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Abstract

In this paper we analyse numerical integration methods applied to differential equations which are separable in
solvable parts. These methods are compositions of flows associated with each part of the system. We propose at
elementary proof of the necessary existence of negative coefficients if the schemes are of order, or effective order,
p > 3 and provide additional information about the distribution of these negative coefficients. It is shown that if
the methods involve flows associated with more general terms this result does not necessarily apply and in some
cases it is possible to build higher order schemes with positive coefficients.
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1. Introduction

Operator splitting schemes are numerical methods which are particularly useful to approximate the
evolution of differential equations when they are separable in solvable parts [17]. To be more specific, let
us consider the ODE

x' = f(x), xo=x(0)eR” (1)
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with f:R? — RP? and associated vector field (or Lie operator associated fjith

D 3
F:Zfi(x)ax’. (2)
i=1 !

Let us denote by, the i-flow of the ODE (1) for a given time stejp In other words, the exact solution
is given byx (h) = @5, (xo).

Now let us assume thgf(x) can be written asf(x) = fa(x) + fz(x), the vector fieldF is split
accordingly asF = F, + Fp and theh-flows ¢, andg}”! corresponding ta7, and F;, respectively,
can be exactly computed or, equivalently, the equatidns f4(x) andx’ = fz(x) are solvable. Then
the composition (sometimes called Lie—Trotter splitting)

Uni=¢ o) 3
approximatesp;, with error of orderi?, i.e., ¥, 1(x0) = ¢n(x0) + O(h?), whereas the so-called Strang
splitting or Stérmer/Verlet/leapfrog scheme

A B A
‘ﬂh,zz%[,/%o%g ]090;[1/% (4)

is such thatfy, »(x0) = @i (x0) + O(h%). The order of approximation to the exact solution can be increased
by including more maps with fractional time steps in the composition. In general, the scheme

Vi = G} © Puh ©** © Gy © Pagh: )
(a1, b1, ...,ay, by) € R?", is of orderp if ¥, = ¢, + O(h?*1) for a proper choice of: and coefficients
a;, b;. It can be assumed without loss of generality that in (5) none of the coeffidigris, ..., b,,_1
as well as none afy, a3, ..., a, are vanishing, i.e., only; and/orb,, can be zero, since otherwise the
corresponding flows could be removedt' = ¢*! = id, the identity map) and the rest of the maps
would be concatenated (due to the group property of the flows).

Numerical schemes of order > 3 based on the composition (5) have been successfully applied for
solving a large number of problems [10,17], including also certain partial differential equations. In fact,
splitting methods are frequently used in celestial mechanics [21], quantum mechanics [6], molecular
dynamics [12], accelerator physics [7] and, in general, for numerically solving Hamiltonian dynamical
systems [8,16], Poisson systems [14] and reversible differential equations [15]. It has been noticed, how-
ever, that some of the coefficients in (5) are negativeofar 3 when one considers arbitrary vector fields
F, and F. In other words, the methods always involve stepping backwards in time. This constitutes a
problem when the differential equation is defined in a semigroup, as arises sometimes in applications,
since then the method can only be conditionally stable [17]. Also schemes with negative coefficients may
not be well-posed when applied to PDEs involving unbounded operators.

The existence of backward fractional time steps in the composition method (5) is in fact unavoidable,
and can be established as the following two theorems:

Theorem 1[20,22] If p is a positive integer such that > 3, then there are no composition methods of
the form(5) and finitem with all the coefficientg;, b; being positive.

Theorem 2 [9]. If p is a positive integer such that > 3, then, for everypth-order method5) with m
any finite positive integer, one has

min ¢; <0 and min b; <O.
1<i<m 1<j<m
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Theorem 2 is stronger than Theorem 1, in the sense that it establishes that at least ong ahthe
also one of theé; coefficients have to be strictly negative, although a similar (and certainly non-trivial)
proof strategy was used. One of the goals of this paper is to provide an alternative, elementary proof of
Theorem 2, giving in addition a more detailed analysis of how negative coefficients are distributed in the
composition.

During the last few years the processing technique has been used to find composition methods re-
quiring less evaluations than conventional schemes of g#déB]. The idea consists in enhancing an
integratory;,, (thekerne) with a parametric map;, : R” — RP? (the post-processqras

Y =m0y o, (6)

Application ofn steps of the new (and hopefully better) integraigrieads to
IZ]?:TL’;IOW;ZOTL’;]',
which can be considered as a change of coordinates in phase space. Observe that processing is adva
tageous ifys, is a more accurate method thgn and the cost ofr, is negligible, since it provides the
accuracy ofy;, at essentially the cost of the least accurate methnd
The simplest example of a processed integrator is provided in fact by the Strang splitting (4). As a
consequence of the group property of the exact flow, we have

[A] [B] [A] [A] [B] [A] [A] [A]
Un2=@p200h CPhp =%, 200, ¢ C@, 0@,

=§0;[f/g01//h,10<p[,Ah]/2=7Th oYprom, (7)
with 7, = go}j‘é. Hence, applying the first order method (3) with processing yields a second order of
approximation.

Although initially intended for Runge—Kutta methods [4], the processing technique has proved its
usefulness mainly in the context of geometric numerical integration [10], where constant step-sizes are
widely employed.

We say that the method, is of effective orderp if a post-processor;, exists for whichiy, is of
(conventional) ordep [4], that is,

7T 0 Yy, on'h_1=§0h +O(hp+l).

Hence, as the previous example shows, the Lie—Trotter splitting (3) is of effective order 2. Obviously, a
method of ordep is also of effective ordep (taking ;, = id) or higher, but the converse is not true in
general.

The analysis of the order conditions of the metfjgdshows that many of them can be satisfieddpy
so thaty;, must fulfill a much reduced set of restrictions [2,3]. In particular, if one takes a composition (5)
for ¥, the number and complexity of the conditions to be verified by the coefficients is notably
reduced. As a consequence, by considering both the kgpreahd the post-processey, as compositions
of basic integrators, highly efficient processed methods have been proposed [23,2,1,17]. Nevertheless
when, is constructed as a composition (5), its computational cost is usually higher than thatawfd
thus the use of the resulting processed scheme is restricted to situations where intermediate results ar
not frequently required. Otherwise the overall efficiency of the method is deteriorated.
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To overcome this difficulty, in [3] a technique has been developed for obtaining approximations to
the post-processor at virtually cost free and without loss of accuracy. The clue is to replaga new
integratorsw, >~ m;, obtained from the intermediate stages in the computatiof,0fAs a result of the
analysis carried out in [3], it is generally recommended to have a very accurate pre-prox;,é’sbut,
on the contraryyr;, can safely be replaced by,, since the error introduced by the cheap approxima-
tion 7?1;, is of a purely local character and is not propagated along the evolution (contrarily to the error
inm, ).

Here we also address the following question: do Theorems 1 and 2 also hold for a compgsition
of effective orderp > 3? Observe that, in principle, Theorem 2 applies to the whole composftion
of (6), but it would nonetheless be advantageous to have the negative coefficients restricted only to the
compositions;,. For in that case the integration starts by compub‘ujg} (which only involves posi-
tive coefficients), theny,, (involving only positive coefficients) is evaluated once per step and finally an
appropriate approximation te, may be considered when output is required (even the crudest approx-
imation 7, = id [13]). In this way the algorithm only involves stepping forward in time and could be
applied even to PDEs with unbounded operators. The answer to the question posed before could also be
useful in the search of efficient methods of order higher than 2 for systems that evolve in a semigroup,
such as the heat equation in two space dimensions [17].

Also in quantum statistical mechanics, the partition function requires comp@tirgTr(e #1),
where H is the Hamiltonian operator ang@l is the inverse temperature [22]. In numerical calculations
a processed composition algorithm may be used to approximéfe and since the trace is invariant
under similarity transformations, only the kernel is necessary to detetmitét involves only positive
coefficients then it would be possible to build up higher order convergent algorithms for this class of
problems.

In Section 3 we prove explicitly that this is not the case, so that any composition method (5) of effective
orderp > 3 contains necessarily some negative coefficients.

2. An elementary proof of Theorem 2

It is well known that, for each infinitely differentiable mgpR” — R, g(¢;(x)) admits an expansion

of the form
hk
gon(0)) =g + ) Flgl) =€ [gl(x), xeRP,

k!
>1

whereF is the vector field (2). Similarly, for the mafp, given in (5) one has
g(¥n(0) = ¥lgl),
where [10]
), = exp(ha1 Fa) exp(hbyFg) - - -exXp(ha,, F4) exp(hb,, Fp). (8)

By repeated application of the Baker—Campbell-Hausdorff (BCH) formula to (8) we can obtain a series
of differential operatorg), = Zk>lh"Fk such thaw;, = exp(Fy), i.e., ¥, is formally the exact 1-flow of

the vector fieldF;,. The schemey,, is of orderp > 3 if F, = F, + Fg andF, = F3 = 0. In terms of the
coefficients;, b;, this corresponds to the following order conditions:
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order 1: Za,- =1, ib,- =1
m i 1
order 2: Zb,( aj> =3
i 1
m—1 m 2 1 m m 2 1
order 3: bl< Z Clj) =§, Zal(ij) =:—_3 (9)
1 \j=i

i=1 j=i+1

i=

The proof of Theorems 1 and 2 provided by [20,22,9] is based precisely on the fact that a scheme of
the form (5) withm any finite positive integer and all the coefficientsb; being positive cannot satisfy
Egs. (9).
In the particular case of the first order methgo= ¢.”' 0 ¢}*!, the corresponding operator (8) is given
by

exp(hFa) exp(h Fp) = exp(Xy) = exp(h X1 +h?Xp + h®Xa+ -+ -), (10)

With X1 = Fa + F, X = 3[Fa, Fp], etc., whereas for its adjoint schemg = x - = ¢} 0 ¢”! one

hasg(x; (x)) = e *-#[g](x). Here[Fa, F] stands for the Lie brackdt, Fz — FpFa. Since our aim is
to get results valid for all pairg, Fp of arbitrary vector fields, then we must assume that the only linear
dependencies among nested Lie bracketB, 0énd Fyz can be derived from the skew-symmetry and the
Jacobi identity of the Lie brackets. In other words, k > 1, is an element of the graded free Lie algebra
generated by the symbolic vector fielfs, Fz, where both have degree one [18].

The crucial observation that leads to an alternative, elementary proof of Theorem 2 is the close con-
nection existing between the splitting method (5)

[B] [A] [B] [A] [B] [A]
Vn= Poh © Loy © Poy1h © 7 © Pagh © Poih © Pari (11)

and the composition of the first order methgd = ¢1”' o ¢i*! and its adjointy;: = ¢}*! o ¢}” with
different time steps [15]:
Vi = Xpph © XBan-1h © "+ © Xppn © Xprh © Xon- (12)
Indeed, by inserting the explicit form ofs,, andx;,, in (12) we have
[A] (B] (B] [A] (Al _ [B] (B] _ [A] (Al _ [B]
Vi = (Phon © Phon) © (Pigy 11 © Py 1n) @+ © (P © Ppon) © (Pan © D) © (P © V)
_ Al B o oAl oo olBl 0 oAl 0 o8
= Panh © PBon+Pon-vh © P(Ban-1+an-2)h P(pa+pon © Pipr+pon © Phon

where in the last equality we have used the group property of the exact flow. If wi pug,,, = 0 we
recover expression (11) as soon as

a; = Poi—1+ Pai—2, b =B+ Poic1, i=1....,m. (13)
Then

Zai:Zﬁi:Zbi. (14)
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In consequence, composition (11) can be rewritten as (12) only if (14) holds. Consistency of both schemes
require in fact thad 7", a; = Y7, by = 2", B; = 1 and it has been shown in [15] that the order condi-
tions for the coefficients;, b; to get a method of ordes > 1 are equivalent to the order conditions for
the ;. In that case the operatags, given in (8) can also be expressed as

Uy = eXp(—X - pon) €XP(X gy1) €XP(— X —p,1) - - - €XP( X, _10) EXP(—X _p,,0) (15)

and repeated application of the BCH formula gives
W, = exp(hfuiXy+ h? f21 X2 + 3 f31X3 + fa20 X1, X21) + O(h%)),

where the coefficientg; ; are homogeneous polynomials of degkem the variabless;. In particular
we have

2m 2m ‘ 2m
f1=) B Ra=Y (DL fa=) B (16)
i=0 i=0

i=0
Conditionsf1 1 =1 andf, ; =0 for alln < p are then sufficient for the method to be of orger

Proof of Theorem 2. From the preceding discussion, it is clear that

om
faa=) B=0 17)
i=0

is a necessary condition to be satisfied by any method of grdeB. We suppose that more than t@o
are different from zero becauﬁé + B3 = 0 together with the consistency conditin+ 8, = 1 have no
real solution. Now (17) can be written as

m m

DB+ B )+ B =) (B 1+ B3 2) =0,

i=1 i=1
for any positive integen:. In consequencﬁgjf1 + ;8231.72 has to be negative for somel; < m. But it
is easy to verify that sign® + y%) = sign(x + y) for anyx, y € R, so that

aj = Poj_1+ P2j—2 <0, (18)
for somej such that & j < m. Similarly, we can write (17) as

m

:33 + Z(ﬂzgi + ,321'—1) = 2(13231' —+ ﬁgi—l) =0

i=1 i=1
so thatg3, + B3, _, < 0 for some 1< k < m, and again
by = Bax + Pa-1 < 0. 0 (19)
Distribution of the coefficients
We can get more information about the distribution of the negative coefficients in the composition (5)

by applying a slightly more involved argument which, in fact, also provides another demonstration of
Theorem 2.
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If we denotewy; 1 =a;, ap; =b;, i =1, ..., m, in the composition (5)

_ [B] [A] [B] [A]
l//h - g0012,,1h o (pazm_lh ©---0 g00{2]1 © g00{1]‘[’

then (13) implies
o =p+Bi-1, i=1...,2m, (20)

whereg; are the coefficients appearing in (18 & B2, = 0). Now all we need to prove Theorem 2
is to analyse how Egs. (17) and (20) imply that at least one odd as well as one;ex@gfficients are
negative.

As before, we assume that there are more than two nonvanishing coeffigiearid at least one of
them is negative.

(a) Letus suppose first that only one coefficient is actually negatived sdgr some O< j < 2m. Then,
from Eq. (17),

p=—(2m)

i#]j
so that|g,| > g; for all i # j. Therefore
a/:ﬂ,+ﬁ1_1<0 and O[./+1:ﬂj+1+13j<0,

i.e., two consecutive, coefficients are negative, and thus at least@onand oneb; are negative.
(b) Suppose now that the negative coefficients@yres;,. ..., B, with ji; < jo <--- < ji.
(b.1) If

lBji—l < |:3ji| and |18ji| > :3ji+1 (21)

for some j; € 7 = {j1, jo,..., ji} then also two consecutive coefficienig are negative,
namelyo;, ando;, 1.
(b.2) On the other hand, when (21) does not hold for gny Z, then the following situations are
possible:
() if Bj—1 <18l then|B;| < Bj+1;
(i) if 1851 > Bji+1, thenB;_1 > |B;1;
(|||) ﬁna”y, ,Bj,-—l > |ﬂji| and,Bj,._H_ > |/3]l|
Let us suppose that;, 1 # B;,,,—1 for all j;. Then

Bi 2—((13?1,1-#,3]314-,3]3#1)4-(ﬂ§2,1+,3]3»2+,3?2+1)+"'

’ 1/3
3 3 3 3
+ (ﬁjk—l—l + 'B.ik—l + ﬂ./k—1+1) - Z Bi ) ’

where) "’ contains the remaining terms (includifig 1 andg;, +1). Sinceg>_,+ 8> + 43, >
Ofori=1,...,k— 1, then clearly ' ‘

1Bj.l > Bj—1 and [B; ] > Bj+1

in contradiction with hypothesis (b.2). Therefggg,; = 8;,,,—1 for somej;. Let us suppose,
without loss of generality, that they correspond to the fisstl coefficientss;,. Then, the only
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possible sequence (different from those considered before) hasgg_heg;,, Bj,+1. Bj+2,
Bji+3s - - s Bji+2i-1, Bji+ars Bji+21+1 Such that

Bji—1 < Bj| < Bji+1

|Bji+2| < Bji+1, |Bji+2l < Bji+3s

Bjiva—1> |Bji+al > Bji+a1+1,

whereg; 12, k =0,1, ..., are the negative coefficients. Then

o =Bj +Bj-1<0, ®jir2+1 = Bja+1+ Bji+a < 0.
Also in this case at least ore and oneb; are negative becaugeand j; + 2/ + 1 differ in an
odd number.

Notice that this is the only situation where two negatiyeoefficients in a given method do not stay
in consecutive places. We have checked several composition methods published in the literature having
observed that this occurrence is in fact quite rare: it is very much frequent that at least two consecutive
«; coefficients are negative, and this discussion provides an explanation of the phenomenon.

3. Compositions of effective order p > 3

As with the composition/;, in (5), let us consider a post-processgrin (6) formally as the exact
1-flow of the vector fieldP,, i.e., g(m;(x)) = e [g](x) for all g, with P, = Zk>1hkPk. Then one has

for the processed schere V1, = ¥, [g], whered, = exp(F,) and the vector field?, can be determined
from the relation

exp(F,) = exp(— P,) exp(F,) exp(Py). (22)
With respect to the vector fiel#,, it is natural to choose it as an element of the graded free Lie algebra
generated by, and Fp. Thus, up to order two in,

P, =h(c1Fa+ c2Fp) +hZC3X2+O(h3), (23)

with ¢; free parameters. Notice thaf, can be approximated by a composition (5), or equivalently,
exp(P,) by the product (8). However, if1 # ¢ then) . a; = c1 # ¢ = ), b; and composition (12)
cannot be used (as is the case, for instance, of the Strang splitting (7)). On the other hand, since
c1Fs+ coFg = (co—c1)Fp +c1X1=(c1— c2) Fp + c2X1, from (23) it is possible to write

i = geXighFgh’dXe 4 (43 (24)
as well as
Py, — ehchle—thA ehzdez + O(l’la), (25)

wherec = ¢y — ¢1 anddy, do are > parameters depending on c,, c3. Since the processed schemﬁg
is of conventional ordep, then®, = exp(hX1) + O(h?*1) and éX1@, = @,eX1 + O(hP*1), so that
exp(he; X1) in (24) and (25) can be safely removed without loss of generality and thus we;take or
c;=0.

Now we are in disposition to establish and prove the main result of this section.
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Theorem 3. At least one of the; as well as one of thg; coefficients have to be negative in the compo-
sition (5) if ¥, is the kernel of a processed method of ortar equivalently ify;, is of effective order
p=3.

Proof. Let ¢, be a composition (5) of effective order 3 with, say,allpositive. Then it is possible to
construct a vector fiel@®, such that (24) (witlt; = 0) holds and therefore (22) leads to

e—hzdlxze—thB @, eeFs ehzlez _ efh = (Fa+Fp) 4 O(h4), (26)
or equivalently
U, = e <Fsy, gheFs — ldiXogh(FatFp)g-i?diXo 4 O(n%)
= exp(h(F4 + Fp) — h*di[X1, X2]) + O(h?), (27)

wherey, is given by (8). Notice that all coefficients in ¥, are positive, since, is associated with the
composition map

T B B A B A B

Uh = et © P © Pa ©* © Py © Do © L (28)

which, as previously, can be written as a composition of the first order megthadd its adjointy; with
coefficientsg;:

W= X © Xfah © 7" © Xjop © Xpsh © Xjops (29)
with o = B = 0. Since the coefficient of3 is zero in (27), it is clear that
2k
fa1i= Z B’ =o0. (30)
i=0
But, as we know from the proof of Theorem 2 provided in Section 2, this condition cannot be satisfied
with all coefficientsq; positive.
Similarly, if we assume that all; are positive then the same argument applied to the post-processor

(25) leads to the same contradictior

In fact, the explicit expression of the effective order conditions up to order 3 can be derived in the
following way. By inserting (24) in (22) and applying the BCH formula one finds

v, = eXP(hxl +h?(for+20) X2+ h3<(f3,1 +3c(f21+¢)) X3

1
+ (fa,z - EC(fZ,l +0)+ dl) (X1, Xz])) +O(n*) (31)

and a second order method is obtained by taki&g—%fz,l. If we substitute this value in (31) and take
dy such that the coefficient ¢, X»] vanishes, then

U, = exp(th + h3< fa1— % fz%l) X3> +0(h%). (32)
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This same result is obtained if one considers a post-processor such that (25) holds éamhinstead
of (24). In summary, it is clear that

3
f3,1_Zf§1:0 (33)

is the only condition to be satisfied by a composition to be of effective order three. This condition is
equivalent to the kernel condition at order three presented in [2] using a different basis of the Lie algebra.

Example. Let us consider the composition map

B A B A
Y = 90([11b)h °© 90([1114)#1 °© (p}[Jh] °© ‘Péh] = Xpah © XPah © X © Xpih © Xpoh» (34)

with Bo=0,81=a, Bo=b —a, B3=1—b, B4=0, and the consistency conditions already imposed.
This composition cannot be of order three (there are not enough parameters to solve all the order condi-
tions (9)), yet it could be of effective order three if condition (33) is satisfied, which in this case reads

1—12ab(1—a)(1—b) =0.
But it turns out that this equation has no real solutiom & (0, 1) as well as ifb € (0, 1).

4. Other classes of composition methods

The previous results can be generalized in different contexts. For instance, let us consider a partitioned
scheme built up using finite linear combinations of splitting methods of the form (5), i.e.,

K
V=Y VeV (35)
k=1
where
B A B A
Yn = (plgk,lh °© gat[lk.lh o ('01[7k.]1h © (pb[lk,]lh (36)

and it is assumed that, yy =1 and)_, ax; =Y, bi, k =1,..., K. The generalization provided by

the following theorem establishes that even with partitioned schemes of the form (35) each basic flow in
a convex partitiony, > 0 for every 1< k < K) must be applied for at least one backward fractional time
step. On the other hand, simple polynomial extrapolation of the leapfrog method (7) showsthalf

all the coefficientsy ;, by; may indeed be positive.

Theorem 4[9]. If p andK are positive integers such that> 3andK > 2, andy, > Ofork=1,..., K,
then at least one of the coefficiemis; as well as one of thg, ; have to be negative in the composition
(36)if ¥, has order, or effective ordep > 3.

Proof. Also in this case the proof is quite elementary. Sidcea, ; = ) _; bx; We can write

Wik = Xfouh © XBron1h © " © Xy o © Xpeah © Xp o (37)
and by following the same procedure as previously we find that instead of (16) the necessary condition
for (35) to be a method of order three or higher is now

K 2n
Z Vi Z ,31?,:' =0.
k=1 =1
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Sincey, > 0,k=1,..., K, there exists somg, 1< j < K, such that

2n
2 : 3

ﬁj’j go’
i=1

and the previous proof can be applied:s

The two-term splitting analyzed so far can be seen as a special instandetefra splitting of the
vector fieldF, F = F1 + F»> + - - - + F,. Suppose we have a scheme of the form

_ k] [2] (1] [k] [2] (1]
‘//h - Wam_kh ©--+0 (pamyzh © %,,,,;Lh ©-:-0 goaz_kh 0---0 wazzh o goazylh

[k] (2] (1
© Purh © " 0 Pay o © Pay s (38)
Whel’ego;[l[] stands for the exaéi-flow of the vector fieldF;. If the composition (38) is of order, or effective
order, p > 3 for all choices of operatorg, ..., Fy, then clearly

min ai,1<0, [=1,... k.
1<i<m

Consider now composition maps of the Strang splitting given by (4) (or with the roles of the flows
o andg}”! interchanged), i.e.,

Vi = Yp,n20 Vg, 10200 Wpn20 Ypgn2. (39)
The series of differential operatofs associated with the integraty, », i.e., such thag o ¥, » = Si[g],
can be written as, = exp(X,), whereX;, = hX, + h3Xs+ h®Xs+---, X1 =F and

l[/h = eX[XX/gOh) eXF(Xﬁlh) o exp(X,g"Hh) eXF(Xﬁmh).
Now, by repeated application of the BCH formula,

W, = exp(hfu1X1+ h3 f31X3 + O(h%)),
where

fl,l:Z,Bi, f3,1=Z,3,-3.
i=0 i=0

Thereforefi 1 =1, f31 = 0 are necessary conditions fgy, to be of orderp > 3. In fact, sincef, 1 =0in
this case, they are also the conditions to be satisfief,ip have effective ordep = 3 and the following
theorem can be established.

Theorem 5. If p is any positive integer such that> 3 and+,, ; is the Strang splittingor Stérmer/Verlet
schemg(4), then at least two consecutive coefficiestsh; have to be negative in the compositi@9)

(when it is expressed in terms of the basic flgy8, ¢°!) if v, is of order, or effective ordep. Even
more, at least two coefficients , a;, have to be negative.

Proof. By substituting in (39) the expression of the basic metiipd > = o})} 0 ok} ,, we obtain
a composition of the type (5) with

1
b; = Bi, ai=§(,3i+ﬂi71)a i=1...,m, (40)
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if Bo=Bn =0. Itis immediate to check that if there exists one negative coefficieny$ say0, 1< j <
m—1,and

1Bjl > Bj-1, (41)
thena; <0,b; <0, whereas if
1Bl > Bjt1s (42)

thenb; <0, a;41 < 0. In other words, as soon as one of {heis negative and its absolute value is
higher than the previous one or the next one then the corresponding composition (5) has, at least, two
consecutive coefficients which are negative.

Let us analyse the different possibilities arising from the order condjfiarn= 0.

(i) First, suppose there exists only one negative coeffigiert 0, 1< j <m — 1. Then

()

i#]

and both conditions (41) and (42) are satisfied so that, according to the previous discussidd,
bj <0 andaj+1 < 0.

(if) Suppose now that there ake> 2 negative coefficientsi;,, 8, ..., B;, < 0 such that they do not
satisfy conditions (41) and (42). Observe that they cannot be consecutive, otherwise either (41) or (42)
are satisfied. Then we can write conditiggy = 0 as

1/3
ﬁjk: ((:3;1 1+/6/1)+ +('Blk1 l+’3/k 1 +Z )

wherez contains the remaining terms, includingy,_; and ;1. Since ﬂ3 1+ /33 >0,i=
.k —1,theng; _1 < 1B, Bji+1 < |Bj.|, conditions (41) and (42) are in fact satlsfledﬂbjy and
thereforebjl,... bj-1,aj.,bj,a;4+1<0.
(iii) Finally, consider the case in whicB;,, B,. ..., 8, <0 (k > 2) and only one of the coefficients
Bj,i=1,...,k, satisfies either (41) or (42). For instance, supposedfas such thatg;,| > ;-1 (and
thereforea;, < 0). Then, conditionfs 1 = 0 can be expressed as

(B +83.0)+ > BE=0,

i#j1,j1+1

but 82 + B3, > 0, since (42) is not satisfied kg, so that

(/3/32 + '8/3‘z+1) +--t (’Bi + ﬂiﬂ) + Z/ B} <0,

where, as before}_" contains the remaining (positive) terms. In consequence, there must exist some
2<i<k su_ch thatBﬁ + /313,-+1 <0. _Therefore we have_at ledst,...,b;, <0 andaj_-l, aj+1<0.
If B;, satisfies (42) instead, a similar strategy applies and the same conclusion follows.

This result, together with the discussion of Section 2 justifies why it is so frequent that at least two
consecutive coefficients are negative.
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5. Composition methodswith all coefficients being positive

Let us consider now the second order differential equation

V' =g, (43)

which can be written in the form (1) by taking= (x1, x2) = (y,y") and fa(x) = (x2,0), fp(x) =
(0, g(x1)), or equivalently
F 9 F (x1) 9
=x—, =g(xy)—.

A 23x1 B =81 91z
This equation frequently appears in relevant problems arising in classical and quantum mechanics: there
the operatoiF, is related to the kinetic energy (quadratic in momenta) Bpds associated with the po-
tential energy. Now the flow correspondingfip = [F, [Fa, Fgl] is explicitly and exactly computable
and, in addition[ F, Fc] =0, so that it makes sense to compute the 1-figf, associated with the

vector fieldhb Fp + ch®F and include it into the composition (5):

[B.C] [A] [B.C] [A]
YUh = @y et © Panh © 7 © P 143 © Pagh (44)
In this casey;, cannot always be written as the composition of a first order scheme and its adjoint, and
Theorem 2 does not necessarily apply. For instance

_ Bl [A] [B,C] [A] [B]
U = @1s6 © Phj2© Paj iz 372 ° Piij2 © Pise (45)

is a method of order four [11] and
[A]l _ [B.C] [A]
‘ﬁh = (Ph/z o ‘/’h,ha/24 o (ph/z (46)

is a method of effective order four [19]. In the last case we can whjte: x;/, o xu/2 With x;, = (piB;;g/](s °

o). However, if we analyse the corresponding operatot Bxp= exp(h X1+ h?X,+h3X3+ - -) asso-
ciated withy,,, we find thatXs = [ X1, X,]/6. ThenX3 is not an independent element and its contribution
can be cancelled with a proper choice of the mapthus giving a fourth-order method.

Numerical experiments suggest that this is the highest order one can get with the composition (44)
with positive coefficients and a rigorous proof is at present under investigation. However, methods of
effective order six as well as of order six are known to exist with all coefficiernging positive.

On the other hand, if we consider a Hamiltonian system of the form

H=T(p)+V(qg),

with T quadratic inp and V(g) a polynomial function up to degree four ip (or, in general, if
g(y) is a polynomial function up to degree three), then= [Fy, [Fa, [F4, [Fa, Fz]]]] vanish or de-
pends only on the momenta, i.6F4, Fg] = 0, and its flow can be computed exactly. In addition
Fp =[Fg,[Fp,[Fa,[Fa, Fg]]]] depends only on the coordinates and thiig, Fp] = 0. Thus one may

consider composition maps involving the 1-flows “L, o!2<.?1 corresponding to the vector fields

haF, + eh®Fg andhbFp + ch®F¢ + dh°Fp, respectively. In particular, the generalised leapfrog split-
ting scheme

_AE] (B,C,D] [A,E]
Un =@} 12015 © Phcid.ans © Phj.ens> (47)
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With ¢ = 5, d = 0, € = 535 is @ method of effective order six, since these coefficients satisfy the

kernel conditions collected in [2] up to this order.

We should recall that methods (45)—(47) are particular examples of composition schemes involving
only positive coefficients. The possible existence of other families of composition methods of order
p = 3 with positive coefficients is, at the time being, an open question of great interest, for instance, in
the numerical integration of nonreversible systems.
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