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Abstract.
In this work a systematic procedure is implemented in order to minimise the com-

putational cost of the Runge–Kutta–Munthe-Kaas (RKMK) class of Lie-group solvers.
The process consists of the application of a linear transformation to the stages of
the method and the analysis of a graded free Lie algebra to reduce the number of
commutators involved. We consider here RKMK integration methods up to order seven
based on some of the most popular Runge–Kutta schemes.
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1 Introduction.

The integration schemes of Munthe-Kaas [9] can be applied to differential
equations on homogeneous manifolds

ẏ = f(y) · y, y(0) = y0 ∈ M.(1.1)

Generally, (1.1) is induced by a transitive action by a Lie group G onM, so that
f :M → g is a map from the manifold to the Lie algebra g of G. The product
Z ·m, Z ∈ g, m ∈ M is then understood as

Z ·m =
d
dt

∣∣∣∣
t=0

exp(tZ) ·m.

A special case is when G is a subgroup of GL(n), the Lie group of invertible
n × n matrices and M = G. Of particular interest in applications is the group
G = SO(n), the set of n×n orthogonal matrices. The corresponding Lie algebra
g = so(n) is the set of n× n skew-symmetric matrices, see also Iserles et al. [7]
for more details.

∗ Submitted December 2002. Accepted September 2003. Communicated by Christian
Lubich.
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One may solve (1.1) by transforming the differential equation from M to g.
This was achieved by setting y(t) = exp(σ(t))·y0 with σ(0) = 0 in a neighborhood
of y0 ∈ M and then derive a differential equation for σ(t). It is now well-known
that one gets

σ̇ = d exp−1
σ (f(exp(σ) · y0)).(1.2)

The map d exp−1
u : g → g is expressed in terms of commutators through the

infinite series

d exp−1
u (v) =

∞∑
k=0

Bk

k!
adk

uv = v − 1
2
[u, v] +

1
12
[u, [u, v]] + · · · ,(1.3)

where ad0
uv = v, adk

uv = [u, ad
k−1
u v] and Bk are the Bernoulli numbers. The idea

of Munthe-Kaas was to approximate the solution of (1.2) by means of a classical
Runge–Kutta method, and then transform the result σ1 ≈ σ(h) back to M by
setting y1 = exp(σ1)·y0. The series (1.3) can be truncated because it is used only
in cases where the argument u = O(h). Using an explicit pth order Runge–Kutta
method with s stages, one can write the corresponding Munthe-Kaas (RKMK)
Lie group scheme in the following form, where h is the stepsize and aij , bi are
the Runge–Kutta parameters.

Algorithm 1.1.

for i = 1 : s do

ui =
∑i−1

j=1 aij dexpinv(uj , kj , p− 1)
ki = hf(exp(ui) · y0)

end do
v =

∑
i bi dexpinv(ui, ki, p)

y1 = exp(v) · y0

Here dexpinv(u, v, p) denotes a pth order approximation to d exp−1
u (v), i.e.

d exp−1
tu (v) − dexpinv(tu, v, p) = O(tp+1) for all u, v ∈ g at t = 0. In [9] it

was suggested that this approximation is obtained simply by truncating the
series (1.3). Keeping in mind that the Bernoulli numbers with odd indices (except
the first) vanish, one finds that the number of commutators to be computed in
each step is (p−2)(s−1) for p even and (p−1)(s−1) for p odd. However, it was
noted in [10] that substantial savings can be made for low order methods, by
applying a linear transformation to the stages ki in the algorithm. One introduces
transformed variables

Qi =
i∑

j=1

Vi,jkj = O(hqi ), i = 1, . . . , s,(1.4)

where the constants Vij are chosen such that the resultant integers qi are as large
as possible. Then, it is evident that commutators like

[Qi1 , [Qi2 , . . . , [Qim−1 , Qim ] . . .]] = O(hqi1+···+qim )
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which makes it easy to discard terms of order higher than the method itself.
The discussion of complexity in [10] is just based on counting the number
of commutators N2 whose order does not exceed that of the method. Their
treatment depends on the particular Runge–Kutta method which is used, but
for some of the most popular schemes we can deduce the following table, where
Orig indicates the number of commutators from the schemes of [9], whereas the
column FLA is what one obtains from approach of [10].

Method p s Orig FLA
RK4 4 4 6 4
DOPRI5 5 6 20 12
Butcher6 6 7 24 26
Butcher7 7 9 48 60
RKF78 8 13 72 133

It is important to note that the numbers in the FLA column do not count
the actual number of commutators that must be computed. For instance the
expression [Q1, Q2] + [Q1, Q3] would be counted as two commutators whereas
in this case one only needs to compute the single commutator [Q1, Q2 + Q3].
Still, the rapid increase in this number for higher orders led the authors of [10]
to believe that their approach would lead to schemes with a reduced number of
commutators only for the low and moderate order cases.
Recently, there has been some progress in reducing the complexity in inte-

gration schemes based on the Magnus series expansion. Iserles and Nørsett [8]
have studied these methods extensively and also in [10] the question of reducing
the number of commutators is addressed. In Celledoni et al. [5], the authors
have tried to quantify the computational cost associated to various Lie group
integrators. However, even more recently Blanes et al. [2] have found remarkable
savings in computational complexity for Magnus series schemes compared to
what was previously known, the optimal number of commutators for orders 4, 6
and 8 being 1, 3 and 6 respectively.
The aim of this paper is to combine the approach of [10] with that of [2] to

obtain Lie group integrators in the RKMK class with significant reduction in
the number of commutators compared to what is presently known. We start by
a case study in Section 2, where we consider methods of order 4 as a special
illustration. The treatment of this case exhibits the main ideas, but involves
little of the machinery of Butcher series and graded free Lie algebras needed
to treat the full general case. In Section 3, we extend and generalize the ap-
proach of [10] by using Butcher’s order theory to obtain a suitable basis for the
graded free Lie algebra associated with the stages of an explicit RKMK method.
Then, in section 4 we present an approach for further minimizing the number of
commutators.

2 Fourth-order RKMK methods. A case study.

In this section we illustrate the main features of the procedure leading from
Algorithm 1.1 to the construction of efficient Lie-group solvers for the nonlinear
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differential equation (1.1). As stated in the introduction, it consists of three parts:
(i) first, one has to find the transformation (1.4); (ii) second, the internal stages
ui and v must be expressed in terms of the new variables Qj provided by (1.4)
and (iii) finally some optimization strategy has to be applied to reduce the total
number of commutators involved and thus also the computational complexity of
the algorithm.
In this process it is important to recall that, once ui and v are expressed

in terms of Qm, they can be considered as elements of the graded free Lie
algebra generated by {Qi}i≥1 with grades w(Qi) = qi, as suggested by (1.4)
[10]. Therefore we can apply the optimization technique devised in [2] to write an
element of a graded free Lie algebra with the minimum number of commutators.
This will be particularly relevant for high order methods.
For simplicity, here we only consider 4th-order schemes and Algorithm 1.1 as

applied to Equation (1.1) defined in a matrix Lie group. Then exp(v) = ev is the
usual matrix exponential.

Lemma 2.1. In the explicit RKMK Algorithm 1.1 one has for i ≥ 1

ki = hf(y0) + cih
2f ′(y0)f(y0)y0 +O(h3),(2.1)

ui = cihf(y0) +O(h2)(2.2)

with ci =
∑i−1

j=1 aij .
Proof. We use induction on the stage index. Let us denote k̃i ≡ d exp−1

ui
(ki).

It is clear that u1 = 0, k̃1 = k1 = hf(y0) and therefore u2 = a21k1 = c2hf(y0).
In general, suppose (2.2) is true for i = l ≥ 2. Then, by expanding in Taylor
series,

kl = hf(euly0) = hf((I + ul + · · ·)y0) = hf(y0) + hf ′(y0)uly0 +O(h3)

= hf(y0) + clh
2f ′(y0)f(y0)y0 +O(h3).

On the other hand, it is evident that [ul, kl] = O(h3), so that k̃l = kl + O(h3)
and finally

ul+1 =
l∑

j=1

al+1,jkl +O(h3) = h

l∑
j=1

al+1,jf(y0) +O(h2)

= hcl+1f(y0) +O(h2).

Proposition 2.2. The linear combination Qi ≡
∑i

j=1 Vi,jkj = O(h3), i ≥ 3,
if and only if

i∑
j=1

Vi,j = 0 and
i∑

j=2

Vi,jcj = 0.(2.3)
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Proof. From Lemma 2.1 we have

Qi = Vi,1hf(y0) +
i∑

j=2

Vi,j(hf(y0) + cjh
2f ′(y0)f(y0)y0 +O(h3))

=

(
i∑

j=1

Vi,j

)
hf(y0) +

(
i∑

j=2

Vi,jcj

)
h2f ′(y0)f(y0)y0 +O(h3)

from which the result follows. We observe, in particular, that Q1 = k1 = O(h)
and Q2 = V1,2(−k1 + k2) = O(h2) if c2 �= 0.

By solving (2.3), the first Qi elements for any RKMK method are (Vi,i = 1)

Q1 = k1 = O(h),
Q2 = k2 − k1 = O(h2),

(2.4)
Q3 = k3 −

c3
c2

k2 +
c3 − c2

c2
k1 = O(h3),

Q4 = k4 + V4,3k3 −
c4 + c3V4,3

c2
k2 −

c2 − c4 + (c2 − c3)V4,3

c2
k1 = O(h3).

The next step to build methods of order four with 4 stages is to rephrase
Algorithm 1.1 in terms of Q1, . . . , Q4 and retain terms up to order O(h3) in
ui, 1 ≤ i ≤ 4, and up to order O(h4) in v. This gives us

u1 = 0,
u2 = c2Q1

u3 = c3Q1 + a32Q2 −
1
2
a21a32[Q1, Q2]

u4 = c4Q1 +
(
a42 + a43

c3
c2

)
Q2 + a43Q3 −(2.5)

− 1
2

(
a21a42 − a32a43 + a43

c23
c2

)
[Q1, Q2],

v = Q1 +
1
2c2

Q2 + (b3 − b4V4,3)Q3 + b4Q4 −
1
12c2

[Q1, Q2] +

+
1
2
(−2c3b3 + b3 + b4V4,3)[Q1, Q3]−

1
2
b4[Q1, Q4].

Remarkably, the coefficient of [Q1, [Q1, Q2]] in v vanishes identically so that, in
principle, with this formulation 3 commutators have to be computed (instead of
6 in terms of the ki). In fact, if we denote

d1 = [Q1, Q2],
(2.6)

d2 = [Q1, (−2c3b3 + b3 + b4V4,3)Q3 − b4Q4]

then
v = Q1 +

1
2c2

Q2 + (b3 − b4V4,3)Q3 + b4Q4 −
1
12c2

d1 +
1
2
d2(2.7)



728 F. CASAS AND B. OWREN

involves only 2 commutators. The final algorithm requiring the minimum number
of commutators is as follows:

Algorithm 2.1.

for i = 1 : 4 do
ui given by (2.5)
ki = hf(exp(ui) · y0)
Qi given by (2.4)

end do
v given by (2.7)
y1 = exp(v) · y0

Remarks. (1) We can fix the parameter V4,3 ≡ α so that d2 = −b4[Q1, Q4].
(2) One could consider 4th-order Runge–Kutta methods with more than four

stages. Even then the resulting RKMK algorithm in terms of the Qi requires the
computation of only 2 commutators as long as Qi = O(h3) for i ≥ 3. For in this
case ui, i = 3, . . . , s, involves only [Q1, Q2] and the commutators [Q1, [Q1, Q2]],
[Q1, Q3], [Q1, Q4], [Q1, Q5], etc., appearing in v can be grouped together.

3 Search for the optimal transformation.

3.1 General considerations.

As it has been clearly established in the preceding section, in the search for
optimal schemes it is crucial one can find transformations Qi of the stages with
as high order as possible as in (1.4). In the following we generalize Proposi-
tion 2.2 and develop a systematic procedure to obtain this transformation for
any classical Runge–Kutta scheme. The following result from [10] is useful for
this purpose.

Proposition 3.1. Suppose that there exists real numbers r1, . . . , rs such that

s∑
j=1

rjd exp−1
ui

kj = O(hq)

for some integer q, where ui, kj , h are as in Algorithm 1.1. Then

s∑
j=1

rjkj = O(hq).

The result also applies when k̃i := d exp−1
ui
(ki) is replaced by its pth order ap-

proximation as in Algorithm 1.1 as long as q ≤ p. Since ui, k̃i and v are obtained
from applying a classical Runge–Kutta method, we can use the Butcher theory
[3]. We will here apply this theory by using the notation from [6], known as the
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B-series approach. We work in a somewhat simpler setting than the general case,
because it is always true that the initial value in (1.2) is zero. The quantities
ui, v as well as the stage derivatives k̃i can be formally expressed in a B-series
expansion, ui = B(ui), k̃i = B(k̃i), v = B(v) where in general B is defined as

B(a) =
∑
τ∈T

h|τ |

|τ |! a(τ)F (τ)(0).(3.1)

Here, T is the set of rooted trees, where τ ∈ T has |τ | nodes. The map a :
T → R represents the coefficients of the B-series. The elementary differentials
F (τ) depend on the derivatives of the right-hand side of (1.2) evaluated at 0.
An element of T is either the one-node tree which we simply denote by 1, or
it is formed as τ = [τ1, . . . , τµ] where each τi ∈ T . This is the tree obtained by
joining the roots of the trees τ1, . . . , τµ to a new common root. Consequently,
|τ | = 1 + |τ1| + · · · + |τµ|. The coefficients in the B-series for ui, k̃i, and v are
related as follows:

k̃i(1) = 1, and for τ = [τ1, . . . , τµ]

ui(τ) =
s∑

j=1

aijk̃j(τ), k̃i(τ) = |τ |ui(τ1) · · ·ui(τµ),

v(τ) =
s∑

j=1

bjk̃j(τ).

(3.2)

In view of Proposition 3.1 we will, for each i = 1, . . . , s, search for constants
r1, . . . , ri such that

i∑
j=1

rj k̃j = O(hqi ),

where qi is as large as possible. We shall always assume in this expression that
ri = 1. Thus, for i = 1 we get q1=1. However, for i > 1 we obtain from (3.1) the
conditions

i∑
j=1

rj k̃j(τ) = 0, ∀τ such that |τ | ≤ qi − 1.(3.3)

To proceed, it is instructive to enumerate the trees, increasingly in terms of |τ |
and consider the matrix corresponding to (3.3)



1 1 1 · · · 1

0 c2 c3 · · · ci

0 c22 c23 · · · c2i

0 0 a32c2 · · ·
∑

j aijcj

...
...

...
...

...
...

...
...




(3.4)
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The horizontal lines are distinguishing the orders. Denoting by Nq the number
of conditions for order ≤ q, one has

q 1 2 3 4 5 6 7 8
Nq 1 2 4 8 17 37 85 200

We let Ki,q be the Nq × i matrix whose rows correspond to all trees such that
|τ | ≤ q. For a given set of Runge–Kutta coefficients (aij), the construction of
the transformation (1.4) is not difficult, the following algorithm gives the lower
triangular matrix V as well as the grades (q1, . . . , qs).

Algorithm 3.1.

V1,1 := 1
for i = 2 : s do

q = 1
while rank(Ki,q) = rank(Ki−1,q) do

q = q + 1
end while
qi = q
Solve Ki−1,q−1r = −si

Set (Vi,1, . . . , Vi,i−1) = rT , Vi,i = 1
end for

where si is the ith column of Ki,q.

Let us now turn to the general case of an s-stage pth order explicit irreducible
Runge–Kutta method. We always scale the transformation by setting Vi,i = 1
in (1.4).

3.2 Analysis stage by stage.

First stage. The first transformed stage is Q1 = k1 = O(h).
Second stage. Considering the first row of (3.4), we see that Q2 = k2 − k1 =
O(h2), and no more can be achieved since c2 �= 0 in irreducible schemes.
Third stage. Considering the first two rows of (3.4) one finds that

Q3 =
c3 − c2

c2
k1 −

c3
c2

k2 + k3 = O(h3).

This is the best one can do, because by imposing the conditions for the next
order one finds that the third stage will coincide with either the first or the
second stage, i.e. a reducible method.

Fourth stage. As we have shown in Section 2, for this stage one obtains a
one-parameter family of grade 3 vectors

Q4 =
c4 − c2 + α(c3 − c2)

c2
k1 −

c4 + αc3
c2

k2 + αk3 + k4 +O(h3).
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However, to obtain grade 4 it is necessary to force the 4× 4 matrix K4,3 to be
singular. We define φi =

∑
j aijcj and note that φ1 = φ2 = 0. Using c2 �= 0 we

impose ∣∣∣∣∣∣
1 c3 c4
c2 c23 c24
0 φ3 φ4

∣∣∣∣∣∣ = c4(c2 − c4)φ3 + c3(c3 − c2)φ4 = 0.(3.5)

1. Methods of order 4 with 4 stages. Unfortunately, this condition is incompat-
ible with the corresponding RK scheme of 4 stages having order 4. To see
this, we note for instance from [6] that for such schemes c4 = 1 and we invoke
the two order conditions

b3φ3 + b4φ4 =
1
6
, b3c3φ3 + b4φ4 =

1
8
.(3.6)

Since φ3 = a32c2 is nonzero, we must impose from (3.5) the (necessary)
condition∣∣∣∣∣∣∣

b3 b4
1
6

b3c3 b4
1
8

c2 − 1 c3(c3 − c2) 0

∣∣∣∣∣∣∣ =
1
24
(c3(4c3 − 3)(c3 − c2)b3 + (1− c2)b4) = 0.

(3.7)

Finally, we combine the quadrature conditions

∑
i

bic
q−1
i =

1
q
, q = 2, 3, 4

with (3.7) and we get at last the (necessary) condition∣∣∣∣∣∣∣∣∣

1 c3 1 1
2

c2 c23 1 1
3

c22 c33 1 1
4

0 c3(4c3 − 3)(c3 − c2) 1− c2 0

∣∣∣∣∣∣∣∣∣
=
1
6
c2c3(1− c2)(1− c3)(c2 − c3)= 0.

There are only three possible cases of coinciding node values [6, p. 138]:
(c2, c3) = (1/2, 0), (1/2, 1/2) and (1, 1/2). The first two are incompatible
with (3.5) and the last one would require φ4 = 0 and thereby contradict the
two conditions (3.6).

2. Methods of order 5 with 6 stages. For 5th order methods there are 17 order
conditions. Imposing the simplifying assumption φi = 1

2c
2
i , i �= 2, one finds

that either c4 = 0 or c4 = c3 for the fourth stage to have grade 4. A long
and fairly technical analysis shows that these conditions are incompatible
with the 17 order conditions for order 5. We have not pursued the question
of whether it is possible to obtain 5th order methods with 6 stages such that
the fourth stage has grade 4. However, for every known method of order 5
we have looked at, Q4 = O(h3) is the best that can be achieved.
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In general, by adding enough stages, one can always achieve Q4 = O(h4), but the
extra cost seems not to be compensated by the possible reduction in commutator
calculations.

ith stage, i > 4. As long as K4,3 is non-singular one can easily achieve grade
3 for each Qi where i ≥ 3, in fact, one will always have i − 3 free parameters
for these transformed stages. To completely characterize the highest attainable
grade for subsequent stages seems complicated and perhaps not very useful
because one may in this way easily exclude the most popular of the classical
Runge–Kutta schemes. However, in [6, pp. 155–156] we can find an explicit pro-
cedure for constructing 5th order schemes with 6 stages. The free parameters are
c2, c3, c4, c5 and a42 = λ. It is easy to deduce that by leaving the free parameters
unrestricted, the grade sequence will be (1, 2, 3, 3, 4, 4). The transformed stages
Q1, . . . , Q4 must be chosen as described above, whereas

Q5 = k5 −
c5(c5 − c3)
c4(c4 − c3)

k4 +
c5(c5 − c4)
c3(c4 − c3)

k3 −
(c5 − c3)(c5 − c4)

c3c4
= O(h4)

and it is impossible to achieve higher grade. For the sixth stage, one can set
Q6 =

∑6
i=1 riki, where r2 = 0, r6 = 1, and r1, r3, r4, r5 result from solving the

system
5∑

i=1

ric
q−1
i = −1, q = 1, 2, 3, 4.

Then Q6 has grade 4. But demanding that

a4,2 = λ =
1
8
c23(15c

2
3 − 12c3 + 2)

c2(5c23 − 4c3 + 1)3
and c4 =

1
2

c3
5c23 − 4c3 + 1

one obtains Q6 = O(h5). The Runge–Kutta–Fehlberg method of order 5 pre-
sented below does not fall within this class because c6 = 1

2 �= 1, but the
Dormand–Prince method does.

3.3 Some examples of high order methods.

We present here some of the most used explicit Runge–Kutta methods/pairs and
give for each of them the grade sequence (q1, . . . , qs) so that Qi =

∑i
j=1 Vi,jkj

= O(hqi ). The corresponding transformation matrix V can be found in the
reference [4].

5th-order

RKF45, Runge–Kutta–Fehlberg pair. The coefficients can be found in [6,
p. 177]. The best possible sequence of grades for this method is (1, 2, 3, 3, 4, 5).

DOPRI5(4), a method of Dormand and Prince. The coefficients of this
widely used 7-stage pair can be found also in [6, p. 178]. In this case the grade
sequence is (1, 2, 3, 3, 4, 4, 5).
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6th-order

Butcher6, a 6th-order method of Butcher. The coefficients of this method
are found for instance by choosing the abscissae c2 = 1

2 , c3 =
2
3 , c5 =

5
6 and c6 =

1
6 , and then follow the recipe in Butcher [3, pp. 200–204]. The grade sequence is
(1, 2, 3, 3, 4, 5, 4).

The 6(5) pair of Verner (DVERK). The coefficients of this embedded
formula are given in [6, p. 181]. Now the optimal grade sequence is (1, 2, 3, 3, 4, 4,
5, 6) and the transformation matrix is

V =




1

−1 1
3
5 − 8

5 1

3 −4 0 1

− 17
32 0 125

96 − 85
48 1

− 11
8 0 25

8 − 11
4 0 1

− 621
1000 0 − 69

136
23
100 − 216

2125 0 1

− 77
860 0 − 875

8772
77
774 − 7392

84065 − 42
43

1375
8901 1




(3.8)

7th-order

Butcher7, a 7th order method of Butcher. In [3, p. 207] one can find the
coefficients of a 7th order scheme with 9 stages.

Runge–Kutta–Fehlberg 7(8). The coefficients of this 7th order formula
with 8th order error estimate, which is of frequent use in high precision computa-
tions, are reproduced in [6, p. 180]. The grade sequence is (1, 2, 3, 3, 4, 4, 5, 5, 5, 6,
6, 7, 7).

4 Reducing the number of commutators.

4.1 General considerations.

Different strategies have been explored in the literature to reduce the total
number of commutators in numerical Lie group solvers. In particular, the theory
of graded free Lie algebras allows to obtain an upper bound on the number
of linearly independent terms required for a method of order p, and thus also
on the commutators involved [10]. More specifically, let us consider a free Lie
algebra LQ generated by the set Q = {Q1, Q2, . . . , Qn}. We introduce a grading
function w on LQ as follows. We assign a grade to the generators, w(Ql) = ql,
l = 1, . . . , n, with ql ≤ ql+1, and then the grade is propagated in the Hall basis
H of LQ by additivity: the grade of an element H ∈ H of the form H = [H1, H2]
is w(H) = w(H1) + w(H2). Then H splits into a disjoint union of sets Hj of
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grade j: H =
⋃∞

j=1 Hj and LQ is a graded free Lie algebra [10]. Observe that,
in the context of RKMK methods, Ql = O(hql) and the internal stages ui and
v can be expressed as linear combinations of elements of the Hall basis H. The
number of linearly independent terms in a scheme of order p can be determined
simply by computing the dimension of the subspaces span{Hj}, j = 1, . . . , p.
In [2] an optimization technique has been proposed that in certain cases allows

to write an element of a graded free Lie algebra with the minimum number of
commutators. This procedure has been applied to numerical integrators based
on the Magnus expansion, obtaining schemes of order 4, 6 and 8 involving 1, 3
and 6 commutators respectively (the minimum number in each case).
The general problem can be formulated in the following terms: given an

element Z ∈ LQ of the form

Z =
s∑

i=1

νi∑
j=1

αi,jHi,j ,

where Hi,j denotes the jth element of the set Hi, obtain an approximate expres-
sion for Z up to grade s involving the minimum number of commutators.
The procedure to solve this problem commences by taking the most general

commutator one can build with elements of the set {Q1, Q2, . . . , Qn} such that
w(Qn) = s,

d1 =

[
n∑

i=1

a1,iQi,
n∑

j=1

b1,jQj

]
.

For explicit RKMK methods, in general n ≥ s. Next we write the most general
commutator one can form with {Q1, Q2, . . . , Qn, d1},

d2 =

[
n∑

i=1

a2,iQi + a2,n+1d1,

n∑
j=1

b2,jQj + b2,n+1d1

]

and the action is repeated recursively r times to reproduce the term [Q1, [Q1, . . .
[Q1, Q2]]], i.e., the term Hs,j of Hs which involves the greatest number of nested
commutators (if the corresponding coefficient αs,j �= 0). The problem is reduced
then to determine the coefficients ai,j , bi,j, αi, γi such that

Z =
n∑

i=1

αiQi +
r∑

i=1

γidi +Θ(s+ 1),

where Θ(s+ 1) represents terms in LQ of grade s+ 1 or higher. This results in
a nonlinear system of algebraic equations in the coefficients with no guarantee
to have real solutions. If there are, then the minimum number of commutators
required is precisely r. Otherwise, additional commutators dr+1, etc. must be
included in Z. In any case the number of variables to be determined grows
tremendously with the grade, so that some simplifying assumptions must be
introduced. In this respect it is useful to take into account whatever symmetry
properties the element Z has [2].
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For the particular class of explicit RKMK schemes with s stages one has a
sequence of elements Zi, i = 1, . . . , s + 1 in LQ (the internal stages ui and v)
to approximate with the minimum number of commutators and, in addition,
the evaluation of Z1, . . . , Zi−1 is required for computing Zi. This imposes se-
vere restrictions on the optimization procedure so that, in general, the optimal
number of commutators is much higher than the minimum number required to
approximate each individual term in the algorithm.

4.2 Optimization of DVERK.

As an illustration of the above procedure we next consider Verner’s method
of order 6(5) (DVERK) and try to minimize the number of commutators in the
corresponding RKMK scheme. When the transformation (1.4) with matrix (3.8)
is applied to the internal stages ui =

∑i−1
j=1 aij dexpinv(uj, kj , 5), i = 1, . . . , 8

and v =
∑8

i=1 bi dexpinv(ui, ki, 6) in Algorithm 1.1, we obtain (up to order
O(h5) in ui and O(h6) in v)

u1 = 0,

u2 =
1
6
Q1,

u3 =
4
15

Q1 +
16
75

Q2 −
4
225

[1, 2] +
1
2025

[1, 1, 2],

u4 =
2
3
Q1 +

4
3
Q2 +

5
2
Q3 −

2
45
[1, 2]− 1

3
[1, 3]− 67

4050
[1, 1, 2] +

+
2
135

[1, 1, 3] +
13
8100

[1, 1, 1, 2]− 4
15
[2, 3]− 88

3375
[2, 1, 2],

u5 =
5
6
Q1 +

25
12

Q2 −
425
64

Q3 +
85
96

Q4 −
31
48
[1, 2] +

255
128

[1, 3]−

− 85
288

[1, 4] +
409
4320

[1, 1, 2]− 119
384

[1, 1, 3] +
85
2592

[1, 1, 4]−

− 731
77760

[1, 1, 1, 2] +
493
96
[2, 3]− 85

144
[2, 4] +

493
4050

[2, 1, 2],

u6 = Q1 + 3Q2 +
55
9
Q3 +

11
36

Q4 +
88
255

Q5 −
17
90
[1, 2]− 319

144
[1, 3]−

− 997
8100

[1, 1, 2]− 22
153

[1, 5] +
23683
38880

[1, 1, 3]− 187
3888

[1, 1, 4] +

+
1837
48600

[1, 1, 1, 2]− 32351
4320

[2, 3] +
143
432

[2, 4]− 42031
81000

[2, 1, 2],

u7 =
1
15

Q1 +
1
75

Q2 −
5
4
Q3 +

9
100

Q4 +
2484
10625

Q5 −
29
450

[1, 2]−

− 557
600

[1, 3] +
39
1000

[1, 4]− 10271
202500

[1, 1, 2]− 207
2125

[1, 5] +

+
89957
216000

[1, 1, 3]− 443
12000

[1, 1, 4] +
36977
1620000

[1, 1, 1, 2]−

− 121999
24000

[2, 3] +
1209
4000

[2, 4]− 408037
1350000

[2, 1, 2],
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u8 = Q1+3Q2+
1375
258

Q3+
187
516

Q4+
220
731

Q5+
3850
26703

Q7 −
59
258

[1, 2]−

− 935
516

[1, 3]− 11
344

[1, 4]− 2377
23220

[1, 1, 2]− 1881
18275

[1, 5] +

+
30107
74304

[1, 1, 3]− 407
12384

[1, 1, 4] +
75823
2786400

[1, 1, 1, 2]−

− 46981
8256

[2, 3] +
275
1376

[2, 4]− 198583
464400

[2, 1, 2],

v = Q1 + 3Q2 +
3
4
Q4 +

12
85

Q5 +
3
44

Q6 +
43
616

Q8 −
1
2
[1, 2] +

+
25
96
[1, 3]− 11

48
[1, 4]− 4

85
[1, 5]− 3

88
[1, 6]− 5

192
[1, 1, 3] +

+
1
96
[1, 1, 4]+

1
120

[1, 1, 1, 2]+
15
16
[2, 3]− 3

8
[2, 4]− 3

20
[2, 1, 2] +

+
25
2484

[1, 7] +
1
425

[1, 1, 5] +
1
176

[1, 1, 6]− 5
1152

[1, 1, 1, 3] +

+
11
2880

[1, 1, 1, 4] +
1
20
[1, 2, 1, 2]− 36

425
[2, 5]− 9

88
[2, 6]−

− 5
64
[2, 1, 3]− 1

160
[2, 1, 4]− 15

64
[3, 4] +

5
32
[3, 1, 2]− 1

10
[4, 1, 2],

where [i1, i2, . . . , il−1, il] stands for the nested commutator [Qi1 , [Qi2 , . . . [Qil−1 ,
Qil
]]]. On the other hand, the expression of v for the embedded method reads

v̂ = Q1 + 3Q2 +
3
4
Q4 +

12
85

Q5 +
3
44

Q6 −
1
2
[1, 2] +

25
96
[1, 3]−

− 11
48
[1, 4]− 4

85
[1, 5]− 3

88
[1, 6]− 5

192
[1, 1, 3] +

1
96
[1, 1, 4] +

+
1
120

[1, 1, 1, 2]+
15
16
[2, 3]− 3

8
[2, 4]− 3

20
[2, 1, 2]+

1
765

[1, 1, 5] +

+
1
176

[1, 1, 6] +
1

20736
[1, 1, 1, 3] +

37
10368

[1, 1, 1, 4] +

+
229
972000

[1, 1, 1, 1, 2] +
127
2700

[1, 2, 1, 2]− 13
170

[2, 5]− 9
88
[2, 6]−

− 461
3456

[2, 1, 3]− 5
1728

[2, 1, 4]− 95
384

[3, 4] +
299
1728

[3, 1, 2]−

− 217
2160

[4, 1, 2].

We observe that u3 requires the evaluation of the commutators

d1 = [Q1, Q2], d2 = [Q1, d1](4.1)

so that

u3 =
4
15

Q1 +
16
75

Q2 −
4
225

d1 +
1
2025

d2.(4.2)
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In u4 we have the commutators [Q1, Q3] and [Q1, [Q1, Q3]] which cannot be
generated from u3. Thus we introduce

d3 = [Q1, Q3](4.3)

and the new commutator

d4 =

[
3∑

i=1

a4,iQi +
6∑

i=4

a4,idi−3,

3∑
j=1

b4,jQj +
6∑

j=4

b4,jdj−3

]
(4.4)

to reproduce the remaining terms. In fact, most of the coefficients in (4.4) are
redundant: with

d4 =
[
Q1 +Q2,−

4
15

Q3 −
88
3375

d1 +
13
8100

d2 +
2
135

d3

]
(4.5)

we have

u4 =
2
3
Q1 +

4
3
Q2 +

5
2
Q3 −

2
45

d1 +
193
20250

d2 −
1
15

d3 + d4.(4.6)

In the same way, at least two additional commutators are needed to write u5

because [Q1, Q4] and [Q1, [Q1, Q4]] cannot be generated as a linear combination
of d1, . . . , d4. Thus we introduce

d5 = [Q1, Q4](4.7)

and a new commutator d6 to reproduce the terms [Q1, [Q1, Q3]], [Q1, [Q1, Q4]],
[Q2, Q3], [Q2, Q4], [Q1, [Q1, [Q1, Q2]]] and [Q2, [Q1, Q2]] in u5. This can be
achieved if

d6 = [Q1 +Q2, b6,3Q3 + b6,4Q4 + b6,5d1 + b6,6d2 + b6,7d3 + b6,9d5](4.8)

with coefficients

b6,3 =
493
96

, b6,4 = − 85
144

, b6,5 =
493
4050

, b6,6 = − 731
77760

, b6,7 = −119
384

,

b6,9 =
85
2592

.

Finally

u5 =
5
6
Q1+

25
12

Q2−
425
64

Q3+
85
96

Q4−
31
48

d1−
1753
64800

d2−
1207
384

d3+
85
288

d5+d6.

(4.9)
In the expression of u6 one has the commutator [Q1, Q5], which cannot be
expressed as a linear combination of d1, . . . , d6. Thus we need to include at
least one additional commutator d7. With

d7 =
[
Q1 +Q2,−

32351
4320

Q3 +
143
432

Q4 −
22
153

Q5 −
42031
81000

d1 +

+
1837
48600

d2 +
23683
38880

d3 −
187
3888

d5

]
(4.10)
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then

u6 = Q1 + 3Q2 +
55
9
Q3 +

11
36

Q4 +
88
255

Q5 −
17
90

d1 +
10687
27000

d2 +

+
22781
4320

d3 −
143
432

d5 + d7.(4.11)

The expressions of u7 and u8 do not contain additional commutators so that,
in principle, one could express them as linear combinations of d1, . . . , d7. This
turns out to be the case for u7,

u7 =
1
15

Q1 +
1
75

Q2 −
5
4
Q3 +

9
100

Q4 +
2484
10625

Q5 −
29
450

d1 +

+
1018691
4050000

d2 +
99719
24000

d3 −
2507
1000

d4 −
1053
4000

d5 −
1404
10625

d6 +

+
1863
2750

d7(4.12)

but not for u8, so that one additional commutator must be introduced:

d8 =
[
Q1 +Q2,−

46981
8256

Q3 +
275
1376

Q4 −
1881
18275

Q5 −
198583
464400

d1 +

+
75823
2786400

d2 +
30107
74304

d3 −
407
12384

d5

]
(4.13)

so that

u8 = Q1 + 3Q2 +
1375
258

Q3 +
187
516

Q4 +
220
731

Q5 +
3850
26703

Q7 −
59
258

d1 +

+
151043
464400

d2 +
32021
8256

d3 −
319
1376

d5 + d8.(4.14)

Finally, in v one has the new commutators [Q1, Q6] and [Q1, [Q1, Q6]] so that
at least two additional commutators are required to reproduce it up to order
O(h6). Let us introduce

d9 = [Q1, Q9](4.15)

and, in order to avoid redundancies,

d10 =

[
4∑

i=1

a10,iQi,

7∑
j=3

b10,jQj +
16∑

j=8

b10,jdj−7

]
.(4.16)

Then

v = Q1 + 3Q2 +
3
4
Q4 +

12
85

Q5 +
3
44

Q6 +
43
616

Q8 +
10∑

i=1

γidi.(4.17)

After expanding d10, equating terms with v and solving the corresponding equa-
tions we get
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a10,1 = 1
1000 , a10,2 = 105964609689

266416480000 ,

a10,3 = − 864346110425653578282776169
615375255075268247296000 , a10,4 = 341966417238630384261243993

1538438137688170618240000 ,

b10,3 = 233929567983791656250
1247610945171345852969 , b10,4 = − 36812199380273802500

1247610945171345852969 ,

b10,5 = − 42626636800
200155373857 , b10,6 = − 3027460000

11773845521 ,

b10,7 = 6250
621 , b10,8 = − 850304064427933000

1247610945171345852969 ,

b10,9 = − 324431382151464725
7189486838179272 , b10,10 = − 2566642496229085375

3195327483635232 ,

b10,11 = 406587275
316624 , b10,12 = 82453548663197675

1597663741817616 ,

b10,13 = 4212930
30583 , b10,14 = 577797525

870716 ,

b10,15 = − 413547125
435358 , b10,16 = 125

22 ,

γ1 = − 1
2 , γ2 = 84495317249601260110864639

564319382719903156214938080 ,

γ3 = − 272089389229241879933054635
451455506175922524971950464 , γ4 = 29817608309216341

14911528256964416 ,

γ5 = 30276197407357512902600687
225727753087961262485975232 , γ6 = 2782759594196403

3600795175687430 ,

γ7 = 1544992960649931
41006702706652144 , γ8 = 8252596669788325

20503351353326072 ,

γ9 = − 35055120083
1036098405848 , γ10 = 1.

(4.18)
On the other hand, to reproduce v̂ we must introduce one additional commutator
d11 similar to d10:

d11 =

[
4∑

i=1

a11,iQi,
7∑

j=3

b11,jQj +
16∑

j=8

b11,jdj−7

]
.(4.19)

Then

v̂ = Q1 + 3Q2 +
3
4
Q4 +

12
85

Q5 +
3
44

Q6 +
9∑

i=1

γ̂idi + γ̂11d11(4.20)

with

a11,1 = 1
10000 , a11,2 = 182530798193

4575730800000 ,

a11,3 = − 68659798432120392143565920855953
423899875411478618541350400000 , a11,4 = 216159791919309770355211486373

8477997508229572370827008000 ,

b11,3 = 7590543686660318689031250
4031416566965816739895129 , b11,4 = − 1188697609320162319312500

4031416566965816739895129 ,

b11,5 = − 5948450040000
3103023569281 , b11,6 = − 5147697150000

2007838780123 ,

b11,7 = 0, b11,8 = − 23863076643984556185000
4031416566965816739895129 ,

b11,9 = − 49378501924616204885
111459146362187976 , b11,10 = − 1171104867204907392125

148612195149583968 ,

b11,11 = 36891785375
2849616 , b11,12 = 37582182892976202625

74306097574791984 ,

b11,13 = 131169950
91749 , b11,14 = 6127951625

870716 ,

b11,15 = − 13007096875
1306074 , b11,16 = 625

11

(4.21)
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and

γ̂1 = − 1
2 , γ̂2 = 2482673240896563598147417653

16577184923363438434448770448 ,

γ̂3 = − 119785970219681956126484569385
198926219080361261213385245376 , γ̂4 = 2543028894134407003

1271459891835329504 ,

γ̂5 = 13338062312219965746250323937
99463109540180630606692622688 , γ̂6 = 237303810989198421

307028667062508545 ,

γ̂7 = 134172361749673629
3496514702547156136 , γ̂8 = 702333383164435955

1748257351273578068 ,

γ̂9 = − 543474236859
16062710240984 , γ̂11 = 1.

Thus the RKMK method based on DVERK is formulated in terms of only 10
commutators. The final algorithm in its optimized form reads

Algorithm 4.1.

for i = 1 : 8 do
ui given by the optimized expressions
ki = hf(exp(ui) · y0)
Qi =

∑i
j=1 Vi,jkj, with V given by (3.8)

end do
v given by (4.17)
y1 = exp(v) · y0

v̂ given by (4.20)
ŷ1 = exp(v̂) · y0

4.3 Optimized RKMK integration schemes.

The same procedure can be carried out for the explicit RKMK methods based
on the Runge–Kutta schemes mentioned in Section 3.3. The complete optimized
expressions of the corresponding internal stages ui and v are collected in [4].
Next we briefly describe the results obtained.

5th-order

The schemes RKF45 and DOPRI5(4) (6 stages) are expressed in terms of 5
commutators (6 with the embedded pair), this being the minimum number. A
complete treatment of the optimization procedure of DOPRI5(4) can be found
in [1].

6th-order

The 6th-order Butcher method also needs 10 commutators. Here, as is the case
with DVERK, one additional commutator is necessary to write u7 (it cannot be
expressed as a linear combination of d1, . . . , d7).

7th-order

The optimization process of the 7th-order methods Butcher7 and RKF7(8) con-
sidered in Section 3.3 is technically much more difficult for several reasons: they
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Table 5.1: Number of commutators involved in some RKMK
methods. Columns indicate order (p), number of stages (s), the
number of commutators as presented originally in [9] (Orig),
the number indicated by the free Lie algebra approach of [10]
(FLA), and the number obtained by the approach of this paper
(New). The numbers in parenthesis refer to the embedded pair
(whenever it differs)

Method p s Orig FLA New

RKF45 5 6 20 11 5 (6)

DOPRI5(4) 5 6 (7) 20 (24) 12 5 (6)

DVERK 6 8 28 26 10 (11)

Butcher6 6 7 24 26 10

Butcher7 7 9 48 60 21

RKF7 7 11 60 64 23

involve more stages (9 and 11, respectively), the computations for ui have to be
carried out up to order O(h6) and v up to order O(h7), and the dimensions of
the homogeneous subspaces of the graded free Lie algebra grow very rapidly.
We can formulate Butcher7 with a total of 21 commutators, fifteen of them

for the internal stages (the absolute minimum is 13, but no real solutions were
obtained). This, although not optimal in a strict sense, is nevertheless a con-
siderable improvement with respect to the original implementation in terms of
the ki.
For RKF7(8), 17 commutators are required to write ui up to order O(h6)

instead of 15, the absolute minimum in this case. The 64 nonlinear equations
involved in v can be solved quite easily by introducing 6 additional commutators.
Thus the 7th-order method (which is using only the first 11 stages of RKF78)
requires a total of 23 commutators.

5 Concluding remarks.

We have presented new versions of Lie group integrators of Runge–Kutta–
Munthe-Kaas type which use a lower number of commutators per stage than
what can be found in the literature. We have summarized the results in Table 5.1.
Notice that the numbers given for the new methods are not in all cases proved

to be optimal, but they represent a substantial reduction compared to what has
been previously known.
We believe that there is reason to be cautious in interpreting these numbers too

rigidly. For instance, it is not known to which extent the reduction of complexity
will affect the quality of the numerical approximation. Also, one should keep in
mind that in some cases, the savings obtained by reducing the number of com-
mutators could be insignificant compared for instance to the cost of calculating
exponentials. Nevertheless, we still think that there are important problems for
which the obtained reduced commutator counts may substantially improve the
efficiency of the Lie group integrators presented here.



742 F. CASAS AND B. OWREN

Here we have included, as an illustration of the procedure, the optimized
expressions for the 6th-order scheme based on DVERK. The coefficients for the
other methods analyzed in this work can be found in the technical report [4] and
can be obtained in electronic format as well from the authors upon request.
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