirement is abandoned one has a
much larger class of representations to choose from.

The plan of the paper is the following: in Section 2 we tackle the problem of min-
imising the number of commutators involved in the methods by use of techniques
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of graded free Lie algebras. In Section 3 we collect some numerical integration
schemes of order 4, 6 and 8 based on the Magnus expansion. These methods are
used in Section 4 in combination with the Fer expansion and the Cayley trans-
form to get new and optimized (or at least improved) geometric integrators for
the differential equation (1.1) up to order 8. The idea is to write the functions
F;, S; and C in terms of the successive approximations to {2 and, by using the
technique of Section 2, to obtain methods which involve considerably fewer matrix
commutators than other previously available. Also some considerations about the
computational cost of the algorithms are incorporated in this section. In Section 5
we apply these methods to a couple of illustrative examples in order to compare
their relative performance and elucidate when it is preferable to use one particular
scheme to the others. Finally, Section 6 contains some conclusions.

2 Optimization in a graded free Lie algebra.

The usual approach to obtain a numerical method from the expansions (1.2)—
(1.4) is to choose s distinct quadrature nodes c¢1, ca,...,cs € [0, 1], evaluate Ay =
hA(tg + cxh), k= 1,...,s, and form the corresponding interpolating polynomial
A(t) If the points ¢1 < c3 < -+ < ¢s are symmetric with respect to % (as it is
the case with Gauss-Legendre points) and the function values Ay, As, ..., Ay are

replaced by the solution of the Vandermonde system

S

(2.1) D er =371 = A, k=1,2,...,s,
j=1

then i

(2:2) b = AU D (o + )

i—1)!

where AU~V (¢y+2) is the (i —1)th derivative of A at the midpoint to+ 2. We can
consider then the graded free Lie algebra generated by B = {by, ..., bs} with grades
1,2,..., s respectively, write expansions (1.2)—(1.4) in this algebra and finally use
(2.1) to obtain the corresponding numerical method in terms of Ay [12].

As is well known, with this procedure it is possible to construct methods of
order 2s with only s symmetric collocation points and obtain an upper bound on
the number of linearly independent terms required, in particular on the number of
commutators involved [17]. The available theory, however, does not fix the least
number of commutators required for a method of a given order.

Here we approach this issue in the general framework of a graded free Lie algebra
Lg generated by B, with basis (including elements up to grade 7) given in Table 2.1.
More specifically, we consider the following problem:

Given an elementY € Lp of the form

2s  v;

(2.3) Y=Y X

i=1 j=1
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where X; ; denotes the j-th element of the basis of the free Lie algebra of grade
i, obtain an approximate expression for Y up to grade 2s involving the minimum
number of commutators.

Table 2.1: Basis of the Lie algebra, Lg, generated by B = {b1, b2,bs,bs} up to grade 7.

[ij ... Kl] represents the nested commutator [b;, [bj,[. .., [bk,bi]-..]]]-
n | vn Ly
1 1 X1,1 = bl;
211 Xa2,1 = by;
3 2 X351 = bs; X320 = [12];
4| 3 || X4 = by Xa,2 = [13]; Xa4,3 = [112];
X571 = [14], X572 = [113], X573 = [1112],
51 5 || Xs4=[23]; Xs,5 = [212];
X671 = [114], X672 = [1113], X673 = [11112], X674 = [123],
6| 7 || Xes=[1212;  Xoo = [24]; Xeor = [312];
Xr1 = [34]; X7 = [124]; X735 = [223]; Xr.4 = [313];
Xrs = [412;  Xrg=[1114]; Xrr=[1123];  Xrs=[1312];
7114 || X7 =[2113];  Xrio=[2212); Xy = [11113];  Xrio = [11212);
X7’13 = [21112], X7’14 = [111112],

The procedure to solve this problem is in principle very simple, but its technical
complexity grows extraordinarily with s.
First, we consider the most general commutator we can build with {b1,...,bs}:

S S
(2.4) di = [qu bi, Zyl,j bj]-
i=1 j=1

Next, we write

S S
(2.5) dy = |:Z$2,i bi + w2 541 di, Z Y2,5 bi + Y2641 dl] ,
i=1 j=1
i.e., the most general element one can form with {b1,...,bs,d;}. The procedure

can be repeated recursively 2s — 2 times in order to reproduce the term
[b17b17 e ,bl,bQ]
—— ——
2s—2times

and the problem is to determine the coeflicients x; ;, ym n, o, B; such that

s 25—2
(2.6) Y = aibi+ > Bidi+O(2s +1).
=1 =1

Here and in the rest of the paper ©(k) represents terms in the Lie algebra of grade
k or higher. At this point several observations are in order. First, a non-linear



266 S. BLANES, F. CASAS, AND J. ROS

system of algebraic equations in x; j, ¥m,n, o, 3; has to be solved in the process,
and there is no guarantee at all that this system has real solutions. Second, if
there are real solutions then the minimum number of commutators required is
precisely 2s — 2. Third, the number of coefficients to be determined increases
rapidly with the grade (although some of them are redundant) and so does the
technical difficulty of the problem. It is, therefore, very important to take into
account whatever additional information one has about it. For example, for some
relevant applications Y (—h) = =Y (h), so that ag;; = 0 in (2.3) and the problem
simplifies considerably. Let us split the Lie algebra in two subsets

S = {Z €lp: Z= Zia2i1,jX2i1,j}a

i=1 j=1
R = {Z elp: Z= ZZO{QZ‘J‘XQZ‘J‘}.
i=1 j=1

Then Lg = S® R and Y € S. In addition § is a Lie triple system (i.e., it is closed
under the double commutator) whereas R is a subalgebra of Lg. Now

di =51 = [x11b1 +2x13b3+ -+, Y1202 +y14bs +---] €S,

dy =11 = [22101 +223b3 + -+ 25,51, Y2,101 + Y2303+ -+ y2.5,51] €ER,

ds = sp = [x3,1b1 + x33b3 + - - + X35, 51, Y3202 + y3.4bs + - - +y3,,711] €S,
and so on. Finally

(2.7) Y=o1by +azbs+---+5idi + Fsds+--- €S

and this is the most general combination which reproduces Y € § with the min-
imum number of commutators. In order to illustrate this technique, we approxi-
mate Y € S up to grade 6 and 8.

Grade 6. The most general term in S we can obtain up to grade 6 using {b1, bz, b3 }
is

(2.8) Y =aiby + aabs + as[12] + ag[23] + a5[212] + ag[113] + a7[1112].
Let us consider, for example

s1 =[12],
r1 = [b1, x1bs + x281] = 21[13] + 22[112],
S92 = [x3b1 + x4b3 + 2581 , ba +11]
= 23[12] — 24[23] — x5[212] + x123[113] + x2x3[1112] + O(T7)

and choosing

9 - (675 o (64 o o o
(2.9) L= =, T3 =03, T4 -4, T3 = 05
3 3
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for aig # 0 we obtain
(210) Y :Oélbl +a2b3+52+®(7).
In case ag = 0 we can choose s1,71, and so in a slightly different way.

Grade 8. Observe that in this case we have X714 = [111112] so that, if o714 # 0,
the minimum number of commutators for approximating Y is five. With this
number of commutators, the most general element containing the term X7 14 and
preserving the property Y (—h) = =Y (h) is

(2.11) Z = a1by + azbs + s1 + s2 + s3
with

51 = [x1b1 + w2b3 , 23b2 + 24b4],

= [5b1 + xbs + w751, wsb1 + xobs + z1051],

= [r11b1 + 21203 + 21351 , T14b2 + T15b4 + T1671],

= [217b1 + 21803 + T1951 + L2082 , T21b1 + T22b3 + L2351 + T2482),
53 = [T25b1 + T26b3 + L2751 + TogS2 , Tagby + T30bs + L3171 + T3272].

We have {z;}?2, variables to solve a system of 20 non-linear equations but some
of them are redundant For example, we can rewrite ry as

(2.12) r =2z [bl, b3] + 22 [bl, 81] + 23[()3, 51] + @(8)
and only three among the six {x;}1%; are necessary. Similarly, for 7o
(2.13) o = V1 [bl, b3] + ’Ug[bl, 51] + v3 [bl, 82] + ’U4[b§;7 51] + @(8)

because s3 = vs1 + ©(5) with v = 11214/ (z123) and then [s1, 2] = ©(8) and
[bs, s2] = b3, s1]+©O(8). Thus only 4 among the 8 variables are necessary. On the
other hand, if z1 # 0 then s; = [b1 + w1bs , wabs + wsby] With w1 = xo/x1, wa =
r1rs and wy = w124, and similarly with s and s3. In summary, when all these
simplifications are taken into account we have (provided ys, y12 # 0)

s1 = [b1 + y1b3 , y2b2 + ysba,
= [b1 + Z_sz ; Yabs + yss1],
(2.14) sy = [by + yrbs + yss1 , yoba + y10ba + y1171),
T2 = [b1 — %81 . Y12bs + Y1351 + Y1452),

s3 = [b1 + y16b3 + Y1751 + y18S2 , Y19ba + y20bs + Y2171 + yo2ra),

and there are still 22 variables to solve 20 equations.
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3 Optimal Magnus integration methods.

Several 2n-th order time-symmetric integration algorithms for Equation (1.1)
based on the Magnus expansion (1.2) have been obtained recently in [2]. These
methods, for a given time interval [t,tr + h] and step-size h, read

(3.1) X (tx + h) = exp(QP™) X (1),
where Q27 approximates € up to order 2n and is expressed as a linear combination
of the univariate integrals

_ 1 tr+h h %
32)  BY=_— <t (tk + —)) A dt, i=0,1,2,...,
h* Jy, 2
and their nested commutators. In particular, methods of order 4, 6 and 8 have
been reported involving 1, 4 and 10 commutators, respectively. Here we apply the
analysis done in the previous section to obtain integration schemes up to order 8
optimal with respect to the number of commutators.
When a symmetric collocation scheme is chosen and the graded basis
{b1, b2, b3,b4} of Section 2 is considered, then we obtain

1 1 1 1
Q=Xi1+—Xs1— —Xs2— —Xs1+——X
1,1+ 19\31 T 1982 T g An + 540\ 54
(3.3) Xo1 4+ X5 — —X L .t x
' 134477 T 360772 2407%° T 224072 T G207 P
1 1 1 1 1
e X4 — X5+ X553+ ——X76— —— X
o048 T 30 T 0 T a0 ¢ T Tm60” T
11 1 1 1
e Xpgd X9 — —— X710 — —— X711 — ——— X.
* 203277 T 60480”06720 7 T 11207 M 302407 2
1
—X -—X o(h°
+ 756071 ~ 300107 714 T O
and we have the following approximations.
Order 4.
1
4 O =b — —[b1,b
(3.4) L b b
or, in terms of the integrals (3.2),
Qi = BO _[BO BW] L O(n®).
Order 6. We have an expression similar to (2.8) with
Ozfloszc)zfiOz*fa*ia*i04*L
Lo o S s T T T o007 T8 T 3607 T 720
so that the scheme reads
(3.5) Qe = p, 4 ib3 + i[720b1 — b3+ 1, by + 1]
12 240 ’
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with

s1= [b1, ba],
1
. =——[b1,2b
(3.6) 1 60[ 1,2b3 + s1],
and, up to this order,

3.7 by = 3 3B® _ 20 . by=12BY, b3 =-15(B® —12B@).
4

Order 8. The equations obtained by expanding (2.11) with (2.14) and equating to
(3.3) do not admit real solutions: with (2.14) we cannot solve simultaneously the
equations corresponding to X7 10, X7,12, X713, X7,14. Thus at least one additional
commutator is required. In fact, with six commutators we can approximate {2 up
to order 8. More specifically,

1 7 1
. Qs = by — — —
(3.8) bt 508 = 15052 T 350%%

S2, 83 being determined through the sequence
1 1 3
= b+ —bs,0 —b],
o1 [1+283 2T ™
1 1
n=g3 [bh *ﬁb:s + 51};
1 3 ,
(3.9) 59 = [bl + 2_8b3 + 51, ba+ 2_8b4 + 7“1}7 sy = [be, s1],
5 1,
Ty = [51 + 5 2b3 + 82 + 582},

1 7 1 9
S3 = |:bl + ﬁbi& - 531 - 652 ) _9b2 - Zb‘l + 63T1 + 2.

Again, this algorithm can be formulated in terms of the integrals B(*) through the
following change of basis:

b =
ba

(3B —20B(?), by = —15(B® —12B®),

3
4
15 (5BM —28B®)), by = —140(3BM) —20B®)),

(3.10)

Observe that schemes (3.4), (3.5) and (3.8) are explicitly self-adjoint and involve
just 1, 3 and 6 commutators, respectively. This is the minimum number needed
at each order of approximation.

4 Lie-group solvers obtained from Magnus methods.
4.1 Fer based methods.

We now construct integration methods based on the Fer factorization (1.3) by
applying the Baker—Campbell-Hausdorff (BCH) formula to the Magnus expansion
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(3.3) and subsequently the optimization technique of Section 2. More specifically,
in the domain of convergence of expansions (1.2) and (1.3) we can write

Q1) — Fi(h) F(h)

where
to+h 1
Flelz/ A(t)dtzbl+—b3+'-'
" 12
is the first term in the Magnus series and eF () = eF2(h) Fs(h) .. with F, = O(h®)

and F3 = O(h"). In this way

GF(h) — o= Fi(h) 0(h)

and the use of the BCH formula allows to write

_ 1 1 1
F(h) = —— X309+ — X435+ —X,
(h) 5 3,2+24 4’3+360 5,2
1 1 1 1
4.1 X4 ——Xsy— —Xss — —X
(4.1) T R YT e e YT R ST R
+iX 1y +LX +iX +O(h")
360763 T 4807 0% T 480 %5 T 28867 '

Observe that now there are terms of even order because the Fer factorization
lacks the time-symmetry property. As a consequence, the minimum number of
commutators required to attain a given order is higher (in general) than in the
Magnus case, as noticed in [5].

Order 4. It suffices to consider only the first and second terms in (4.1), so that
two commutators are needed in this case:

1 1
(4.2) FY = _E([bth] - 5[51751752])-

Order 6. We can reproduce the expression (4.1) with just four commutators in
the following way:

i = 2[b1. by + 5by).

9
5 15 1

dy = {b1+553+1d1 , 52+§53+d1},

13
(43) ds = {bl, —by — Ebg — 6dy + dg},
1 1 1 1
F[6] _ b, — R — 1 .
5 0 [51 + 2053 4Od1 50 (da +ds) , —60bs + 15d1 + d2 + d3}

The resulting n-th order algorithms, n = 4,6, based on the Fer expansion
(4.4) X(ty + h) = P10 T x (4,

are optimal with respect to the number of commutators.
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4.2 Symmetric Fer methods.

A drawback of the Lie-group solvers based on the Fer expansion is that, contrar-
ily to Magnus methods, they do not preserve the time-symmetry of the exact solu-
tion. For this reason Zanna [21] has proposed recently a self-adjoint version of the
Fer factorization in the form (1.4), which can be implemented as time-symmetric
Lie-group numerical integrators with essentially the same computational cost as
conventional Fer methods. In the following we construct symmetric Fer methods
up to order 8 by expressing S;(h) in terms of 2 and then applying the optimiza-
tion technique of Section 2. Tt is shown explicitly (at least up to order 6) that the
new methods require exactly the same number of commutators as Magnus based
solvers.

We can write (1.4) in the form

X(to + h) = etV (M S1(h) x4

with
S1 = 1Q _ t0+hA(t)dt
Tt T o
and eV = e%2e% ...¢%¢5 . Here, as for the conventional Fer expansion,

S1 = 0(h), Sz = O(h?) and S3 = O(h").
For sufficiently small h we have

V _ e=S140=51

e e

where Q is given by (3.3). Then, application of the symmetric Baker—-Campbell—
Hausdorff formula [19] allows to write, after some algebra,

(4.5) V(h) =W+ o [Ql’ 00, W1 + 112 W0
+ m[ﬂh [Q1, [Q, [, W]]]] + O(R?)

where W = Q — Q3. When equation (3.3) is inserted in (4.5) and similar terms
are grouped together we get

1 1 1
V(h)=—5X32— X514+ 5-X54

127327 805 T 240
1 1 1 1 1
4.6 — X e Xps— —Xog+ —X
(4.6) T T3aa T 360702 T 575 T ag0 72 T Grap T
L I N CEE S CHNE S
60481 T 84070 T 4807 T 268870 T 40327
5 19 1 1 1
-2 x Xog— X X X
8064 78 T 40320 79 G720 10 T 501607 1 T 2688 12
1
- X7i3— ——X Ko
2240 13 T 53760 mua+ O(R7)

and the following schemes:
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Order 4. It is clear that V (k) = —15 X35 + O(h®) and thus

(4.7) Sy (h) = ——[b1,b2) = —[B©, BY] + O(h?).

1
12
This method has been considered previously in [21].

Order 6. In this case V' (h) has an expression similar to (2.8) with

a1 =as =0 a*fi oy = —Qp = 1 04*L 04*7L
1 — @2 — U, 3 — 12; 4 — 572407 67360’ 7= 480
and thus, by substituting in (2.9) and (2.10) we get
1
(48) V(h) = Sgﬁ] (h) = 2740 |:— 20b1 — bg + 51, bo + 7“1:|
with
1

4. = = —4 .
(4.9) s1 = [b1, ba], ™ =190 [b1, —4bs + 3s1]

Order 8. Here, similarly to the Magnus case, the algorithm (2.14) involving 5
commutators does not reproduce the expression (4.6) with real coefficients, due
exactly to the same reason. With one additional commutator, however, we are not
able to solve all the equations (in particular, those corresponding to X3 o, X541,
Xs.,4, X7.1). Thus, the scheme we propose involves seven commutators and reads

(4.10) S =51 + 84 + 55 + 53,

where s1, s2 and s3 are determined by the algorithm (2.14) by considering instead

Y
ro = {b1 - y—w81 , Y12bs + Y1351 + Y1482 + ya3 b2, 81}}
12

and
, 1229 [ 124615 7627140b b }
S1 = 1 3 2 4| -
17162480 2787372 ° 7 1021271
The numerical values of the coefficients y1, ..., y23 we have found are
_ 1 __ 644615 _ _ 1
Y1 = —35, Y2 = —Tisssiost> Y3 = 0; Y4 = 360>
_ 37787027 —0 _ 5 _ 1398119999
Y5 = 206276800 Yo =Y, . Y71 = 51 Y8 = 162442980
Yo = — 148> Y10 = — 738> y11 =1, Y12 = 13390
" =0 1 __ 13867838909 _ 2397
Y13 = U, Y14 = 565 Y15 = T 1169589456000° Y16 = 11340°
_ 21433414477 _ ert _ o1 _ 35
Y17 = Tig2442080 » Y18 = T2g5> Y19 = 3708> Y20 = 32496
_ 53 -1 _ 1095823783
Y21 = — 375 Y22 = L, Y23 = 36636256000 °

The resulting n-th order (n = 4,6,8) time-symmetric integration algorithms

(4.11) X (e + h) = e51(0) S5 (R) o510 x (4

require 1, 3 and 7 commutators, respectively, and can be formulated in terms of
the univariate integrals B(*) with the expressions (3.7) and (3.10).
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4.8  Cayley-transform methods.

When the differential equation (1.1) evolves on the so-called J-orthogonal Lie
group [18]

(4.12) 0s(n) ={A€GL,(R) : ATJA=J},

where GL,,(R) is the group of all n x n nonsingular real matrices and J is some
constant matrix in GL,(R), numerical methods based on the Cayley transform
constitute a valid option preserving the Lie group structure of the equation [6, 11,
15).

Familiar examples of the J-orthogonal group O;(n) are the orthogonal group
(when J = I, the n x n identity matrix), the symplectic group Sp(n) (when J
is the basic symplectic matrix) and the Lorentz group (corresponding to J =
diag(1,—-1,—-1,-1)).

As is well known, A is a J-orthogonal matrix if

B = —é(I+A)*1(I— A)

is a J-skew-symmetric matrix, i.e., if BTJ + JB =0 and a # 0. In fact, the set
(4.13) os(n)={Begl,(R): BTJ+JB =0},

where gl,,(R) is the Lie algebra of all n x n real matrices, is the matrix Lie algebra
associated with O ;(n) [18]. Conversely, if B € o;(n), then its Cayley transform

(4.14) A= (I—-aB) (I +aB)

is J-orthogonal. Thus, for O (n) the Cayley transform (4.14) provides a useful

alternative to the exponential mapping relating the Lie algebra to the Lie group.

This fact is particularly important for numerical methods where the evaluation of

the exponential matrix is the most computation-intensive stage of the algorithm.
It has been shown that the solution of (1.1) can be written (aw = 1/2) as

(4.15) X0 = (1-300)  (1+500) %

in a neighborhood of to, with C(t) € o;(n) satisfying the so-called dcayinv equation
(1]

dc
dt
Time-symmetric methods of order 4 and 6 have been obtained based on the Cayley
transform (4.15) by expanding the solution of (4.16) in a recursive manner and
constructing quadrature formulae for the multivariate integrals that appear in the
procedure [11, 15]. Then the recently introduced notion of graded free hierarchi-
cal algebra is applied to reduce the number of terms in the quadrature formula
[13]. Here we show how efficient Cayley based methods can be built directly from
Magnus based integrators.

1 1
(4.16) A= SlC A= JCAC,  t=to,  Clto) =0.
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Equations (1.2) and (1.5) lead to

%C(h) - (eQ(h) + I) B (eQ(h) - 1)

and thus
- _ i 3 L 5 _ 1_7 7
Ch) = 9(n) 129(h) + 1200(h) 20160 ()" +
_ Yoo Yo Y2
(4.17) e (I =0 (I 021 - A+ )))).

We get integration methods of order 4, 6 and 8 when the optimal approximation
of Q up to the given order (obtained in Section 3) is inserted in the corresponding
truncation of the series (4.17). More specifically, the following schemes are built:

Order 4. In this case

SOH) = o)+ 0(r?),

M _ QUi _
(4.18) o =@ (1 -

where Q4 is given in (3.4). Then

(4.19) M = by — Ly bo] — 03+ 00%)
1277 127

or, in terms of the integrals (3.2),

cl = O _ O M) _ —(BO)3 L O1d).

*
12
If we consider the Gauss—Legendre quadrature of order 4, given by ¢; = 1/2— V3 /6,
ca = 1/2++/3/6, and define By = (A; + A2)/2, By = v/3(As — A;), then

1 1 .
4] _ - _ - 3 5
C By + 12[Bl,B0] 12B0 + O(h?),
which coincides with the result obtained by Iserles [11] and Marthinsen and Owren

[15]. Observe that C 4] requires, in general, the computation of four matrix-matrix
products. In fact, this number can be reduced to 3 by writing

(4.20) cl =B 4 (B<1> - %(B@)?)B(O) — BOBW L Om?).
Order 6. From (4.17) we have

1 1

(4.21) ol = lfl (1 - E(9[61)2 (1 - 1_0(9[61)2)) = C(h) + O(h")

and thus three matrix-matrix products are required in addition to the three com-
mutators involved in the computation of QU for a total of nine matrix-matrix
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products per step. This has to be compared with other 6-th order implementa-
tions previously available (18 and 23 matrix-matrix products).

Order 8. Now we have to substitute directly in (4.17) Q by (3.8) to get an 8-th
order approximation C'8 to C(h) requiring 16 matrix-matrix products.

The resulting n-th order (n = 4, 6, 8) numerical methods for (1.1) are then given
by

1 -1 1
= (71— =cM —c") x
(4.22) X(ty + h) (1 5C ) (1+2c ) (tr)
and they preserve time-symmetry.

4.4  Magnus—Padé methods.

As is well known, diagonal Padé approximants map the Lie algebra o;(n) to the
Lie group O;(n) and thus constitute also a valid alternative to the evaluation of
the exponential matrix in Magnus based methods for this particular Lie group.
More specifically, if B € 0;(n), then o, (¢B) € O (n) for sufficiently small ¢t € R,
with

P ()

(4.23) Yom(A) = (A’

provided the polynomials P,, are generated according to the recurrence

Po()\)zl, Pl()\):2+)\a
Pr(N) =22m — 1)Ppr_1(\) + A2 P _a(N).

Moreover, P2, (\) = e* + O(A2™+1) and v corresponds to the Cayley transform,
whereas for m = 2,3 we have

= (15 o ) /(1 b ),

1 1., 1 .4 1 1., 1 5
Yol) = (H A N T 1 )/(1 A N T 13 )
Thus, we can combine the optimized approximations to 2 obtained in Section 3 for
Magnus based methods with diagonal Padé approximants up to the correspond-
ing order to obtain time-symmetric integration schemes preserving the algebraic
structure of the problem without computing the matrix exponential.

The methods thus obtained involve 3, 8 and 15 matrix-matrix products for
order 4, 6 and 8, respectively. In consequence, the computational effort required
is similar to that of Cayley methods and constitute a very attractive alternative
to them. In fact, these “Magnus—Padé” methods perform better than the Cayley
methods in some cases, as we will see in the numerical experiments.

Observe that Q"] = O(h) and then

w2m(Q[2n]) _ exp(Q[Qn]) + O(h2k+1)
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where k& = min{m,n}. With m = n we have a method of order 2n. However, for
some problems this rational approximation to the exponential may be not very
accurate depending on the eigenvalues of Q[2"). In this case one may take m > n,
thus giving a better approximation to the exponential and a more accurate result
just by increasing slightly the computational cost of the method.

Table 4.1: Computational cost of different Lie-group solvers for the linear differential
equation (1.1). P also includes the matrix-matrix products coming from the commuta-
tors. The * indicates that the method is optimal with respect to the number of commu-

tators.
| Method | Order | F | C | P | E | In |
4* 2 11 2
Magnus 6* 313 6 1
8* 416 12
4 2 3
Cayley 6 3 9(8) 1
(Magnus—Padé) 8 4 16(15)
4* 212 4
Fer 6* 314 8 2
4* 2 |1 2
Symmetric Fer 6" 313 6 3
8 4 |7 14

4.5 Computational cost.

In order to compare the efficiency of the different geometric integrators obtained
in this paper, we must estimate their computational cost. It is made up of the
cost of evaluating the single integrals B(*) (or, instead, the number of A evalua-
tions if quadratures are used), the total number of commutators (or matrix-matrix
products) involved and eventually the exponential or the inverse of a matrix. Al-
though the actual cost is highly dependent on the Lie algebra in question and the
structure of the matrix differential equation, it is clear, however, that the factors
above enumerated could serve as a good indicator of the practical performance of
the different methods. These numbers are collected in Table 4.1 in a similar form
to reference [5]: F' stands for the number of function evaluations, C' is the number
of commutators, P indicates the total number of matrix-matrix products (com-
mutators included), E is the number of matrix exponentials and In the number
of inversions per time step for each class of methods when they are applied to the
linear equation (1.1).

5 Numerical examples.

Here we show some of the properties of the Lie-group solvers obtained in Sections
3 and 4 and test their efficiency on some examples, chosen to embrace different
kinds of physically relevant behavior.
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ExXAMPLE 5.1. First we consider the coefficient matrix
w
(5.1) At) = 72‘7003 —if(01 coswt + og sinwt),

where o, 7 = 1,2, 3, denote the Pauli matrices

(01 (0 i (1 0
N 1 0) 2\ i o) Lo -1

and 3, wp, w are real parameters. Then the corresponding initial value problem
(1.1) with X (0) = I has the exact solution

(5.2) X (t) = exp (—3iwtos) exp (=it (1(wo — w)os + Bo1))

which belongs to SU(2) for all ¢. This example is well known in the theory of
nuclear magnetic resonance [7] and is useful to check the behavior of numerical
schemes over very long integration intervals by comparing approximate solutions
with the exact result. In particular, we analyze the efficiency of the 6-th and 8-th
order algorithms described in Sections 3 and 4, both in terms of analytic integrals
B and symmetric quadratures. We compute the global error in the solution as
a function of the computational effort measured in CPU time for wg = w =1 and
0 = 0.8. The global error is measured by computing the Frobenius norm of the
difference between approximate and the exact solution matrices at time

P
te=5000—, with o =/(wo—w)?+ 472,
w

although similar conclusions can be attained by determining the quantum mechan-
ical transition probability

(53) Ol = (2 n“’{)

In Figure 5.1(a) we plot (in a log-log scale) the efficiency curves for the 6-th
order integration methods based on Magnus with exact univariate integrals (M6)
and Gauss—Legendre quadratures (M6c¢), Magnus—Padé (MP6), and standard and
symmetric Fer expansions (F6 and SF6, respectively). For comparison we have
also included the results obtained with a standard explicit 6-th order Runge-Kutta
method (RK6), which requires six evaluations of A(t) per step [9]. The graph
exhibits clearly the order of consistency of the algorithms and the advantages of
implementing Magnus with the integrals B() instead of quadratures, at least for
this example. This conclusion remains also valid for the other schemes. Notice
that the improved version (4.21) of C6 obtained from Magnus is the most efficient
method, although MP6 proves to be a quantitatively valid alternative to Cayley.

With respect to the 8-th order algorithms of Section 3, their efficiency curves for
this problem are shown in Figure 5.1(b), where a similar notation has been used
for the methods. Essentially, the same comments apply, but now MS is the most
efficient method and the efficiency does not change if the exponential is computed
with a Padé approximant.
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Figure 5.1: Efficiency diagram corresponding to the optimized 6-th (a) and 8-th (b)
Lie-group solvers of Section 3 when they are applied to the first example with wo = w =1,
8 = 0.8, both with exact integrals B®) and Gauss—Legendre quadratures. A 6-th order
explicit Runge-Kutta method is included for comparison (RK6).

EXAMPLE 5.2. As a second illustration we consider a skew-symmetric coefficient
matrix A(t) and Xo = I, so that the solution X (¢) is orthogonal for all ¢. In
particular we take as upper triangular elements of A(t) the following:

(5.4) Ayj = sin (¢(i* — j%)), 1<i<j<N,
i—J

with N =10, 20. In both cases X (t) oscillates with time, mainly due to the time-
dependence of A(t) (in (5.4)) or the norm of the coefficient matrix (with (5.5)).

The integration is carried out in the interval ¢; € [0, 10] and the approximate
solutions are compared with the exact one at the final time ¢ = 10, where the
corresponding error is computed for different h. The Lie-group solvers presented
in this paper are implemented with Gauss—Legendre quadratures and constant
step size.
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First, we analyze the efficiency of the different 6-th order methods for N = 10.
The exponentials are approximated using Padé approximants of order 6, XP6, and
of order 8, XP68, with X=M,F,SF corresponding to Magnus, Fer and symmetric
Fer, respectively. Figure 5.2(a) shows the results obtained for the matrix (5.4).
We have not included the XP68 curves because they are very close to the corre-
sponding XP6 ones. The results are similar to those of Figure 5.1(a) and are in
accordance with Table 4.4. In Figure 5.2(b) we show the results obtained when
(5.5) is considered. For this problem the eigenvalues of A(t) take large values and
it is important to consider an accurate approximation to the exponential. This is
clearly seen in the picture where Cayley gives a poor approximation to the expo-
nential. In particular, the symmetric-Fer method seems the most efficient since
B is the most important term and it is split in two parts.

In contrast with the first example, now there is not a closed formula for the ma-
trix exponentials appearing in the Magnus and Fer based integrators, so that some
alternative procedure must be applied. Here the computation of e© to machine
accuracy is done by scaling-Padé-squaring, i.e., we take

oC — (60/2’“) 2!

for some integer k and estimate e©/ o by a diagonal Padé approximant of a suffi-

ciently high order m, so that the result is correct up to round-off. Although k and
m are clearly h-dependent we have found that, for the integration methods and
step sizes h considered in this paper, the pair k = 2, m = 8 provides successful
results if C' has the form C' = a1h + O(h?), whereas k = 0, m = 4 lead to the
same result as the procedure implemented in Matlab when C' = azh® + O(h?),
as is the case with Fer methods. Using this approach we obtain for M6 and SF6
curves which are indistinguishable from SFP68 in Figure 5.2(b).

In Figure 5.3 we present, for clarity, only the results from Magnus (solid lines)
and Cayley (broken lines) based 6-th and 8-th order methods. For comparison we
also include the result obtained with RK6 (dotted lines). We should mention that
the relative position of the curves corresponding to the Runge-Kutta method and
the geometric integrators considered in this paper does not depend significantly on
the dimension of A(t). This is mainly due to the following reasons: (i) when N in-
creases then also does the intricacy of the solution, so that the better preservation
of its structure by the geometric integrators compensates their higher computa-
tional cost, and (ii) the number of A(t) evaluations is reduced to a minimum for
the Lie-group solvers of this paper. We also include for N = 20 an estimate of
the efficiency of an 8-th order Magnus method involving 45 commutators instead
of 6 (circles joined by a solid line in Figures 5.3(c) and (d)). The resulting loss of
accuracy is of approximately two orders of magnitude for the same computational
effort.

It is also worth noticing that the efficiency achieved by symmetric Fer methods is
quite similar to that of Magnus if the matrix exponentials are evaluated accurately
up to machine precision. This is so for the matrix (5.4) even if Padé approximants
of the corresponding order are used to replace the exponentials. In fact, all the ge-
ometric integrators provide essentially the same results at each order (with slightly
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Figure 5.2: Efficiency diagram corresponding to the optimized 6-th order Lie-group
solvers when they are applied to the matrix (5.4), (a), and to the matrix (5.5), (b).
The labels follow the same order of appearance as the curves from top to bottom.

different CPU time). On the other hand, the efficiency of Magnus—Padé methods
(and also of Fer-Padé) is highly deteriorated for the matrix (5.5), although it is
always better than the corresponding to Cayley schemes.

To better illustrate all these results, in Figure 5.4 we display the error in the
solution corresponding to (5.4) and (5.5) as a function of time in the interval ¢ €
[0, 100] obtained with the 6-th order Lie-group solvers and RK6. We take N = 10
and h = 1/20, all methods requiring the same number of A evaluations, except
RK6, which duplicates this number. Observe the great importance of evaluating
the exponential as accurately as possible for the matrix (5.5): by increasing slightly
the computational cost per step in the computation of the matrix exponential it is
possible to improve dramatically the accuracy of the methods. On the contrary, for
matrix (5.4) the meaningful fact seems to be that the integration scheme provides
a solution in the corresponding Lie group.

It is well known that the implicit s-stage Runge-Kutta—Gauss—Legendre (RKGL)
method of order 2s can be considered a geometric integrator if A € o;(n). In fact,
for the linear equation (1.1) this method can be written in an explicit form: one
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Figure 5.3: Error versus CPU time (in logarithmic scale) obtained with the 6-th and
8-th order integrators based on Magnus (solid lines), Cayley (broken lines) and RK6
(dotted lines). We have also included an 8-th order method based on Magnus with 45
commutators (circles joined by lines).

has to invert an sn X sn matrix, but in fact its block structure leads to a rational
expression similar to Magnus—Padé, involving n X n matrices and (possibly) more
matrix-matrix products. The results achieved by RKGL methods for the matrix
(5.4) are slightly less efficient than the other geometric integrators, whereas for
the matrix (5.5) are very similar to Magnus—Padé schemes of the same order. This
is not very surprising, because in the particular case when A is a constant matrix
both methods are equivalent, when neglecting machine accuracy.

6 Final comments.

In this paper we have developed a technique for minimising the number of com-
mutators involved in the implementation of Lie group numerical integrators. This
technique is applied subsequently to obtain different families of 6-th and 8-th
order geometric integrators for linear differential equations based on the Cayley
transform and the Magnus and Fer analytical expansions. Some of the methods
are optimized in the sense that the number of commutators and matrix-matrix
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Figure 5.4: Error as a function of time (in logarithmic scale) obtained with different 6-th
order integrators: (a) problem (5.4); (b) problem (5.5).

products is reduced to a minimum, so that they are far more efficient than other
schemes of similar type found in the literature.

Although only J-orthogonal matrices are considered in this paper, the integra-
tion methods based on Magnus and Fer we present here can be applied to more
general Lie groups than Oj(n) if the matrix exponentials are evaluated up to
machine precision.

We have also studied the applicability of these integration algorithms to several
examples involving different algebraic structure. Our purpose was not to compare
them exhaustively with other integrators but to establish when the use of one
particular Lie-group solver is recommended, based on criteria such as their relative
efficiency, the preservation of additional qualitative properties of the exact solution,
etc.

From the previous analysis of the examples considered we can draw some ten-
tative conclusions:

e There are problems where the preservation of the Lie group by the numerical
solution seems to be the only crucial feature. Then no particular geometric
integrator is preferred to the others, because all of them provide the correct
qualitative and also quantitative behavior at approximately the same com-
putational cost. In this case Magnus—Padé methods can be considered as an
interesting alternative to both Magnus and Cayley solvers.

e On the contrary, for other problems the presence of the exponential in the
numerical scheme seems to be essential. It is precisely the matrix exponential
which allows to recover accurately the main features of the exact solution,
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and not only the Lie algebraic structure of the problem. Indeed, a more
accurate approximation to the matrix exponential leads directly to a better
overall description. In this case it is worthwhile to calculate accurately the
matrix exponential even if the computational cost increases. In this respect
we should remark that the combined use of the Magnus expansion and high
order Padé approximants leads to integration schemes clearly superior to
those based on the Cayley transform.

o If the elements of the matrix A(t) are simple enough so as to render feasible
the exact evaluation of the integrals B(¥), then it is convenient to incorpo-
rate them into the algorithms instead of numerical quadratures because the
corresponding integration schemes are more efficient.

It has been argued [12] that one of the reasons which explains the superior
performance of Lie-group solvers might be that standard methods invariably em-
ploy the ansatz that locally the solution behaves like a polynomial in ¢, whereas
the former are based on a representation of the solution as an exponential of a
matrix with polynomial entries (or a product of such exponentials). Unlike poly-
nomials, exponentials of matrices with polynomial entries can describe adequately
high oscillations, exponential changes, etc. From our analysis we could say that,
at least in some situations, these exponentials provide also a better qualitative
and quantitative description than rational functions of matrices with polynomials
entries.

Finally, it is important to keep in mind that the technique presented in Section 2
for minimising the number of commutators is based solely on the structure of the
graded free Lie algebra. Therefore it can be used in any procedure involving such
a structure. In particular, it can be applied to reduce the computational cost
of certain Lie-group integrators for non-linear differential equations [17] or any
composition involving BCH-type expansions [3].
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