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Abstract

In this paper new methods up to order four based on the Magnus expansion are proposed for the numer-
ical integration of the double-bracket equation. The Magnus series is constructed term-by-term by means of
recurrences and a bound on the convergence domain is also provided. The new integrators preserve the most
salient qualitative features of the )ow and are computationally more e4cient than other standard Lie-group
solvers, such as the Runge–Kutta-Munthe-Kaas class of algorithms.
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1. Introduction

The double-bracket equation

Y ′ = [[Y; N ]; Y ]; Y (0) = Y0 ∈Sym(n) (1)

was introduced in [6,10] to solve certain standard problems in applied mathematics, although similar
equations also appear in the formulation of physical theories such as micromagnetics [16]. Here N
and Y0 are constant matrices in Sym(n), the set of n×n symmetric real matrices and [A; B]=AB−BA
represents the usual commutator.
The double-bracket equation possesses a number of features that make it worth of analysis. First,

it is a particular example of an isospectral )ow [11]

Y ′ = [A(t; Y ); Y ]; Y (0) = Y0 ∈Sym(n); (2)
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where A∈ so(n), the Lie algebra of n× n real skew-symmetric matrices. Then there exists a matrix
function Q(t) evolving in the Lie group SO(n) such that

Y (t) = Q(t)Y0QT(t) (3)

and Y (t) has the same eigenvalues as Y0 for all t ¿ 0.
Second, given the potential function

 (Y ) = ‖Y + N‖F; (4)

where ‖ · ‖F is the Frobenius norm and Y ranges across all symmetric matrices orthogonally similar
to Y0, then it is shown [10] that ∇ (Y ) = [Y; [Y; N ]] and thus (1) is precisely the gradient system
Y ′ = −∇ (Y ). In this way, the double-bracket )ow acts to minimize  : a Ixed point Y∞ =
limt→∞ Y (t) is a local minimizer of  [6].
The double-bracket )ow can be used to diagonalize real symmetric matrices, and thus to Ind

their eigenvalues: Brocket [6] showed that if N is a real diagonal matrix and both Y0 and N have
unrepeated eigenvalues, then Y (t) tends exponentially to a diagonal matrix as t → +∞ and the
eigenvalues are sorted accordingly to the diagonal entries of N . Other applications include sorting
lists and solving certain linear programming problems [4].
Part of the )exibility and appeal of system (1) comes also from its dependence on the (arbitrary)

matrix N . In fact, diKerent choices of N correspond to special continuous realization processes. Thus,
if N = diag(1; 2; : : : ; n) and Y is tridiagonal, then (1) gives the Toda )ow on tridiagonal matrices
[4], whereas if it is chosen as the (nonconstant) matrix N =diag(Y ), the corresponding )ow may be
regarded as a continuous analogue of the iterates generated by the Jacobi method of diagonalization
[10].
While the double-bracket equation is relatively well understood from a theoretical point of view,

there remains the question of e4ciently computing their solutions. In [16] a numerical integration
algorithm which produces an isospectral solution is proposed. The scheme is aimed primarily to
evaluate the eigenvalues of Y0 rather than to approximate the solution of (1) and has order one
only.
On the other hand, several numerical methods, including families of Lie-group methods [12,21],

have been designed during the last few years for Eq. (2) preserving under discretization its most
important property, isospectrality [7]. In essence, the idea is to write the solution of (2) in the
representation (3) and, instead of computing Y directly, in each step an orthogonal matrix Qk+1 is
evaluated, so that Yk+1 =Qk+1YkQT

k+1. The matrix Qk+1 is chosen as the solution of the initial value
problem

Q′
k+1 = A(t; Qk+1YkQT

k+1)Qk+1; Qk+1(kh) = I

which is a particular example of a Lie-group )ow: the solution evolves in the Lie group SO(n) for
all t.
Recently, Iserles [11] has proposed to discretize Eq. (1) with a conveniently modiIed version of

the Magnus series. As it is well known, for the linear matrix diKerential equation

Y ′ = A(t)Y; Y (0) = Y0 (5)
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the Magnus series provides the solution in the form

Y (t) = e�(t)Y0; (6)

where � is expanded as an inInite linear combination of multiple integrals over iterated commutators
[14]

�(t) =�1 + �2 + �3 + · · ·=
∫ t

0
A1 dt1 +

1
2

∫ t

0
dt1

∫ t1

0
dt2 [A1; A2]

+
1
6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3([A1; [A2; A3]] + [A3; [A2; A1]]) + · · · (7)

with Ai ≡ A(ti). The Irst analysis of the Magnus expansion as a numerical procedure for integrating
(5) was given in [13], and subsequently several high e4cient integration schemes up to eighth order
have been obtained involving the minimum number of commutators [2,3].
In the approach developed in [11], the double-bracket )ow is represented in the form Y (t) =

exp(�(t))Y0 exp(−�(t)) and the Taylor expansion of � is constructed explicitly identifying individ-
ual expansion terms with certain rooted trees with bicolour leaves.
In this paper, by using techniques pioneered in [1], we construct � as an inInite series by

recurrences and obtain a bound for the radius of convergence of the expansion. Then, by truncating
appropriately the expansion we get approximate solutions up to order four with a much reduced
number of commutators. These are used as numerical integration schemes for the double-bracket
equation that preserve the main features of the exact solution and are computationally more e4cient
than another isospectral method for this particular problem.

2. The Magnus expansion for the double-bracket equation

2.1. Exponential representation

The point of departure is to consider representation (3) for Y (t) and write the orthogonal matrix
Q(t) as Q(t) = exp(�(t)), with � skew-symmetric. Then

Y (t) = e�(t)Y0e−�(t) = ead�Y0; t¿ 0; (8)

where ead� =
∑∞

m=0 (1=m!)ad
m
� and ad� is the adjoint operator in the Lie algebra [19]: ad0� A = A,

adm� A= [�; adm−1� A]. DiKerentiating (8) leads to

Y ′ =
d
dt
(e�(t))Y0e−�(t) + e�(t)Y0

d
dt
(e−�(t));

but [20]

d
dt
(eB(t)) = dexpB(t) (B

′(t))eB(t) ≡ eadB(t) − I
adB(t)

B′(t)eB(t);

so that

Y ′ = [dexp�(�
′); Y ] = [[Y; N ]; Y ]
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for all Y . This is satisIed if

dexp� �′ = [Y; N ]:

By inverting the dexp operator we arrive Inally at the corresponding ‘dexpinv equation’ for the
double-bracket )ow [11]

�′ = dexp−1� [ead�Y0; N ]; �(0) = 0

or, equivalently,

�′ =
∞∑
k=0

Bk

k!
adk� [e

ad�Y0; N ]; �(0) = 0; (9)

where Bk is the kth Bernoulli number. Thus, instead of solving (1), one has to solve nonlinear Eq.
(9) in the Lie algebra so(n).

2.2. Recurrence for the Magnus series

To clarify the discussion we introduce a parameter �¿ 0 multiplying N , so that Eq. (1) reads

Y ′ = [[Y; �N ]; Y ]

and accordingly

Y = e�(�; t)Y0e−�(�; t); (10)

where now

9�
9t = dexp−1� ([ead�Y0; �N ]); �(�; 0) = 0: (11)

We seek to expand �(�; t) in (10) as an inInite series in �

�(�; t) =
∞∑
n=1

�n�n(t); (12)

which is called, by analogy with the linear case, the Magnus series for this particular problem. Our
purpose is to determine the terms �n by a recursion procedure.

Theorem 1. The coe6cients �n(t) in expansion (12) are determined by the recursion formula

�1(t) = t[Y0; N ]

�n(t) =




n−1∑
j=1

1
j!

∑
k1+···+kj=n−1
k1¿1;:::; kj¿1

∫ t

0
ad�k1

· · · ad�kj
Y0 d�; N



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+
n−1∑
j=1

Bj

j!

∑
k1+···+kj=n−1
k1¿1;:::; kj¿1

∫ t

0
ad�k1

· · · ad�kj
([Y0; N ]) d�

+
n−1∑
j=2

∫ t

0
d�




j−1∑
l=1

Bl

l!

∑
k1+···+kl=j−1
k1¿1;:::; kl¿1

ad�k1
· · · ad�kl









n−j∑
p=1

1
p!

∑
k1+···+kp=n−j
k1¿1;:::; kp¿1

ad�k1
· · · ad�kp

Y0; N




 ; n¿ 2 (13)

Proof. If we denote by O(�k) any function of the form � �→ �kf(�), where f is analytic around
�= 0, it is clear that

9�
9t (�; t) =

n∑
j=1

�j�′
j(t) + O(�n+1)

and

ad�(�; t) = � ad�1 + �2 ad�2 + · · ·+ �n−1 ad�n−1 + O(�n):

In general,

adj�(�; t) =
n−1∑
l=j

�l
∑

k1+···+kj=l
k1¿1;:::; kj¿1

ad�k1
ad�k2

· · · ad�kj
+ O(�n):

On the other hand,

dexp−1� ([ead� Y0; �N ]) = �[ead� Y0; N ] + �
n−1∑
j=1

Bj

j!
adj� ([e

ad� Y0; N ]) + O(�n+1)

= �[Y0; N ] + �


n−1∑

j=1

1
j!
adj� Y0; N


+ �

n−1∑
j=1

Bj

j!
adj�([Y0; N ])

+�
n−2∑
j=1

Bj

j!
adj�

([
n−2∑
k=1

1
k!
adk� Y0; N

])
+ O(�n+1)

≡ �[Y0; N ] +A+B+ C + O(�n+1):
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Now we analyse each term in this expression. First of all

A= �


n−1∑

j=1

1
j!
adj� Y0; N


= �




n−1∑
j=1

1
j!

n−1∑
l=j

�l
∑

k1+···+kj=l
k1¿1;:::; kj¿1

ad�k1
· · · ad�kj

Y0; N




+O(�n+1) =




n∑
l=2

�l
l−1∑
j=1

1
j!

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

ad�k1
· · · ad�kj

Y0; N


+ O(�n+1):

By following a similar procedure we get

B= �
n−1∑
j=1

Bj

j!
adj�([Y0; N ]) =

n∑
l=2

�l
l−1∑
j=1

Bj

j!

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

ad�k1
· · · ad�kj

([Y0; N ]) + O(�n+1):

Finally, a straightforward calculation shows that

C= �
n−2∑
j=1

Bj

j!
adj�

([
n−2∑
l=1

1
l!
adl� Y0; N

])
=

n−1∑
s=2

�s
s−1∑
j=1

Bj

j!

∑
k1+···+kj=s−1
k1¿1;:::; kj¿1

ad�k1
· · · ad�kj




n−2∑
l=1

�l




l∑
p=1

1
p!

∑
k1+···+kp=l
k1¿1;:::; kp¿1

ad�k1
· · · ad�kp

Y0; N




+ O(�n+1)

=
n∑

j=3

�j
j−1∑
l=2




l−1∑
m=1

Bm

m!

∑
k1+···+km=l−1
k1¿1;:::; km¿1

ad�k1
· · · ad�km









j−l∑
p=1

1
p!

∑
r1+···+rp=j−l
r1¿1;:::;rp¿1

ad�r1
· · · ad�rp

Y0; N




+ O(�n+1):

If we substitute these expressions for A, B, C in (11) and identify the coe4cients of �l on both
sides we get

�′
1(t) = [Y0; N ];

�′
2(t) = [ad�1Y0; N ] + B1ad�1 ([Y0; N ])
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and, for l¿ 3,

�′
l(t) =




l−1∑
j=1

1
j!

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

ad�k1
· · · ad�kj

Y0; N




+
l−1∑
j=1

Bj

j!

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

ad�k1
· · · ad�kj

([Y0; N ])

+
l−1∑
j=2




j−1∑
s=1

Bs

s!

∑
k1+···+ks=j−1
k1¿1;:::; ks¿1

ad�k1
· · · ad�ks









l−j∑
p=1

1
p!

∑
r1+···+rp=l−j
r1¿1;:::;rp¿1

ad�r1
· · · ad�rp

Y0; N




 :

The initial condition �(�; 0) =
∑

l¿1 �l �l(0) = 0 for all �¿ 0 implies �l(0) = 0. This proves the
theorem.

2.3. Convergence of the Magnus series

Our next objective is to examine the convergence of the Magnus series
∑

i¿1 �i. To this end we
choose a norm in so(n) and a number �¿ 0 such that

‖[X; Y ]‖6 2� ‖X ‖ ‖Y‖ (14)

for all X , Y in so(n). Here � incorporates any additional information one has on the norm. Of course,
for a norm in so(n) satisfying ‖XY‖6 ‖X ‖ ‖Y‖ inequality (14) holds with �=1. The advantage of
considering (14) rests in the fact that for some norms � is actually less than 1. For instance, if ‖ · ‖
is the Frobenius norm then � = 1√

2
[11].

To proceed, let us consider the series

v(�; t) =
∞∑
j=1

�j‖�j(t)‖: (15)

Lemma 2. With a norm in so(n) satisfying (14) then

v(�; t)6
1
�
G−1(2�2�t‖N‖‖Y0‖); 06 t6 tc (16)
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holds, where

G(�) =
∫ �

0

e−2x

2 + x(1− cot x) dx (17)

and tc = sup{t¿ 0 : 2�2�t‖N‖‖Y0‖¡G(") ≡ #= 0:34438794 : : :}.

Proof. For a norm satisfying (14), repeated application of the triangle inequality to (13) leads for
l¿ 2 to

‖�l(t)‖6 2�‖N‖‖Y0‖
l−1∑
j=1

(2�)j
1
j!

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

∫ t

0
‖�k1‖ · · · ‖�kj‖ d�

+2�‖N‖‖Y0‖
l−1∑
j=1

(2�)j
|Bj|
j!

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

∫ t

0
‖�k1‖ · · · ‖�kj‖ d�

+2�‖N‖‖Y0‖
l−1∑
j=2

j−1∑
s=1

(2�)s
|Bs|
s!

∑
k1+···+ks=j−1
k1¿1;:::; ks¿1

∫ t

0
‖�k1‖ · · · ‖�ks‖

·




l−j∑
p=1

(2�)p
1
p!

∑
r1+···+rp=l−j
r1¿1;:::;rp¿1

‖�r1‖ · · · ‖�rp‖


 d�: (18)

For a given positive integer N , let us introduce the truncated series vN (�; t) =
∑N

l=1 �l‖�l(t)‖. Then
it is easy to show that

(vN (�; t))p =
pN∑
l=p

�l
∑

k1+···+kp=l
k1¿1;:::; kp¿1

‖�k1‖ · · · ‖�kp‖; (19)

where p is any positive integer. From inequality (18) we have
N∑
l=2

�l‖�l(t)‖6 2��‖N‖‖Y0‖(U1 + U2 + U3): (20)

Here

U1 ≡
N∑
l=2

l−1∑
j=1

(2�)j
1
j!

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

�l−1
∫ t

0
‖�k1‖ · · · ‖�kj‖ d�
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6
N−1∑
j=1

(2�)j
1
j!

N∑
l=j+1

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

�l−1
∫ t

0
‖�k1‖ · · · ‖�kj‖ d�

=
N−1∑
j=1

(2�)j
1
j!

N−1∑
l=j

�l
∑

k1+···+kj=l
k1¿1;:::; kj¿1

∫ t

0
‖�k1‖ · · · ‖�kj‖ d�

6
N−1∑
j=1

(2�)j
1
j!

∫ t

0
(vN (�; s))j ds; (21)

where the last inequality follows readily from (19). Analogously,

U2 ≡
N∑
l=2

l−1∑
j=1

(2�)j
|Bj|
j!

∑
k1+···+kj=l−1
k1¿1;:::; kj¿1

�l−1
∫ t

0
‖�k1‖ · · · ‖�kj‖ ds

6
N−1∑
j=1

(2�)j
|Bj|
j!

∫ t

0
(vN (�; s))j ds: (22)

Finally,

U3≡
N∑
l=3

�l−1
l−1∑
j=2




j−1∑
s=1

(2�)s
|Bs|
s!

∑
k1+···+ks=j−1
k1¿1;:::; ks¿1

∫ t

0
d� ‖�k1‖ · · · ‖�ks‖







l−j∑
p=1

(2�)p
1
p!

∑
r1+···+rp=l−j
r1¿1;:::;rp¿1

‖�r1‖ · · · ‖�rp‖




=
∫ t

0
d�

N−1∑
j=2

N−1∑
l=j

�l




j−1∑
s=1

(2�)s
|Bs|
s!

∑
k1+···+ks=j−1
k1¿1;:::; ks¿1

‖�k1‖ · · · ‖�ks‖







l+1−j∑
p=1

(2�)p
1
p!

∑
r1+···+rp=l+1−j

r1¿1;:::;rp¿1

‖�r1‖ · · · ‖�rp‖


 :
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In addition one has
N−1∑
l=j

�l
l+1−j∑
p=1

(2�)p
1
p!

∑
r1+···+rp=l+1−j

r1¿1;:::;rp¿1

‖�r1‖ · · · ‖�rp‖

=�j−1
N−j∑
p=1

(2�)p
1
p!

N−1∑
l=p+j−1

�l−( j−1)
∑

r1+···+rp=l−( j−1)
r1¿1;:::;rp¿1

‖�r1‖ · · · ‖�rp‖

=�j−1
N−j∑
p=1

(2�)p
1
p!

N−j∑
l=p

�l
∑

r1+···+rp=l
r1¿1;:::;rp¿1

‖�r1‖ · · · ‖�rp‖6 �j−1
N−j∑
p=1

(2�)p
1
p!

vpN ;

so that

U36
∫ t

0
d�

N−2∑
s=1

(2�)s
|Bs|
s!

N−1∑
j=s+1

�j−1
∑

k1+···+ks=j−1
k1¿1;:::; ks¿1

‖�k1‖ · · · ‖�ks‖

·

N−j∑

p=1

(2�)p

p!
vpN


6∫ t

0
d�

(
N−2∑
s=1

(2�)s
|Bs|
s!

vsN

) N∑
p=1

(2�)p
1
p!

vpN


 :

In this way

vN (�; t)6 2�‖N‖‖Y0‖�(t + U1 + U2 + U3)

6 2�‖N‖‖Y0‖�

∫ t

0

N−1∑
j=0

(2�)j
1
j!

vjN ds+
∫ t

0

N∑
j=1

(2�)j
|Bj|
j!

vjN ds

+
∫ t

0
ds


 N∑

j=1

(2�)j
|Bj|
j!

vjN




 N∑

p=1

(2�)p
1
p!

vpN






6 2�‖N‖‖Y0‖�

∫ t

0
ds

N∑
j=0

(2�)j
1
j!

vjN

+
∫ t

0
ds


 N∑

j=1

(2�)j
|Bj|
j!

vjN




 N∑

p=0

(2�)p
1
p!

vpN






= 2�‖N‖‖Y0‖�
∫ t

0
ds


 N∑

j=0

(2�)j
|Bj|
j!

vjN




 N∑

p=0

(2�)p
1
p!

vpN


 :
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Taking the limit N → ∞ in this expression we have

v(�; t)6 2�‖N‖‖Y0‖�
∫ t

0
g(�v(�; s))e2�v(�; s) ds (23)

since

∞∑
j=0

|Bj|
j!
(2x)j = 2 + x(1− cot x) ≡ g(x): (24)

Now the proof is completed by applying a result obtained in [15] for linear Eq. (5) and the discussion
in [18].
Let us introduce the function F(�; t) ≡ 2�‖N‖‖Y0‖�

∫ t
0 g(�v(�; s))e

2�v(�; s) ds. Then

9F
9t = 2�‖N‖‖Y0‖�g(�v(�; t))e2�v(�; t)6 2�‖N‖‖Y0‖�g(�F(�; t)) e2�F(�; t);

since g is a nondecreasing function in the domain [0; "). Thus we have

9F
9t

1
g(�F)e2�F

6 2�‖N‖‖Y0‖�

because g is positive on the real axis. By integrating this inequality we get

1
�

∫ �F(�; t)

0

1
g(x)e2x

dx6 2�‖N‖‖Y0‖�t

or

G(�F(�; t))6 2�2‖N‖‖Y0‖�t;
where G(t) ≡ ∫ t

0 (e
−2x=g(x)) dx. Now G(t) is continuous in t for t in [0; "] and continuously

diKerentiable and nondecreasing in [0; "). The inverse function t=G−1(y) exists in a neighbourhood
of any t for which G′(t) is nonzero, so the limiting value of t for which the inverse function G−1
exists must be one such that G′(t) = 0. The value of t nearest zero is precisely t = " and the
corresponding value of y is G("). In consequence,

v(�; t)6F(�; t)6
1
�
G−1(2�2‖N‖‖Y0‖�t)

for t such that 2�2‖N‖‖Y0‖�t belongs to the domain of G−1, i.e.,

2�2‖N‖‖Y0‖�t ¡G(") =
∫ "

0

1
g(x)e2x

dx ≡ #= 0:34438794 : : :

If we take �= 1 in (16) then

v(�= 1; t) =
∞∑
n=1

‖�n(t)‖¡ 1
�
G−1(#) =

"
�
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for 06 t ¡ tc. In other words, the Magnus series
∑

n¿1 �n(t) is absolutely convergent for 06 t ¡ tc.
We have then proved the following

Theorem 3. The double-bracket equation (1) admits a solution

Y (t) = e�(t)Y0e−�(t);

where the series �(t) =
∑∞

n=1�n(t) given by recurrence (13) is absolutely convergent for every
value of t satisfying

06 t6 tc =
1

�2#‖N‖‖Y0‖
with

1
#
=
1
2

∫ "

0

e−2x

2 + x(1− cot x) dx =
1

5:8074:::
:

2.4. Structure of the � series

The recurrences given in Theorem 1 can be easily programmed in a symbolic computation package,
thus providing, in principle, any order of the expansion. In particular, the Irst terms of the Magnus
series for the double-bracket )ow read

�1(t) = t[Y0; N ];

�2(t) = 1
2 t
2[Y0; N; Y0; N ];

�3(t) = t3(− 5
36 [Y0; Y0; N; N; Y0; N ] + 1

3 [Y0; N; Y0; N; Y0; N ]− 1
36 [N; N; Y0; Y0; Y0; N ]);

�4(t) = t4( 136 [Y0; N; Y0; Y0; N; N; Y0; N ]− 1
12 [Y0; N; Y0; N; Y0; N; Y0; N ]

+ 1
72 [Y0; N; N; N; Y0; Y0; Y0; N ]− 5

36 [N; Y0; Y0; Y0; N; N; Y0; N ]

+ 1
3 [N; Y0; Y0; N; Y0; N; Y0; N ] + 1

72 [N; Y0; N; N; Y0; Y0; Y0; N ]

− 7
24 [N; N; Y0; N; Y0; Y0; Y0; N ] + 1

6 [N; N; N; Y0; Y0; Y0; Y0; N ]); (25)

where [A; B; : : : ; Y; Z] stands for the nested commutator [A; [B; : : : ; [Y; Z]]].
At this point, it is useful to determine the number of independent terms appearing in �m for all

m¿ 1. In fact, an upper bound on this number can be obtained by noting that (i) � belongs to
the free Lie algebra generated by {Y0; N} and (ii) there are exactly m occurrences of Y0 and N in
each �m. If we arbitrarily assign a unit grade to each generator, then the problem is determining the
dimension of the linear space S2m spanned by all 2m-grade terms with m occurrences of Y0 and N .
This is given in [5,11]

)m = dimS2m =
1
2m

∑
d|m

�(d)

(
2m=d

m=d

)
: (26)
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Here �(d) is the MPobius function and the sum is extended over all d∈N which are divisors of the
integer m [5]. The Irst 10 values of )m are

1; 1; 3; 8; 25; 75; 245; 800; 2700; 9225:

Observe that, at least up to m= 4, )m provides the actual number of terms in �m.

3. Numerical integrators based on the Magnus expansion

The procedure to implement the Magnus expansion as a numerical integration algorithm for the
double-bracket )ow involves three steps. First, the � series must be truncated at the appropriate
order. Second, some strategy to reduce to a minimum the total number of commutators is required.
Third, one must evaluate the exponential map from the Lie algebra so(n) to the Lie group SO(n).
Concerning the Irst aspect, it is clear that for achieving an mth-order integration method only

terms up to �m have to be considered. With respect to the third step, several approximation schemes
to the matrix exponential have been designed such that the outcome lies in the correct Lie group
and diKers from the exact mapping in a way that is consistent with the order of the underlying
integration method [8,9,12].
In view of the number of commutators already present in (25) and the explosive growth of the

dimension )m with m it does not make much sense, in principle, consider integration methods of order
higher than four. In addition, it should be noticed that in general the actual number of commutators
appearing in �m is much higher than )m. For instance, in Table 1 we show the dimension and the
number NC) of commutators involved in the truncated series �[m] ≡∑m

i=1 �i up to m=4 according
to (25). If, as is usually the case, 2n3 operations are needed for evaluating one commutator, n being
the dimension of the matrices involved, then it is evident that reducing to a minimum the number
of commutators is a key point in order to build e4cient numerical schemes.
In fact, it turns out to be more advantageous to work directly with the recurrence (13) rather than

with the explicit expression (25) for two reasons. First, the number of commutators involved in (13)
is signiIcantly lower: for a given m¿ 2, one can prove that there are exactly +m ≡ m2 − 2m + 3

Table 1
Dimension and number of commutators in the truncated series �[m]

�[m] ≡∑m
i=1 �i

∑m
i=1 )i NC)

∑m
i=1 +i NC+

�[1] 1 1 1 1
�[2] 2 3 4 3
�[3] 5 12 10 7
�[4] 13 26 21 11
�[5] 38 39
�[6] 113 66
�[7] 358 104
�[8] 1158 155

NC) stands for the number of commutators appearing in (25), whereas NC+ is the number of commutators appearing
after optimization.
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commutators not previously available in �m. For comparison with )m, the Irst 10 values of +m are

1; 3; 6; 11; 18; 27; 38; 51; 66; 83;

so that the construction of integration methods of order higher than four is more feasible with
this approach. Second, these numbers can be reduced even further by generalizing the optimization
procedure designed in [3] for Lie-group methods based on the Magnus expansion for linear diKerential
equations. For instance, a detailed analysis of recurrence (13) allows to obtain expressions for �[m]

involving a number of commutators NC+ less than NC) for m¿ 2. These numbers are also collected
in Table 1. In particular, one has the following expressions for �[m] up to m= 4:

• Order 1: �[1](h) = hd1 with d1 = [Y0; N ]: (27)

• Order 2: d2 = [Y0; d1]

d3 = [N; d2]

�[2](h) = hd1 + 1
2 h

2d3: (28)

• Order 3: d4 = [Y0; d3];

d5 = [d1; d2];

d6 = [N; d4 + d5];

�[3](h) = hd1 + 1
2 h

2d3 + 1
6 h

3(d6 − 1
2 [d1; d3]): (29)

• Order 4: d7 = [Y0; d6]; d8 = [d2; d3];

d9 = [d1; d4 + d5]; d10 = [N; d7 − 2d8 + d9];

d11 = [d1; d3 + 1
2 hd6];

�[4](h) = hd1 + 1
2 h

2d3 + 1
6 h

3d6 + 1
24 h

4d10 − 1
12 h

3d11: (30)

The resulting mth-order algorithms (m6 4) based on the Magnus expansion read

Y (tk + h) = e�
[m](h) Y (tk) e−�[m](h); (31)

where Y0 has to be replaced by Y (tk) in the corresponding expression of �[m](h), m= 1; 2; 3; 4, and
involve 1, 3, 7 and 11 commutators, respectively. This represents a meaningful saving with respect
to the naive implementation (25).

4. Numerical examples

Next, we illustrate some of the properties of the fourth-order integration method (30)–(31) based
on the Magnus expansion for the double-bracket )ow (M4). Our purpose, rather than providing
a complete analysis of M4 as a numerical integrator, is just to show how it behaves in practice
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Table 2
Computational cost of diKerent fourth-order methods for the
double-bracket )ow

Method NC P Ex

M4 11 24 1
RKMK4 6 20 4
RK4 8 16 0

P also includes the matrix–matrix products coming from the
commutators.

in comparison with other well-known fourth-order schemes. In particular, we consider the classical
Runge–Kutta method (RK4) with Butcher tableau

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

(32)

and the Runge–Kutta–Munthe-Kaas integrator (RKMK4) also based on the tableau (32) with the
algorithm proposed in [17]. The computational cost of the methods may be estimated by considering
the total number of commutators (or matrix–matrix products) and matrix exponentials involved.
These numbers are collected in Table 2. Here NC stands for the number of commutators, Ex is the
number of matrix exponentials and P indicates the total number of matrix–matrix products (including
commutators).
It should be noticed that in (31) only the matrix exponential Q = exp(�[m]) has to be computed

because exp(−�[m]) = QT by construction. In general, each action eUY (tk)e−U in M4 and RKMK4
requires the calculation of one matrix exponential and two matrix–matrix products.
As we can observe, the computational cost of RK4 is smaller than the corresponding to M4 and

RKMK4, although these preserve the Lie group structure of the )ow by construction. On the other
hand, since M4 requires less matrix exponentials than RKMK4, one expects that for a su4ciently
high dimension n the new Lie group method M4 will be more e4cient than RKMK4.

Example 1. As a Irst illustration we consider a random initial condition Y0 ∈Sym (n = 10) with
eigenvalues 1; 2; : : : ; 10 and the matrix N = diag(1; 2; : : : ; 10). As we mentioned in the introduction,
in that case the )ow tends to a diagonal matrix. We check numerically how the Lyapunov function
 (Y ) (4) is minimized along the evolution with M4 by determining  ∞ and then Lf ≡  (Y )−  ∞
as a function of time with h= 0:03. We also compute

S(t) ≡
∑
j �=l

|yjl|2;

the sum of the squares of the oK-diagonal elements of the matrix Y (tk). These two functions are
depicted in Fig. 1, where, for comparison, we also present the results achieved by the second-order
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Fig. 1. Convergence of the numerical solution of Example 1 to a diagonal matrix. Solid curves correspond to
Lf ≡  (Y )−  ∞ and dashed lines stand for S(t), both computed with methods M2 and M4.

method M2 based on Magnus expansion (28). We observe, in particular, that the numerical solution
obtained with M4 converges to a diagonal matrix (even when h is much larger than the convergence
time tc � 8:94 · 10−4), whereas M2 requires a smaller step size to recover the correct asymptotic
behaviour. In this case the use of the higher order numerical method M4 allows to consider large
time steps while preserving the qualitative features of the system.

Next, for this same problem, initial condition and step size we calculate the diKerence between
the diagonal elements of the numerical solution Y (tf=10) and the eigenvalues of Y0 with M2, M4,
RKMK4 and RK4. The logarithm of the corresponding results are collected in Table 3.
As we can see, the Lie-group solvers M4 and RKMK4 applied to the double-bracket equation

provide an excellent approximation to the eigenvalues of a symmetric real matrix just by computing
numerically the )ow for a su4ciently large time. The diKerent asymptotic behaviour of the solution
provided by M2 manifests in discrepancies in two eigenvalues of Y (tf).

Example 2. Next, we analyse the e4ciency of the fourth-order algorithms M4, RKMK4 and RK4
when both N and Y0 are taken as random symmetric matrices of dimension n = 10; 20; 40. The
integration is carried out in the interval t ∈ [0; 6] for several values of h and the error is determined
at the Inal time tf = 6 by computing the Frobenius norm of the diKerence between approximate
and the exact solution matrices. We represent this error as a function of the computational eKort
measured both in CPU time and in terms of the number of )ops required. The computation is
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Table 3
Logarithm of the diKerence between diagonal elements of Y (t = 10) and eigenvalues of Y0
computed with M2 and diKerent fourth-order methods for the double-bracket )ow

M2 M4 RKMK4 RK4

−0.0989 −8.3425 −8.3459 −2.8482
−8.9343 −8.4574 −8.4620 −2.6065
−8.9351 −8.9772 −8.9768 −3.0952
−6.4336 −6.4836 −6.4841 −2.8445
−6.4337 −6.4838 −6.4843 −2.3482

−10.6260 −10.6771 −10.6751 −2.5853
−9.9582 −9.8991 −9.8966 −2.6390
−9.2894 −9.2862 −9.2851 −4.0992
−9.2770 −9.4513 −9.4521 −2.1639
−0.0989 −9.7350 −9.7322 −2.3158
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Fig. 2. Error in norm as a function of the number of )ops (plots (a), (c) and (e)) and the CPU time (plots (b), (d)
and (f)) obtained with the fourth-order integrators M4 (solid lines with circles), RKMK4 (dashed lines with +) and RK4
(dash-dotted lines with ×).

done in Matlab and the commands expm and flops are employed to evaluate the matrix expo-
nentials and the number of )ops, respectively. The corresponding e4ciency curves are plotted in
Fig. 2.



494 F. Casas / Journal of Computational and Applied Mathematics 166 (2004) 477–495

Several comments are in order. First, the graph clearly exhibits the order of consistency of the
algorithms. Second, for this example the new scheme M4 has apparently more favourable stability
properties than RKMK4. We can, at present, give no satisfying theoretical explanation for this
observed phenomenon. Third, M4 is more e4cient than RKMK4, in agreement with the theoretical
estimate of Table 2. What is more remarkable, the e4ciency of M4 is slightly higher than that of
RK4 for n=20; 40, even when the computational cost of the latter is lower (in particular it does not
require the evaluation of matrix exponentials). At this point we should mention that the computation
of one matrix exponential (to machine precision) in Matlab typically requires ≈ 25−30n3 )ops, but it
is also possible to use some of the special methods of computation designed in [8,9,12] which require
signiIcantly less )oating point operations, so that in principle the e4ciency of M4 can be further
improved. In fact, we have also computed the matrix exponentials with the [4; 4] PadAe approximant,
and the e4ciency obtained with M4 is superior for this example. Nevertheless, since the cost of
evaluating matrix exponentials increases with the dimension n, there is no substantial improvement
when moving from n= 20 to n= 40 with respect to RK4. We should have in mind, however, that
RK4 does not provide a correct qualitative description of the system with the values of h considered.
Fourth, some of the time steps h considered in Fig. 2 are larger than the convergence time tc of
the Magnus series. Thus we should contemplate tc as a (nonnecessarily optimal) bound where the
convergence of the expansion is guaranteed. Alternatively, tc could also be used for devising a step
size control in the algorithm.
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