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Abstract. We construct integrators to be used in Hamiltonian (or Hybrid) Monte Carlo sam-
pling. The new integrators are easily implementable and, for a given computational budget, may
deliver five times as many accepted proposals as standard leapfrog/Verlet without impairing in any
way the quality of the samples. They are based on a suitable modification of the processing technique
first introduced by Butcher. The idea of modified processing may also be useful for other purposes,
like the construction of high-order splitting integrators with positive coefficients.
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1. Introduction. In this paper we show how to construct symmetrically pro-
cessed splitting algorithms for efficient Hamiltonian (or Hybrid) Monte Carlo (HMC)
sampling.

HMC is a widely used sampling technique; introduced in the physics literature
[17], it has become very popular in statistics [30] and may provide large improvements
over alternative approaches [14]. All the many variants of HMC share the need for
integrating numerically a system of Hamiltonian differential equations at each step of
the Markov chain [36] and, in fact, the gradient evaluations required by the numerical
integrator dominate the computational cost of obtaining the samples. It is therefore
useful to identify existing integrators or to construct new ones that are efficient in
HMC sampling. Even though the leapfrog/St\"ormer/Verlet method is the integrator
usually chosen, it is possible to cut down substantially the computational cost of
the integrations without impairing in any way the quality of the sampling by using
(multistage) splitting integrators which may be implemented as easily as leapfrog and
are time reversible and volume preserving, two essential requirements for HMC use
[9].

There are several families of possible splitting schemes and each family includes
free parameters. The paper [8] suggested a methodology for choosing the splitting
parameters so as to optimize the efficiency in the HMC setting. As distinct from other
works (see [28, 32, 33, 20, 22] among many others), where the choice of parameters
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is determined by the behavior of the integrator as the step size h approaches 0, in
[8] h is not assumed to be small; it rather ranges in a suitable interval (0, \=h). This
corresponds to the fact that successful HMC simulations operate with rather large
values of h [30, 9]. Because free parameters are not used to boost the accuracy
in the limit h \rightarrow 0, all the integrators constructed in [8] are second order. This
implies that these integrators yield average energy errors of order four [4, 9]. They
are designed to minimize the energy error in the proposal and to maximize (see [11])
the probability of proposals being accepted by the accept/reject mechanism of the
sampler. Extensive numerical experiments [8, 3, 18, 13, 27, 31, 2, 11, 20] in a variety
of applications that range from Bayesian statistics to the Auxiliary Field Quantum
Monte Carlo method and theoretical results presented in [11] endorse the soundness of
the approach in [8]. In particular, [11] shows experimentally that for splitting formulas
that use three gradient evaluations per step, the parameter choice in [8] leads to better
HMC sampling than any other parameter choices. The references [1, 34] extended the
technique in [8] to modified HMC algorithms that combine the basic idea of HMC
with importance sampling.

The idea of processing numerical integrators [6, section 3.5] is due to Butcher
[10]. Given a one-step integrator, sometimes called the kernel, a processed integra-
tion requires (i) preprocessing the initial condition, (ii) integrating with the kernel,
and (iii) postprocessing the solution. Pre- and postprocessing should have negligible
complexity, so that the cost of an integration with processing is essentially the cost
of integrating with the kernel. The interest of the idea lies in cases where the accu-
racy of the processed integration is higher than the accuracy the kernel alone would
provide. For instance, the processed algorithm may converge with an order \nu higher
than the order \mu of the kernel; when this happens the kernel is said to possess effec-
tive order \nu . Processing did not become popular when it was first suggested, due to
the difficulties of its combination with variable time steps. It reappeared [25, 26, 7]
in the geometric integration scenario, where the emphasis is in constant time steps
[12]. Since processing may considerably increase the efficiency of an integrator, it is
natural to study whether the splitting kernels for HMC applications successfully used
in [8, 3, 18, 13, 27, 31, 2, 11, 20] may be processed. Unfortunately, the standard
approach to processing, where the postprocessing map just inverts the action of the
preprocessor, will not work, as it leads to integrations that are not time reversible.

In this paper we present the following.
1. We introduce (section 2) symmetric (modified) processing, a modification

of standard processing under which time reversible kernels provide time re-
versible integrations.

2. We provide (section 3) a methodology to determine the parameters in the
kernel and the pre- and postprocessor to optimize the performance of the
integrator in HMC sampling. This methodology extends the material in [8].

3. We construct (section 4) specific symmetric processed algorithms to be ap-
plied within HMC simulations.

4. We show (section 5) by means of numerical experiments that the sampling
efficiency of the new symmetric processed integrators may improve on the
standard velocity Verlet integrator by a factor of five or more.

HMC sampling is not the only application where symmetric modified process-
ing may be useful, and section 6 briefly discusses another possible application area:
the construction of higher-order splitting methods with positive coefficients. As an
illustration we show how to process the well-known Rowlands integrator [35] to get
fourth-order integrations while only using substeps with positive coefficients.
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2. Symmetric (modified) processing.

2.1. Definition. Given a system of differential equations (d/dt)x = f(x) in \BbbR D,
each one-step integrator is specified by a map \psi h : \BbbR D \rightarrow \BbbR D that advances the
numerical solution over a time-interval of length h. For instance, \psi h(x) = x+ hf(x)
corresponds to Euler's rule. If \psi h is an integrator (sometimes called the kernel) and
\pi h : \BbbR D \rightarrow \BbbR D is a map, one may consider the corresponding so-called processed
integrator defined by the map \widehat \psi h = \pi  - 1

h \circ \psi h \circ \pi h

(the superscript  - 1 denotes inverse map and \circ means composition). N consecutive
steps of the processed integrator correspond to the transformation

\widehat \psi N
h =

N times\underbrace{}  \underbrace{}  \widehat \psi h \circ \cdot \cdot \cdot \circ \widehat \psi h =

N times\underbrace{}  \underbrace{}  
(\pi  - 1

h \circ \psi h \circ \pi h) \circ \cdot \cdot \cdot \circ (\pi  - 1
h \circ \psi h \circ \pi h),

that is,

(1) \widehat \psi N
h = \pi  - 1

h \circ \psi N
h \circ \pi h.

In other words, to perform N steps of the processed method, one successively (i)
applies once the map \pi h (preprocessing), (ii) takes N steps of the kernel \psi h, and (iii)
applies once the map \pi  - 1

h (postprocessing). Since \pi h and its inverse are applied only

once per integration leg, the computational complexity of \widehat \psi h is not very different
from that of \psi h. Processing is advantageous in situations where \widehat \psi h is more accurate
than the unprocessed \psi h, among others (for instance, \widehat \psi h may have higher order of
convergence or smaller error constants than \psi h).

Recall that the true solution flow \phi t of the system being integrated is time re-
versible (or symmetric), in the sense that \phi  - 1

t (which maps the final state into the
initial condition) coincides with \phi  - t (which moves the initial condition backwards in
time). Correspondingly, an integrator \psi h is said to be time reversible (or symmet-
ric) [37, section 3.6] if (\psi N

h ) - 1 = \psi N
 - h. From (1) it is easily concluded that, even

if the kernel \psi h is time reversible, the processed \widehat \psi h may not be expected to be so.
The symmetric (modified) processing approach suggested in the present paper is a
modification of the idea of processing that makes it possible to obtain time reversible
integrators.

To perform an integration leg spanning a time interval of length Nh with a sym-
metric modified processed integrator, one applies the map

(2) \widetilde \psi N,h = \pi  \star 
h \circ \psi N

h \circ \pi h,

where \pi  \star 
h denotes the adjoint of \pi h, i.e., the map such that \pi  \star 

 - h = \pi  - 1
h (see, e.g., [37,

section 3.6] or [6, section 1.2]). This differs from standard processing (see (1)) in that
the adjoint rather than the inverse is used as a postprocessor. Since

( \widetilde \psi N,h)
 - 1 = \pi  - 1

h \circ (\psi N
h ) - 1 \circ (\pi  \star 

h)
 - 1

and \widetilde \psi N, - h = \pi  \star 
 - h \circ \psi N

 - h \circ \pi  - h = \pi  - 1
h \circ \psi N

 - h \circ (\pi  \star 
h)

 - 1,

the symmetric modified processed integrator (2) will be time reversible if \psi h is time
reversible.

D
ow

nl
oa

de
d 

09
/2

4/
21

 to
 1

57
.8

8.
33

.2
7 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3360 S. BLANES, M. P. CALVO, F. CASAS, J. M. SANZ-SERNA

For processing integrators, the map (1) that advances the solution over a time

interval [0, Nh] is the Nth power of the one-step map \widehat \psi h. For symmetric processing

the map \widetilde \psi N,h in (2) is not obtained by means of a similar N -fold composition of a
one-step map.

2.2. The case of splitting integrators. Although the idea of symmetric pro-
cessing is completely general, our attention is restricted to the case where in (2) \psi h

and \pi h are constructed via splitting (see, e.g., the monographs [37, 21, 6] and the
survey [29]). If the system being integrated may be written in the split form

d

dt
x = f(x) = fA(x) + fB(x),

and \phi At and \phi Bt represent the exact flows of the split systems, we deal with splitting
kernels

(3) \psi h = \phi Bb1h \circ \phi Aa1h \circ \cdot \cdot \cdot \circ \phi Aar - 1h \circ \phi Bbrh \circ \phi Aarh \circ \phi Bbrh \circ \phi Aar - 1h \circ \cdot \cdot \cdot \circ \phi Aa1h \circ \phi Bb1h.

(Since it is possible to set ar = 0, this format includes integrators where the central
flow is \phi B rather than \phi A. Similarly, one may set b1 = 0 to have integrators where the
extreme flows are \phi A.) The palindromic structure of (3) ensures time reversibility.
This integrator is consistent (in fact, of order \geq 2 due to symmetry) if

(4) 2a1 + \cdot \cdot \cdot + 2ar - 1 + ar = 1, 2b1 + \cdot \cdot \cdot + 2br - 1 + 2br = 1,

and in what follows we always assume that these conditions hold.
Similarly, we choose \pi h to be a composition of 2s flows of the form

(5) \pi h = \phi Acsh \circ \phi Bdsh \circ \cdot \cdot \cdot \circ \phi Ac1h \circ \phi Bd1h,

which leads to

(6) \pi  \star 
h = \phi Bd1h \circ \phi Ac1h \circ \cdot \cdot \cdot \circ \phi Bdsh \circ \phi Acsh.

We assume that

(7) c1 + \cdot \cdot \cdot + cs = 0, d1 + \cdot \cdot \cdot + ds = 0,

which imply that \pi h and \pi  \star 
h differ from the identity map by \scrO (h2) terms. In this way,

it is clear that (2) is a time reversible integrator with even order of accuracy \geq 2.
We use the abbreviations

(b1, a1, . . . , ar - 1, br, ar, br, ar - 1, . . . , a1, b1)

and

(cs, ds, . . . , c1, d1), (d1, c1, . . . , ds, cs)

to refer to (3), (5), and (6), respectively. In this way, (2) is denoted as

(8) (d1, c1, . . . , ds, cs)(b1, a1 . . . , br, ar, br, . . . , a1, b1)
N (cs, ds, . . . , c1, d1);

the palindromic structure is apparent.
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Table 1
HMC algorithm. The function H = (1/2)pTM - 1p + V (q) is the Hamiltonian. The algorithm

generates a Markov chain q(0) \mapsto \rightarrow q(1) \mapsto \rightarrow \cdot \cdot \cdot \mapsto \rightarrow q(mmax) reversible with respect to the target proba-
bility distribution \propto exp( - V (q)).

Given q(0) \in \BbbR d, mmax \geq 1, set m = 0.
1. (Momentum refreshment.) Draw p(m) \sim N(0,M).
2. (Integration leg.) Compute (q\ast , p\ast ) (q\ast is the proposal) by integrating, by means of a

reversible, volume-preserving integrator with step-size h, the Hamiltonian system (9) over
an interval 0 \leq t \leq Nh. The initial condition is (q(m), p(m)).

3. (Accept/reject.) Calculate

a(m) = min
\bigl( 
1, exp(H(q(m), p(m)) - H(q\ast , p\ast ))

\bigr) 
and draw u(m) \sim U(0, 1). If a(m) > u(m), set q(m+1) = q\ast (acceptance); otherwise, set
q(m+1) = q(m) (rejection).

4. Set m = m+ 1. If m = mmax stop; otherwise, go to step 1.

2.3. The Hamiltonian case. We have in mind the integration of Hamiltonian
systems of the form

(9)
d

dt
q =M - 1p,

d

dt
p =  - \nabla V (q),

where M is a symmetric, positive definite d \times d mass matrix and V denotes the
potential. Under the familiar q/p or potential/kinetic splitting, the split flow \phi At is
the solution flow of the system

d

dt
q =M - 1p,

d

dt
p = 0

and \phi Bt corresponds to
d

dt
q = 0,

d

dt
p =  - \nabla V (q).

In molecular dynamics the transformations \phi At and \phi Bt are known as drifts and kicks,
respectively. Thus an integration leg with the symmetric processed integrator (2) is
a succession kick, drift, kick, . . . , kick with a palindromic pattern and therefore time
reversible in the sense used above, i.e., ( \widetilde \psi N,h)

 - 1 = \widetilde \psi N, - h. This is equivalent to its

being time reversible with respect to momentum flipping [9], i.e., \widetilde \psi N,h(q, p) = (q\prime , p\prime )

implies \widetilde \psi N,h(q
\prime , - p\prime ) = (q, - p). (Note that changing t into  - t and p into  - p leaves

(9) invariant.) In addition the map (2) is volume preserving as a composition of kicks
and drifts. Time reversibility and volume preservation ensure that (2) may be used in
HMC applications with the simple standard recipe for the accept/reject probability
applied with leapfrog [9].

3. Choosing the parameters in HMC applications. The basic HMC algo-
rithm is summarized in Table 1. Even though other possibilities exist, here we take
the view that the length Nh of each integration leg is a quantity of order one, to
ensure that the proposal is sufficiently far from the current state in order to decrease
the correlation of the Markov chain [9]. Once a suitable value of the combination
Nh has been identified (typically by numerical experiment), the value of h has to be
chosen small enough for the energy error H(q(m), p(m)) - H(q\ast , p\ast ) to be small so as
to ensure a reasonable empirical rate of acceptance; see [4].
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The paper [8] suggests a technique to identify ``good"" parameter values in families
of numerical integrators for the Hamiltonian system (9) in the HMC context. Exten-
sive numerical experiments in statistical and molecular dynamics problems reported
in [13, 18, 11] clearly show the soundness of the approach in [8], which is the approach
that we follow here. However, the material in that paper cannot be directly applied to
symmetric modified processed algorithms, and in this section we present the necessary
modifications.

The technique in [8] is based on discriminating between integrators by applying
them to the one-degree-of-freedom model Hamiltonian p2/2 + q2/2 for which the
equations of motion correspond to the standard harmonic oscillator and the target
probability density function is \propto exp( - (p2 + q2)/2) so that q and p are independent
with a standard normal distribution. This is similar to the well-established idea
of discriminating between integrators for stiff systems of differential equations by
applying them to the simple scalar equation dy/dt = \lambda y. With the methodology
in [8] integrators are constructed by imposing that they have small energy errors
when applied to the standard harmonic oscillator. It may be proved rigorously by
diagonalization that the methods constructed in this way also yield small energy errors
for general multivariate Gaussian targets. In addition, numerical experiments show
that these integrators also behave well when applied to arbitrary target probability
distributions; this is particularly true for targets in high dimensions, where a central
limit theorem applies [11].

For the harmonic oscillator, N steps of a given palindromic splitting integrator
(3) define a linear transformation (q0, p0) \mapsto \rightarrow (qN , pN ) of the form

(10)

\biggl[ 
qN
pN

\biggr] 
=

\biggl[ 
C \chi S

 - \chi  - 1S C

\biggr] \biggl[ 
q0
p0

\biggr] 
.

Here (q0, p0) is the initial condition, (qN , pN ) the numerical solution at the end of the
integration leg, C and S are abbreviations for cos(N\theta h) and sin(N\theta h), respectively,
and \chi = \chi h, \theta = \theta h are quantities that change with the step length h. A priori, \theta h
may be complex-valued, but if h is of sufficiently small magnitude, then the 2 \times 2
matrix above is power bounded (stability) and, as shown in [8], this corresponds to \theta h
being real, something we assume hereafter. (In fact, the format (10) is not specific to
splitting integrators. It is shared by any reasonable time reversible, volume preserving
unprocessed integrator for (9); see [8, 9].) If N varies, the points (qN , pN ) defined by
(10) move on an ellipse of the (q, p)-plane, whose eccentricity is governed by \chi h. For
\chi h = 1, the transformation in (10) is a rotation, the ellipse becomes a circle, and the
energy error in the numerical simulation (1/2)(q2N +p2N ) - (1/2)(q20 +p

2
0) vanishes: all

proposals are then accepted; see step 3 in Table 1.
Similarly to (10), for the standard harmonic oscillator, the preprocessor \pi h and

the postprocessor \pi  \star 
h in (5) and (6) are respectively associated with 2\times 2 matrices of

the form

(11)

\biggl[ 
\alpha \beta 
\gamma \delta 

\biggr] 
,

\biggl[ 
\delta \beta 
\gamma \alpha 

\biggr] 
,

where \alpha = \alpha h, \beta = \beta h, \gamma = \gamma h, \delta = \delta h are polynomials in h, with \alpha h\delta h  - \beta h\gamma h = 1
by conservation of volume. In addition, \alpha h and \delta h are even in h and \beta h and \gamma h are
odd so that \biggl[ 

\delta  - h \beta  - h

\gamma  - h \alpha  - h

\biggr] 
=

\biggl[ 
\delta h  - \beta h
 - \gamma h \alpha h

\biggr] 
=

\biggl[ 
\alpha h \beta h
\gamma h \delta h

\biggr]  - 1

,
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as needed for a map and its adjoint. (It is perhaps useful to observe that in standard
processing (1), the matrix of the postprocessor would be\biggl[ 

\alpha h \beta h
\gamma h \delta h

\biggr]  - 1

=

\biggl[ 
\delta h  - \beta h
 - \gamma h \alpha h

\biggr] 
,

which differs from the postprocessing matrix for symmetric processing given in (11)
in the sign of the nondiagonal entries; these entries are \scrO (h) as h\rightarrow 0.)

Combining (10) with (11), one integration leg for (2) is then given by

(12)

\biggl[ 
qN
pN

\biggr] 
=

\biggl[ 
\scrA \scrB 
\scrC \scrA 

\biggr] \biggl[ 
q0
p0

\biggr] 
,

with \biggl[ 
\scrA \scrB 
\scrC \scrA 

\biggr] 
=

\biggl[ 
\delta \beta 
\gamma \alpha 

\biggr] \biggl[ 
C \chi S

 - \chi  - 1S C

\biggr] \biggl[ 
\alpha \beta 
\gamma \delta 

\biggr] 
.

We multiply out the matrices to find

\scrA = C(\alpha \delta + \beta \gamma ) + S(\gamma \delta \chi  - \alpha \beta \chi  - 1),

\scrB = C(2\beta \delta ) + S(\delta 2\chi  - \beta 2\chi  - 1),

\scrC = C(2\alpha \gamma ) + S(\gamma 2\chi  - \alpha 2\chi  - 1).

The ``ideal"" preprocessor has \alpha h = \chi 
1/2
h , \delta h = 1/\alpha h, \beta h = \gamma h = 0 leading to \scrA = C,

\scrB = S, \scrC =  - S. This processing is ideal because then (12) is a rotation, the sym-
metrically processed integrator conserves energy exactly, and there are no rejections
in HMC sampling. Unfortunately, such an ideal preprocessor cannot be realized by
means of a splitting formula of the form (5), and our aim now is to identify processors
so that (12) is, in a suitable sense, as close to a rotation as possible.

At this stage, we assume that q0 and p0 are independent random variables with
standard normal distribution (i.e., that the Markov chain is at stationarity) and con-
sider the change in energy

\Delta (q0, p0) =
1

2
(q2N + p2N ) - 1

2
(q20 + p20)

over one integration leg. Here (qN , pN ) and therefore \Delta (q0, p0) are deterministic
functions of the random initial condition and therefore random variables themselves.
By conservation of energy \Delta (q0, p0) would vanish if the integrator were exact; in HMC
simulations small values of \Delta correspond to high acceptance probability. In fact, it
is proved in [11, Theorem 1] that minimizing the expected energy error is equivalent
to maximizing the expected acceptance rate at stationarity. We have the following
result.

Proposition 1. With the preceding notation, \BbbE (\Delta ) = (1/2)(\scrB + \scrC )2.
Proof. An elementary computation yields

2\Delta = (\scrA 2 + \scrC 2  - 1)q20 + 2(\scrA \scrB + \scrC \scrA )q0p0 + (\scrB 2 +\scrA 2  - 1)p20

and therefore taking expectations

2 \BbbE (\Delta ) = 2\scrA 2 + \scrB 2 + \scrC 2  - 2.

The result follows because \scrA 2  - \scrB \scrC = 1 by conservation of volume.
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Note that \BbbE (\Delta ) \geq 0, a well-known fact in HMC simulations [4]. The proposi-
tion leads to our next result that extends to the situation at hand the bound in [8,
Proposition 4.3] valid for the unprocessed case.

Proposition 2. The expectation of \Delta may be bounded above as follows:

\BbbE (\Delta ) \leq \rho h,

with

\rho h = 2(\alpha \gamma + \beta \delta )2 +
1

2

\bigl[ 
(\delta 2 + \gamma 2)\chi  - (\alpha 2 + \beta 2)\chi  - 1

\bigr] 2
.

Proof. From the expressions for \scrB and \scrC 

(\scrB + \scrC )2 =
\Bigl( 
2C(\alpha \gamma + \beta \delta ) + S

\bigl[ 
(\delta 2 + \gamma 2)\chi  - (\alpha 2 + \beta 2)\chi  - 1

\bigr] \Bigr) 2

.

In the right-hand side we have the standard dot product of the vector v1 \in \BbbR 2 with
components 2(\alpha \gamma + \beta \delta ) and (\delta 2 + \gamma 2)\chi  - (\alpha 2 + \beta 2)\chi  - 1 and the unit vector v2 \in \BbbR 2

with components C = cos(N\theta h) and S = sin(N\theta h). Invoking the Cauchy--Schwarz
inequality, the magnitude of the inner product can then be bounded above by the
length of v1 and the result follows easily.

For a fixed symmetric processed integrator, the upper bound \rho h is independent
of the number of steps N ; it only depends on h and does so through the quantity \chi 
associated with the kernel and with the quantities \alpha , \beta , \gamma , \delta associated with the pre-
and postprocessor. Of course, in the case where a family of integrators is considered,
for each h the quantity \rho h changes with the specific choice of algorithm within the
family. According to the strategy in [8], one should pick up a value \=h that represents
the maximum value of h to be used in the simulations of the model problem and then
prefer the member of the family that minimizes the expected energy-error metric

\| \rho \| \=h = max
0<h<\=h

\rho h.

Thus, for a given family of integrators depending on parameters a, b, c, . . . , the param-
eter values are determined by minimizing \| \rho \| \=h, a quantity related to the performance
of the integrators when they are applied to the model harmonic problem. This min-
imization is performed once and for all, i.e., the parameter values found in this way
are used for all target distributions.

In [8] it is recommended to set \=h equal to the number of evaluations of \nabla V neces-
sary to perform a single time step. Note that this implies that making the integrator
more computationally intensive by increasing the number of gradient evaluations per
step increases the value of \| \rho \| \=h. (It is also possible [18] to adapt the value of \=h to the
specific Hamiltonian under consideration, but that line of thought will not be pursued
here.)

4. Specific integrators. Several specific (unprocessed) integrators were con-
structed in [8] by means of the methodology introduced there. In the next section we
will report numerical results for a method (to be referred to as BlCaSa) of the form (3)
with r = 2. A single time step of BlCaSa uses four evaluations of \nabla V , but, since the
evaluation of \nabla V at the first kick of the next time step coincides with the evaluation
at the last kick of the current step, the computational cost is essentially three gradi-
ent evaluations per time step. Integrators that use two or four evaluations per time
step were also constructed in [8], but that reference found three evaluations per time
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Table 2
The last four rows give information on symmetric processed integrators for HMC applications.

The methods have been found by minimizing the expected energy-error metric \| \rho \| \=h for the values of
\=h displayed in the leftmost column. The first row corresponds to the BlCaSa integrator. The table
provides the parameter values to run the integrators and, in the last column, the length of the linear
stability interval of the kernel.

\=h b c d \| \rho \| \=h hs

3 0.381120  -  -  -  -  -  -  -  -  - 7\times 10 - 5 4.662

3 0.348674  - 0.075640 0.069720 6\times 10 - 8 4.985
3.5 0.346660  - 0.079510 0.070171 5\times 10 - 7 5.010
4 0.343684  - 0.084690 0.071880 5\times 10 - 6 5.048
4.5 0.340200  - 0.093500 0.072800 5\times 10 - 5 5.095

step to be preferable. With two evaluations, the resulting larger value \| \rho \| \=h offsets
the benefit of the smaller computational cost per time step. Four evaluations lead
to a marginal improvement of \| \rho \| \=h, which does not really compensate for the extra
complication. In [11] BlCaSa was found to clearly outperform in HMC applications
other integrators of the family (3) with r = 2. For these reasons we will use BlCaSa
as a measuring rod to assess the efficiency of the symmetric processed integrators to
be constructed.

We focus our attention on symmetric processed integrators of the form (8) with
r = 2. After imposing the consistency requirement (4), we may regard a = a1 and b =
b2 as free parameters for the kernel. It is shown in [13] that unless a = b/(6b - 1) the
stability interval of the kernel is very short, which makes the integrator uncompetitive.
Therefore, we impose this relation and deal with a one-parameter family of kernels.
To keep pre- and postprocessing as simple as possible, we set s = 2, the lowest value
for which the consistency relations (7) have a nontrivial solution. We thus work with
a three parameter family of integrators of the form

(d, c, - d, - c)
\biggl( 
1

2
 - b, a, b, 1 - 2a, b, a,

1

2
 - b

\biggr) N

( - c, - d, c, d),

where a = b/(6b - 1). An integration leg requires a total of 3N+5 gradient evaluations
(two of them within the pre- or postprocessing). Of course, if N is large, this is
approximately 3N .

As discussed above, once \=h has been chosen, we determine the values of the
parameters b, c, d by minimizing \| \rho \| \=h. We use the following procedure. For fixed b,
c, d, we study \rho h as a function of h to check whether the largest \rho max of the local
maxima of \rho h in the open interval 0 < h < \=h does not exceed \rho \=h, the value at the
upper end of the interval. Once an initial set of parameter values with \rho max \leq \rho \=h
has been found by trial and error, we use continuation in b, c, d to improve the value
of \rho \=h while checking that \rho \=h \geq \rho max. Typically, several sets of values of b, c, d exist
leading to essentially the same value of \| \rho \| \=h.

Initially, we set \=h = 3, the choice suggested in [8]. The values we obtained can
be seen in Table 2, along with the length hs of the stability interval of the kernel,
i.e., the supremum of the step sizes h for which the matrix in (10) may be bounded
independently of N thus guaranteeing that errors do not grow exponentially as N
increases. (Note that the stability of the kernel determines the stability of the overall
integrator, since the pre- and postprocessor are applied only once.) For comparison
we have also included in the first row of the table the data corresponding to BlCaSa:
symmetric processing results in a reduction of \| \rho \| 3 by three orders of magnitude.

D
ow

nl
oa

de
d 

09
/2

4/
21

 to
 1

57
.8

8.
33

.2
7 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3366 S. BLANES, M. P. CALVO, F. CASAS, J. M. SANZ-SERNA

This reduction is achieved at the price of only four additional gradient evaluations
per integration leg. (Values of \| \rho \| \=h reported in the table have been rounded above,
and are therefore upper bounds.)

The extremely small value of \| \rho \| 3 that may be achieved in this way prompted us
to explore larger values of \=h, so as to obtain integrators meant to operate with larger
step sizes. Our results with \=h = 3.5, 4, or 4.5 are also reported in the table. The
integrator specified in the last row, run with 0 < h < 4.5, is (on the Gaussian model)
as accurate as BlCaSa when run with 0 < h < 3.

5. Numerical results. As in [8] our first test problem is the model multivariate
Gaussian target with density (qj is the j-component of q)

\propto exp

\left(   - 1

2

d\sum 
j=1

j2q2j

\right)  .
We have used the dimensions d = 256, d = 1024, and d = 4096: our interest is in
problems of large dimensionality, those where efficiency is more important (for targets
in very low dimension leapfrog/Verlet performs very satisfactorily as a consequence
of its optimal linear stability properties [9]). As in [11], integrations were performed
in the interval 0 \leq t \leq 5 for different stable choices of h, and we generated Markov
chains of 5,000 elements initialized from the target distribution. For reasons discussed
in detail in [11] and borne out by the extensive numerical experiments reported in
that paper, the efficiency of the algorithm and the quality of the samples is entirely
determined by the acceptance rate, and therefore, we will focus on this metric. The
conclusions to be drawn as to the merit of the different integrators based on the
behavior of the acceptance rate are the same that may be obtained by considering
other metrics such as mean square displacement, effective sample sizes of the different
components of q, etc.

Our results are summarized in Figure 1, where we compare the symmetrically
processed integrators with b = 0.348674 and b = 0.340200 (see Table 2) against the
integrator BlCaSa and standard velocity leapfrog/Verlet. The intermediate values
b = 0.346660 and b = 0.343684 in the table were also run; the results interpolate
between those of b = 0.348674 and those of b = 0.340200 and are not reported so as
to not blur the plots. For the symmetrically processed methods, the reported gradient
evaluation count includes the evaluations required by the pre- and postprocessing.

The left subplots give, for the four integrators, acceptance rate as a function of
the number of gradient evaluations per integration leg. Of course, for each integra-
tor, more gradient evaluations per leg (corresponding to smaller values of h) provide
higher acceptance rates. The advantage of the three multistage integrators over Verlet
is clearly borne out, and this advantage becomes more pronounced as the dimension-
ality increases (i.e., as it becomes more important to have efficient algorithms). For
the integrator with b = 0.348674, the runs with more gradient evaluations deliver
acceptance rates of virtually 100\%, which is in agreement with the low energy errors
that correspond to the extremely low value of \| \rho \| \=h reported in the table. Also note
that b = 0.340200 operates very well for runs with fewer evaluations (larger h) and
this matches the fact that this method was derived using a larger value of \=h.

Even though very low acceptance rates are unwelcome, very high acceptance
rates are also undesirable. In fact, it is well understood [4, 9, 11] that, for a given
integrator, a very high acceptance rate signals that the value of h being employed
is too small: one would do better by using the available computational budget to
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Fig. 1. Gaussian model. Comparison of the symmetrically processed methods with b = 0.348674
(blue circles) and b = 0.340200 (black diamonds) with the integrators BlCaSa (red triangles) and
leapfrog (green squares). The top, middle, and bottom panels have d = 256, d = 1024, and d = 4096,
respectively. On the left, acceptance percentage as a function of the number of evaluations per
integration leg. On the right, acceptance percentage divided by number of gradient evaluations for
different values of the step size h. For each integrator and d a star symbol on the marker identifies
the most efficient run. (Figure in color online.)

obtain longer Markov chains by getting proposals at a lower computational cost per
leg, even if that implies rejecting more proposals. For this reason, it is not easy to
assess the efficiency of the different integrators by examining the left subplots we
have been discussing. This efficiency is best assessed from the right subplots that
give, for different values of h, the acceptance rate per unit computational cost, i.e.,
the result of dividing the empirical acceptance rate achieved in a simulation by the
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Fig. 2. Log-Gaussian Cox problem. Comparison of the symmetrically processed methods with

b = 0.348674 (blue circles) and b = 0.340200 (black diamonds) with the integrators BlCaSa (red
triangles) and leapfrog (green squares). On the left, acceptance percentage as a function of the
number of evaluations per integration leg. On the right, acceptance percentage divided by number of
gradient evaluations for different values of the step size h. For each integrator a star symbol on the
marker identifies the most efficient run. (Figure in color online.)

number of gradient evaluations required. Larger values of this metric correspond to
more efficient sampling. The figure shows that according to our discussion, for a given
integrator, the best efficiency (i.e., the highest marker) is not obtained when h is too
small or too large. In the figure the most efficient run for each of the four integrators
has been indicated by a purple star on the corresponding marker. The right panels
make it clear that BlCaSa is far more efficient than Verlet and the gap in efficiency
increases with the dimensionality. For d = 4096 the optimal value of h for Verlet is
\approx 2\times 10 - 4 and then the acceptance rate divided by the number of gradient evaluations
is \approx 1 \times 10 - 3; for BlCaSA the optimal value of h is substantially larger \approx 8 \times 10 - 4

and yields an acceptance rate per unit computational cost \approx 4\times 10 - 3, approximately
a fourfold improvement on Verlet. In turn the performance of the symmetrically
processed integrators clearly improves on BlCaSa. For d = 4096, the integrator with
b = 0.340200 is roughly five times more efficient than Verlet and approximately 50\%
more efficient than BlCaSa.

We now present results (Figure 2) for a well-known Log-Gaussian Cox problem in
Bayesian inference, often used as a test [16, 19, 11]. The dimension is d = 4096. The
details of the sampling (length of the chain, burn-in, initialization, step sizes, time
length of the integration legs, etc.) are exactly as in [11] and will not be reproduced
here. The general pattern of the results is very similar to that in Figure 1. Again,
BlCaSa is roughly four times more efficient than Verlet. Now b = 0.348674 and
b = 0.340200 are equally efficient and their common efficiency is roughly 25\% higher
than that of BlCaSa.

We also carried out experiments with the Boltzmann distribution of the Alkane
molecule considered in [14] (see also [13, 11]). The results do not provide additional
insights and will not be reported here.

A final remark: since the number of gradient evaluations is 3N + 1 for BlCaSa
and 3N +5 for the symmetrically processed integrators, the advantages of processing
will decrease if the integration legs use very few time steps and become more marked
when many time steps are taken.
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6. Other uses of symmetric modified processing. As we will discuss now,
HMC sampling is not the only application where symmetric modified processing may
be useful.

In several problems, including the time-integration of parabolic partial differential
equations or the Schr\"odinger equation in imaginary time (as used in path integral com-
putations), all the coefficients appearing in a splitting algorithm have to be positive
(or complex with nonnegative real part). As is well known (see [5] and its references)
this sets an upper bound of two to the order of accuracy that may be achieved by
unprocessed splitting integrators. On the other hand, by using modified potentials, it
is possible [15, 35, 38] to construct kernels with effective order four and positive coef-
ficients which raises the question of how to construct suitable pre- and postprocessors
with positive coefficients. Unfortunately, for the standard processing format given by
(1) and (5), the relations (7) imply that at least one ci and one dj have to be negative.
This difficulty may be circumvented by symmetric modified processing as follows.

Going back to the general setting of section 2, if N \geq 2, the kernel \psi h to be
processed is time reversible, and we set \kappa h = \psi h \circ \pi h, then the definition in (2) may
obviously be rewritten as

(13) \widetilde \psi N,h = \kappa  \star h \circ \psi N - 2
h \circ \kappa h.

If now the map \kappa h is sought in the form

\kappa h = \phi A\alpha sh \circ \phi B\beta sh \circ \cdot \cdot \cdot \circ \phi A\alpha 1h \circ \phi B\beta 1h,

consistency demands

\alpha 1 + \cdot \cdot \cdot + \alpha s = 1, \beta 1 + \cdot \cdot \cdot + \beta s = 1,

and these relations may be satisfied with \alpha i, \beta i \geq 0, i = 1, . . . , s.
As an illustration of this idea, we have constructed a map \kappa h to obtain via (13) a

processed fourth-order integrator based on the well-known Rowlands method [35] for
Hamiltonian systems of the form (9). The Rowlands kernel uses modified potentials;
it may be viewed as a modification of the standard velocity Verlet method where, in
the kicks, the potential V (q) is replaced by a potential \widetilde V (q) obtained by adding to
V (q) a multiple of \nabla V (q)TM - 1\nabla V (q). More specifically, the Rowlands scheme reads

(14) \psi h = \widetilde \phi B( 1
2 ,

1
48 )h

\circ \phi Ah \circ \widetilde \phi B( 1
2 ,

1
48 )h

,

where \widetilde \phi B(b,c)h denotes the h-flow of

d

dt
q = 0,

d

dt
p =  - \nabla \widetilde V(b,c)h(q),

with \widetilde V(b,c)h(q) := b V (q) - h2 c\nabla V (q)TM - 1\nabla V (q).

To achieve order four, a processor \pi h has to satisfy four order conditions (including
the equation that ensures consistency). Those conditions are easily translated into as
many conditions for the map \kappa h = \psi h \circ \pi h. We looked for \kappa h of the form

\kappa h = \phi A\alpha 2h \circ \phi B\beta 2h \circ \phi A\alpha 1h \circ \widetilde \phi B(\beta 1,\gamma 1)h
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(note that one flow with modified potential is used), with five parameters at our
disposal. The four polynomial equations to be satisfied have the particular solution

\alpha 1 =
6

7
, \beta 1 =

23

72
, \gamma 1 =

55

1728
, \alpha 2 =

1

7
, \beta 2 =

49

72
,

where all coefficients are positive.
Methods of this class, involving flows of modified potentials, can also be used for

Hamiltonian Monte Carlo simulations in the context of lattice field theory [23, 24].
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