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Abstract

In this paper we present a technique for reducing to a minimum the number of commutators required in the practical
implementation of Lie group methods for integrating numerically matrix differential equations. This technique is subsequently
applied to the linear and nonlinear case for constructing new geometric integrators, optimal with respect to the number of
commutators.
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1. Introduction with A : [f, o[ xG — g sufficiently smooth to en-

sure: (a) existence and uniqueness of solution and (b)

The aim of geometric integration is to build
numerical methods for discretizing differential equa-
tions whilst preserving their known qualitative fea-

the validity of discretization methods. Hegadenotes
the corresponding Lie algebra (the tangent space at
the identity ofG). Eq. (1)appears in relevant physical

tures, such as invariant quantities and the geometric fields such as rigid mechanicg & SO(r)), Hamil-

structure. It is widely recognized that this class of
numerical algorithms (the so-callegkometric inte-
grators) provides a better description of the original

tonian dynamics§ = Sp(n)), Quantum Mechanics
(G = SU(n)), etc. Even more, the analysis of generic
differential equations defined in homogeneous spaces

system than standard methods, both with respect tocan be reduced to the Lie growgguation (1) [20]

the preservation of invariants and in the accumulation and thus, provided a discretization is doneGinthe

of numerical errors along the evoluti¢gh]. By shar- structure of any homogeneous manifold acted upon by
ing geometric structure and invariants with the exact the groupg is also preserved. In other words, the Lie
solution, these methods provide numerical approxi- group solver can be extended to homogeneous spaces
mations which are more accurate and more stable for [18]. It is therefore of the greatest interest to design
a significant class of differential equations, such as numerical schemes which preserve the most salient

those evolving on Lie groups.

Itis not difficult to show that every differential equa-
tion evolving on a matrix Lie groug can be written
in the form

Y' =A@ Y)Y, Y(to) =Yoe G 1)
* Corresponding author.
E-mail addresses: sblanes@mat.uji.es (S. Blanes),

casas@mat.uji.es (F. Casas).

qualitative features of the system and at the same time
are computationally as efficient as possible.

In this paper new Lie group solvers f&q. (1)are
presented which are optimal with respect to the num-
ber of commutators required. This reduction in the
computational cost of the algorithms is achieved by
analyzing the Lie algebraic structure of the problem.
Both linear and nonlinear differential equations are
considered.
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2. Lie group solversfor linear and nonlinear
differential equations
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underlying RK method and the resulting scheme wiill
get this same order, while evolving on the Lie group
G. In any case, a significant number of commutators

Although there are several exceptions, the technique must be evaluated if; is computed with this proce-

used by Lie group methods faéqg. (1) is to lift Y(7)
from G to the underlying Lie algebrg then formulate

and solve there an associated differential equation andy’ = A(¢)Y,

finally map the solution back tg. In this way the dis-

cretization procedure operates in a linear space rather

than in the Lie group. The lift of the flow(s) from

the Lie groupg to the Lie algebra is usually done by
the exponential map, although the Cayley transform
can also be used with quadratic Lie groyp$,14].

To be more specific, we write
Y(1) = exp(A())Yo, A(®) € g, )

so thatEq. (1)is transformed to the Lie algebra equa-
tion [12]

A =d exp;1 A(t, e Yop), A(tg) =0, (3)

where

dexp,'C = Z(:) J—I’ ad, C. (4)
J:

Here B; are Bernoulli numbergl] and the adjoint
operator ag is defined by iterated commutators

afjc=c, ad,c=[A,ad;’C], j>1

The Lie algebraicequation (3)can be solved by an
explicit classical Runge—Kutta (RK) method. Then a
Runge—Kutta—Munthe-Kaas (RKMK) scheme is ob-
tained[18]. The following algorithm describes a sin-
gle step fromvY, € G, the numerical approximation to
Yt =1t,),t0Y,,1 € G for an RKMK method based
on ans-stage RK integration scheme:

s
Ak=Zak,1F1, Ak = hA(t, + ckh, %4Y,)
=1
F.=d epoi(Ak), for k=1,...,s,
(5)

S
A= Zb;Fl, Ypi1 = exp(A)Y,.
=1

In this algorithm a practical means for computing
Fr=d epokl(Ak) has to be provided. In general, the
expansion4) may be truncated to the orderof the

dure.
When the Lie grougquation (1)s linear, i.e.,
Y(10) = Yo € G, (6)
a specially well suited approach for obtaining approx-
imate solutions is to make use of the so-callédg-

nus expansion [16]. In essence, the idea is to write the
flow as in(2)

Y(1) = exp(2(0)Yo, $£2@1) € g,
but now £2(¢) is expressed as an infinite series

o
Q) =) ).

k=1
whose terms are linear combinations of integrals and
nested commutators involving the matrxat different
times. Thus, the first terms read

t
£21(0) =/ A(ry) drg,
1

0

1 t 11
92(I)=§/ dtl/ drof[Ay, A2],
10 10

1 t 1
23() = 5 / drp / drp
0] fo

7]
X / dr3([A1, [A2, A3]] + [As, [A2, Ad]]),
o

whereA; = A(t;). Explicit formulae for$2; of all or-
ders have been given ii10] by using graph theory,
whereas in13] a recursive procedure for the gener-
ation of £2; was proposed, which allows to establish
absolute convergence fovalues which satisfy2]

1
/ [A(s)|| ds < & = 1.086869
fo

The first analysis of the Magnus expansion as a numer-
ical procedure for integrating matrix differential equa-
tions in Lie groups was given by Iserles and Ngrsett
[10]. They showed how?;, k > 1, can be approxi-
mated in terms of nested commutatorsAdgf;, ) at dif-
ferent nodes;, € [1, 1o + ], h being the time step,

D Bivig i Al [Alty), ...

1<iq,ip,...,ix<N

[A(t, ), A@)I -

Qe ~ h*

()
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Then, in terms of matrix evaluations, the cost of all notion of an FLA[19,22] This, intuitively, is a Lie
the multivariate quadratures needed to approximate thealgebra with no specific assumptions about its struc-
Magnus expansion to a given order is the same as theture, except for what is common to all Lie algebras. In

cost of the single quadrature formula f@&;. Never-
theless, the coefficients, ;,....;, in (7) have to satisfy
an extraordinarily large system of linear equations for
k > 3 and consequently the number of commutators
required grows rapidly with the order. On the other
hand, time-symmetry of the expansion allows to con-
clude that for achieving arzh (n > 1) order integra-
tion method only terms up t®,,_» in the 2 series
have to be considerd@].

Generally speaking, there are two critical factors
in the computational cost of the Lie group solvers
we are considering here. First, the evaluation of the
exponential map from the Lie algebgainto the Lie
groupg. Second, the computation of the commutators
involved in the algorithms.

Concerning the first aspect, several approximation

other words, it is a Lie algebra whose terms are gen-
erated by commutators of pairwise elements and such
that the only reducing mechanisms are skew-symmetry
and the Jacobi identity. Thus, the results obtained in
this setting can be applied afterwards in any concrete
Lie algebra.

Let us consider an FLACp generated by the set
B = {b1, by, ..., bs}. We introduce a grading function
w on Lp simply by assigning a grade to the gener-
ators,w(b;)) = I, = 1,...,s, and then propagating
the grades throughout g by additivity, w([u, v]) =
w(u) +w(v). In the context of Lie group solvers, usu-
ally b, = O(h') so that, intuitively, the grade provides
information about the size of each term Ap. It is
also useful to consider ik g a basis, in the sense of
linear algebra. For example, fable 1we give a ba-

schemes have been designed such that the outcome liesis of nested commutators (including elements up to

in the correct Lie grouy and differs from the exact
solution in a way that is consistent with the order of
integration. For more details, the reader is referred to
[6,7,12]

With respect to the second factor, different strate-

gies have been analyzed to reduce the total number of , _

commutators. In particular, the theory of graded free
Lie algebras (FLAS) allows to obtain an upper bound
on the number of linearly independent terms required
for a method of ordex, in particular on the commuta-
tors involved19]. The available theory, however, does
not fix theleast number of commutators required for
a method of a given order.

In the next section we present a systematic proce-
dure for reducing to a minimum the number of com-
mutators required by a generic Lie group solver. We
should remark that, foN x N matrices, &% opera-
tions are needed for evaluating one commutator. Thus,
reducing to a minimum this number of commutators
is of the greatest importance for an efficient study
of far-reaching physical problems with this class of
algorithms[9,15,23]

3. Optimization technique in a graded FLA

In the general analysis of Lie group methods for
integrating differential equations it is quite useful the

grade 6) whemB = {b1, b2, b3}. Then we can formu-
late the following general question.

Problem 1. Given an elemenk € L of the form

2s Vi
2D wijXij.

i=1 j=1

8)

whereX; ; denotes thgth element of the basis of the
FLA of gradei, obtain an approximate expression for
Z up to grade 2 involving the minimum number of
commutators.

The procedure to solve this problem is in princi-
ple very simple, but its technical complexity increases

Table 1

Basis of the Lie algebralp, generated byB = {b1, by, b3}
up to grade 6.1 j, ...,k [] represents the nested commutator
(6, [b), [ .. [bi, b1, - 1]

n Vn Lp

1 1 X11=01

2 1 Xo1=102

3 2 X31 = b3, X320 = [12]

4 2 Xa1=[13], X42 =[112]

5 4 X51 = [113], X5 = [1112],
Xs3 = [23], X5.4 = [212]

6 5 Xe,1 =[1113], X2 =[11112]

Xe.3 =[123], Xe.4 = [1212] X655 = [312]
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dramatically withs. First, we take the most general dy =[x11b1+ x13b3+ -,

commutator we can build witkb1, .. ., by} Viobo + yrabs+---1€ S,

> > do=[x21b1+ x23b3 + - - + x2,5,d1,
dy= | x1ibi. Yy yijbj | ’

vy =) y2,1b1+ y23b3+ -+ + y2,5,d1] € R,

Next, we write the most general element one can form 93 = [¥3.161 + x33bs + - + x3d1,
with {b1, ..., b, d1}, v3,2b2 + y3.4ba+ - - + y3,,d2] € S,

s s and so on. The most general combination which re-
do = ng,ib,’ + x2,541d1, Zyz,jbj—i—yz,sﬂdl ) producesZ € S with the minimum number of com-

i=1 j=1 mutators is then

and we repeat the procedure recursively-22 times Z=oa1b1 +azbs+ -+ p1di+ Padz+ - -- € S.
to reproduce the term

[ba, b1, ..., b1, by Example 1. Let us illustrate this technique by obtain-
i ing an approximation oZ € S up to grade 6 with
three generatorfhs, b2, b3}. FromTable 1
if its corresponding coefficient; ; # 0. The prob-

lem is reduced then to determine the coefficients Z = a1b1 + a2bz + a3[12] + 24[23] + as[212]

Xi j» Ym.n» @i, Bj such that +ag[113] + a7[1112] ©)
K 25—2
Observe that, due to the symmetry, the tefgp does
Z= Zaib" + Z Pidi + 6(2s + 1), not appear inZ and thus, in principle, three commu-
i=1 i=1 tators (instead of four) will be neededi§ # 0. If we
where ©(k) represents terms i of gradek or consider, forinstance; = [12] € S, r1 = [b1, x1b3+

higher. Some remarks are in order. First, a nonlinear xos1] € R, s2 = [x3b1 + x4b3 + x551, b2 +7r1] € S
system of algebraic equationsi);, y, ., «;, B; has and chooser; = ag/a3, x2 = a7/a3, x3 = a3, X4 =
to be solved in the process, and there is no guarantee at-ay, xs = —as (if az # 0) thenZ = a1by + azbz +
all that this system has real solutions. In this case, new s, + @(7). If a3 = 0 we can choosey, r1 andss in a
commutatorg/; have to be introduced. Second, if there slightly different way.

are real solutions then the minimum number of com-
mutators required is precisely 2 2. Third, although
some of the coefficients are redundant, the number of
variables to be determined increases rapidly with the
grade and so does the difficulty of the problgth It

is, therefore, of primary interest to take into account
whatever symmetry properties it has. In particular, if
azi; = 0in (8), we can splitLg asLp = S®R
with

4. Application to linear differential equations
4.1. Homogeneous equations

The Lie groupequation (6)may be considered to
be associated with the linear homogeneous system of
the Nth order

K] Vi ’
S=1{Ue £B U = ZZ“Zi*l,jXZifl,j , y = A(t)y’ y(tO) =)o (10)
i=1 j=1 with y € RV, in the sense thap(r) = Y()yo is a
solution of (10) if Y(¢) satisfies(6) with the identity
matrix as initial condition.
A possible strategy to obtain a numerical inte-
grator from the Magnus expansion is to choase
andZ € S. Now distinct quadrature nodes & ¢1 < ¢ < -+ <

S Vi
R={Uelp:U= Zzazi,szi,j )
i=1 j=1
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Cs 1 symmetric with respect to 1/2, evaluate
Ar = Ao + ch), k = 1, ..., s, and substitute the
corresponding interpolating polynomial in the recur-
sive scheme for computingy. If the function values

=

A1, Ap, ..., A; are replaced by their linear combi-
nations b1, by, ..., by that solve the Vandermonde
system

K 1 Jj—1

Z(ck—§> bj=Ar, k=1,2....s (11)
j=1

thenb; = [A/(i — DN ACD 19+ (h/2)). We can con-
sider the graded FLA generated By= {b1, ..., by}
with grades 12, ..., s, respectively, write the Mag-
nus expansion in this algebra and finally ({4é) to
obtain the corresponding numerical method in terms
of Ay [12]. With this procedure it is possible to build
methods of order 2with only s symmetric colloca-
tion points. In particular, up to order 6 we obtain in
terms of{b1, b2, b3} [4]
2=b1+ b3z — 5[12] + 555[23] + 555[113]
—525[212] + 35[1112]+ O(h "),
i.e., an expression similar tq. (9)with

1 1
p=—w3={p = —05= 3y
1

a1=1,

_ 1 _ 1
6 = 360 a7 = 200

so that a sixth-order scheme f&g. (6) reads as fol-
lows fort, 11 = t, + h:

C1=[b1, b2], Co = [by, 2b3 + C4],

C3=[—20by — b3+ C1, bz — 55C2]. (12)

2 (h) = by + b3 + 555C3,

Y(tay1) ~ exp(2C¥(z,).

In terms of Gauss—Legendre collocation points
Ar=hA(t, + (3 — H(V/15)h),

A =hA(t, + 3h),

Az=hA(t, + (3 + §5(V15)h),

we have

bi=Az, b= i(V15 (43— A1),

b3=20(A3 — 24, + Ay), (13)

335

whereas if thed (r) matrix is known only at equispaced
points,A; = hA(t, + (ih/4)),i =0, ... , 4, then

b1 = 6lo(_7(Ao + Ag) + 28(A1 + A3) + 18A2),
by = Z(T(As — Ao) + 16(A3 — A1),

b3 = %(7(140 + Ag) — 4(A1+ A3) — 6A2). (14)

This method involves the minimum number of com-
mutators (three) and requires three or fdufr) matrix
evaluations per step. Higher orders can be treated in a
similar way. For instance, an eighth-order Magnus me-
thod has been obtained with only six commutafdis

4.2. Nonhomogeneous equations

As a matter of fact, the Magnus expansion can also
be applied to solve numerically the nonhomogeneous
problem

Yy =A@y+ g,

where g is a continuous vector on the time interval
which is not identically zero there. Our objective is
to design numerical integrators for the initial value
problem (15) based on algorithn§12) requiring the
lowest computational effort. The resulting numerical
scheme will preserve whatever qualitative properties
system(15) has.

As is well known, the exact solution ¢15)is given

by
t
/ Y (5)g(s) ds> .
1o

v =Y (yo +

If the flow Y(7) is computed with the (exact or trunca-
ted at a sufficiently high order) Magnus expansion, an
approximation tq16)at timet,, 11 = t, +h is given by

y(to) = yo, (15)

(16)

th+h
Y(tyy1) = €200 <y<tn>+ / F(s)ds>, (17)
In

where F(s) = e “®g(s). To obtain a sixth-order
method 2(t,41) is substituted by2!6l () as given by
(12) and the integral appearing {7) is computed up
to this order of approximation. If we use again equis-
paced points ind, t, + k], then

tath
I Ef F(s)ds
1,

n

h
%(7(&) + Fa) + 32(F1 + F3) + 12F») + O(h")
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with F; = F(t, + (ih/4)),i = 0,...,4 [1]. In more A possible solution is given by

detalil,
1

a1 =022 =0, 23 = 1o
1 —Q(t,
I=gsh(Tg(ty) + 7€ 2tV g(t,19) 24 = — 15, 025 = 553
2ty +h/%) 1 _
3ze 8(tn + 3h) and finally

+32e P3N/ D o(r, 4 %h) 5] .
+12 e—SZ(t,,+h/2)g(tn + %h)) + O(h7), Qh/4 = w1,h/4 + 1952C3 + Cans4,

. o w1h/a = h(ZogsAo + TamA1 — 15nA2
so that we only have to obtain approximations for 53 19
+ 111043 — TegpA4s)

exp(2(t, + h/4), exp(2(t, + h/2)), exp2@, +

3h/4), i.e., TOr2(ta+h/8), 2(ta+h/2), 2(t,+30/4)  Canja = h*[Ao. — 151+ TromsA4]- (18)
up to order 5 (because of the factorof the quadra- o o 5]

ture). We denote them bﬁﬁf’)‘p ‘QLS/]Z and 9[35}11/4, Proceeding in a similar way, we get fﬂ£l/2
respectively.

: . _ . 5
This can be done by inserting into the Magnus series -QE,/]Z = w1p/2 + 312C3 + Ca 2,
() = Y ;-1 £2: the Taylor expan3|on-oﬁ(t) around w12 = h(%AOJF g—éAl + %Az + 9—10A3—3—%0A4),
t=t,, A(t) = ) ,~oai(t — 1,)". In particular, we get 2 1 1
fort =1, + (h/4), Ca.nj2 = h“[Ao, —z5A2 + 353A4]. (19)

The last approximation needed is
21 = 1'ha() + 3l2h2a1 + %Zl’ﬁaz

+rah®as + shohaa, 9[35,;]/4 = w1304 + 7559C3 + Cazn/a.
2 = —7xgh3lao, a1l — 5 *ao, az] w1304 = h(ZAo+ T A1+ z5A2+ A3 — 535A4),
+h5(— gousdao, a3l — sramglats a2)), Ca3n/a = % Canjz — 9Can/4, (20)
23 = h°(gggazdaos [ao, a2l — szazsdar. lao, a1ll), so that only two additional commutators are required.
The numerical approximation, 1 to y(z,+1) is finally

_ 1 .5
94 - 737 28({1 [a07 [aOﬂ [aOv al]]] glven by
with error Q%) (25 = O(h’)). Now the expres-

7 {61 ()
sion of £21 is reproduced with the linear combination >+~ 50" 4 + €7

_ 4 . _olbl
wih/a = h ) g1 if X (yn + a5h(Tgo + 326 “iiagy
_offl ol
0= %5y  C11= 1hy +12e "h2go + 326 T94g3)), (21)
a12=—1 @13 = 130 @14 = — a3, whereg; = g(t, + (ih/4)) and 2181(n) is obtained

with Egs. (12) and (14)

The additional cost for solving the nonhomogene-
ous linear problem with this algorithm is, essentially,
two commutators and three matrix exponential-vector
products. No additional (r) matrix evaluations are
required. Although only a Newton—Cotes quadrature
formula has been considered here, it is clear that the
procedure can also be carried out with other quadra-
§22 + $23+ $24 ture rules, possibly involving matrix evaluations at
different steps along the integration. Algorith{@l)
could be useful for the class of problems analyzed in
+ h?[ Ao, a2aA1 + a5A4] + O(h®). [23].

whereas we try to get the relevant termsf 23, 24

with an expression of the forap1C1+a22C2+a23C3

(C; given by(12)) to minimize the computational ef-
fort. The corresponding system of equations does not
admit solutions, however, so that at least one addi-
tional commutator is required:

= a21C1 + a22C2 + a23C3
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5. Application to nonlinear differential
equationsin Lie groups

In this section we examine how the optimization
technique for reducing the number of commutators
can also be applied to the RKMK class of Lie group
solvers for the general equatioth = A(z, )Y.

By combining the stage value, computed by the
algorithm (5), linear combinationg);. of the highest
possible order in the step siZze(i.e., of the highest
possible grade) are obtained. In order to build an ex-
plicit method it is required tha; are related toA;
by a triangular matrix. Given a particular RK scheme,
optimal combinations are found {19] by using the
theory of order conditions for RK methods. As aresult,
new versions of the RKMK algorithrtb) based on the
classical fourth-order RK scheme and the fifth-order
method DOPRIS5 are constructed involving two and 12
commutators, respectively, instead of six and 24 in the
original implementatiorj19].

In particular, for the much used fifth-order method
DOPRI5, which has a total of seven stages (the sev-
enth stage is used only for error estimati¢), the
modified RKMK algorithm proposed ifi9] reads as
follows:

doi=1,7
u; given by(23)
A; =hAt, +cih, €17,)
Q; given by(22)

end do
Yiy1 = 7Y,
with
Q1=A1=0(h),  Q2=Az—A1=0(h?,

Q3=A3z— 34+ 341 = O(h®),
Q4= Asq—6A3+ 542 = O(hd),
05 =As — XA, + 53843 — 2541 = O(h*),

Q6= Ap — 334As + A4 — g5A3 = O(h™),
01= 7~ oo+ s — B
+ ??363?9‘43 1440A1 = O(h°), (22)
and
uy =0, uz = :-5LQ1,

uz=$ 01+ 02— 7361 01. Q2]+ 75501 01.[01. Q2.

337

us=201+80,+ 3203 4[01. 07]
— £101, 03] — 552:[01.[01. 02l

160 53000, _ 212
01+ 5102 + T551 Q3 — 75504
628

+ 2187[Ql, QZ] - %gg[Ql Q3]

+ 32t 01, Q4] — o3 01.[01, Q2]].
ue= Q01+ §Q2+ %%F’Qg— @Q4— %&Q5
+ 35[01. Q2] — 52301, Q3] + g5[ Q1. Q4]

—%%[Ql, [01, 02]],

us =

uz = Q1 + 30+ %205+ 4 Q4 + 582 05
+ 306 — 01, Qz] 2101, Q3]
—~ 4—8[Q1, Q4] — 55, Ql, 0s] — 7551 01. Q6]

— 2002, 03] — %02, Q4]
+ 225l 01. [ 01, O3]l + 132[ Q1. [Q1. Q4ll

— 3[02.101. 02]1 + 13401, [01.[01. Q2111
(23)

Here the coefficients; are[8] c1 = 0, c2 = 1/5, ¢3 =
3/10, ¢4 = 4/5,¢c5 = 8/9,¢6 = ¢7 = 1, so that, as
can easily be observed, at most 12 commutators are
involved. We should mention that if19] there are
some misprints in the coefficients o andug [21].

Although in this case the grade of the generators
w(Q;) # [, it is possible to generalize the strategy
developed inSection 3to this case and reduce the
number of commutators to a minimum. Next we show
that, in fact, this minimum number is 5.

We commence by observing thag requires the
evaluation of P1, Q2] and [Q1, [Q1, O2]]. In u4, we
have the commutator, Q3], which cannot be ob-
tained fromus. In a similar way, we need to incorpo-
rate the commutatordi, Q4], which appears ines,
whereas:g does not require additional commutators.
Thus, four commutators are needed to determine the
intermediate steps of the algorithm and the commu-
tator [Q1,[Q1,[Q1, Q2]]] (not previously available)
is present inu7. In consequence, 5 is the minimum
number required.

Let us introduce the commutators

C1=[01, Q2],
C3=[01, 03],

Co =[0Q1,C4],

Cs=[0Q1. Q4. (24)
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and, to reproduce7 up to order @k5),

Cs=[a101+ a202,b103+ b20Q4 + b30s5
+baQe + bsC1 + bsC2 + b7C3 + bgC4],

(25)
so that
ur=01+ 302+ 3203+ 304+ go40s
5
+é711Q6+ZViCi~ (26)

i=1

After expandingCs, equating terms with(23) and
solving the corresponding equations we get

ar=1, a» =1, blz_g—g, b2:_2§47
b3 =~ 13 ba = —1gp, bs = — 3.
b6=1—}14, b7=2_?.6’ b8=1_}14’
T M |

va=1s.  vs=1, 27)

and thus the optimal (with respect to the number of
commutators) fifth-order RKMK method based on
DOPRIS replacesy in (23) by (24)—(27)

6. Concluding remarks

In this work we have applied the optimization tech-
nigue in a graded FLA exposed 8ection 3to mini-
mize the number of commutators of Lie group solvers,
both for linear and nonlinear differential equations.

In the first case we have considered a numerical
scheme built from the Magnus expansion. It requires
the evaluation of just one matrix exponential and
therefore the optimization of only one element
of the form (8). The time-symmetry of the Magnus
expansion leads to further simplifications and the
optimization is maximal: a sixth-order scheme has
been constructed requiring the minimum number of
commutators.

For the more general equatiofi = A(z, Y)Y, the
existing Lie group solvers (the RKMK or some vari-
ants of the Crouch—Grossman class of algorithibid$)
involve the computation of the exponential of several
elements ofj at the intermediate stages. Accordingly,
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one has a sequence of elemefitsi = 1,...,1in Lp

to approximate with the minimum number of commu-
tators and, in addition, the evaluation®f, ..., Z;_1

is required for computing;. This can impose severe
restrictions on the optimization procedure. As a rule,
the higher the total number of elemeris involved

in the algorithm, the less significant is the reduction
in the number of commutators in the corresponding
optimal expressions.
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