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NUMERICAL INTEGRATORS FOR THE HYBRID MONTE CARLO
METHOD∗

SERGIO BLANES† , FERNANDO CASAS‡ , AND J. M. SANZ-SERNA§

Abstract. We construct numerical integrators for Hamiltonian problems that may advanta-
geously replace the standard Verlet time-stepper within hybrid Monte Carlo and related simulations.
Past attempts have often aimed at boosting the order of accuracy of the integrator and/or reducing
the size of its error constants; order and error constant are relevant concepts in the limit of vanish-
ing step-length. We propose an alternative methodology based on the performance of the integrator
when sampling from Gaussian distributions with not necessarily small step-lengths. We construct new
splitting formulae that require two, three, or four force evaluations per time-step. Limited, proof-
of-concept numerical experiments suggest that the new integrators may provide an improvement on
the efficiency of the standard Verlet method, especially in problems with high dimensionality.
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1. Introduction. The present paper constructs numerical integrators for Hamil-
tonian problems that may advantageously replace the standard Verlet time-stepper
within hybrid Monte Carlo (HMC) and related simulations. HMC, introduced in the
physics literature by Duane et al. [9], is a Markov chain Monte Carlo method [24]
that has the potential of combining global moves with high acceptance rates, thus
improving on alternative techniques that use random walk proposals [22], [3]. It is
widely used in several areas, including quantum chromodynamics [14], [29], and is be-
coming increasingly popular in the statistics literature as a tool for Bayesian inference
(see, e.g., [22]). A longer list of references to various application areas may be seen in
[3]. At each step of the Markov chain, HMC requires the numerical integration of a
Hamiltonian system of differential equations; typically, the familiar Verlet algorithm
[28] has been used to carry out such an integration. Since the bulk of the computa-
tional effort in HMC lies in the simulation of the Hamiltonian dynamics, it is of clear
interest to investigate whether the simple Verlet algorithm may be replaced by more
sophisticated and efficient alternatives. In particular better integrators may reduce
the number of rejections, something valuable in applications such as molecular dy-
namics, where discarding a computed trajectory may be seen as a significant “waste”
of computational time. Although the physics literature is not lacking in efforts to
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Spain (serblaza@imm.upv.es). This author’s work was supported by MTM2010-18246-C03-02 from
Ministerio de Ciencia e Innovación, Spain.
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construct new integrators (see, e.g., [14], [29] and their references), the fact is that
Verlet remains the integrator of choice.

Past attempts to build integrators to improve on Verlet have typically started
from the consideration of families of split-step methods with one or several free
parameters; the values of those parameters are then adjusted to boost the order
of accuracy and/or to reduce the size of the error constants. We shall argue here
that such a methodology, while well established in numerical analysis, cannot be
expected to be fruitful within the HMC context. In fact, order of accuracy and er-
ror constants are notions that provide information on the behavior of an integrator
as the step-size h approaches 0 and in HMC simulations useful integrators oper-
ate with moderate or even large values of h. In an alternative approach, we begin
by associating with each numerical integrator a quantity ρ(h) that governs its be-
havior in simulations of Gaussian distributions (Proposition 4.3 and section 4.2).
More precisely ρ(h) provides an upper bound for the energy error when integrating
the standard harmonic oscillator and is relevant to all multivariate Gaussian tar-
gets. We then choose the values of the free parameters to minimize the size of ρ(h)
as h ranges over an interval 0 < h < h̄, where h̄ is sufficiently large.1 Numeri-
cal experiments show that the new approach does produce integrators that provide
substantial improvements on the Verlet scheme. On the other hand, when integra-
tors derived by optimizing error constants and Verlet are used with step-lengths that
equalize work, the energy errors of the former typically improve on those of Verlet
only for step-sizes so unrealistically small that the acceptance rate for Verlet is (very
close to) 100%.

After submitting the first version of the present work, we have become aware of
two additional references, [23] and [15], that are relevant to the issues discussed here.
The paper [23] considers integrators for Hamiltonian dynamics and, just as in the
present work, tunes the coefficients of the methods so as to ensure good conservation
of energy properties in linear problems; furthermore [23] discusses the reasons for the
relevance of linear models as guides to nonlinear situations. However, the optimization
criterion of [23] differs from ours, as it is based on maximizing the length of the
stability interval, subject to the annihilation of some error constants. In [15] the
authors deal with Langevin integrators and demonstrate methods which have exact
sampling for Gaussian distributions.

Sections 2 and 5 provide the necessary background on HMC and splitting in-
tegrators, respectively; in order to cater to readers with different backgrounds the
exposition there is rather leisurely. Section 3 studies a number of peculiarities of
the numerical integration of Hamiltonian systems specific to the HMC scenario. We
point out that the average size of the energy error is actually much smaller than one
would first believe. In such a scenario the optimal stability property of Verlet makes
the construction of a more efficient integrator a rather demanding challenge. Our
methodology for determining the free parameters in families of integrators is based on
Gaussian model problems; such models are studied in section 4. We show in particular
that for Gaussian targets and if the dimensionality is not extremely large, the Verlet
algorithm performs well with values of the step-length h that are moderate or large.
Section 6 presents our approach to the choice of free parameters. It also contains ex-
amples of methods with two, three, or four force evaluations per time-step derived by
following the new methodology. The new methods clearly outperform the Verlet inte-
grator, particularly so if the dimensionality of the problem is high. Section 7 reports

1This approach is somewhat reminiscent of the techniques used in [6] and [5].
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some numerical comparisons in a simple molecular example, and the final section is
devoted to conclusions.

2. The HMC method. The aim of the HMC algorithm is to obtain a Markov
chain [24] to sample from a probability distribution in R

d with density function of the
form

(2.1) π(q) ∝ exp(−V (q)).

The algorithm introduces an auxiliary variable p ∈ R
d, called momentum, and works

in the phase space R
2d of the variables (q, p), where one considers a Hamiltonian

function H (energy)

(2.2) H(q, p) =
1

2
pTM−1p+ V (q)

(M is a symmetric, positive-definite matrix chosen by the user) and a probability
density function

(2.3) Π(q, p) ∝ exp
(
−H(q, p)

)
= exp

(
−1

2
pTM−1p

)
exp

(
− V (q)

)
.

Thus q and p are stochastically independent, q is distributed according to the target
(2.1), and p has a Gaussian N(0,M) distribution.

The algorithm uses transitions in phase space (q(n), p(n)) → (q∗, p∗) = Ψ(q(n), p(n))
obtained through a mapping Ψ : R2d → R

2d that is volume preserving,

(2.4) det(Ψ′(q, p)) = 1

(Ψ′ is the Jacobian matrix of Ψ), and reversible (see Figure 1),

(2.5) Ψ(q, p) = (q∗, p∗) ⇔ Ψ(q∗,−p∗) = (q,−p).

If S denotes the mapping in phase space S(q, p) = (q,−p) (momentum flip), then the
reversibility requirement reads

Ψ ◦ S ◦Ψ = S

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−3
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1
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H = −1/8

(q,p)

(q,−p)

(q*,p*)

(q*,−p*)

Fig. 1. The level sets H = 2 and H = −1/8 in the phase plane (q, p) when V (q) = q4−q2. The
target distribution π(q) has modes at q = ±

√
2/2. A reversible transformation Ψ that maps (q, p)

into (q∗, p∗) must map (q∗,−p∗) into (q,−p). Here the move from (q, p) into (q∗, p∗) increases the
value of H and the move from (q∗,−p∗) to (q,−p) decreases H by the same amount.
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Given q(0) ∈ R
d, N ≥ 1, set n = 0.

1. Draw p(n) ∼ N(0,M). Compute (q∗, p∗) = Ψ(q(n), p(n)) (q∗ is the proposal).
2. Calculate a(n) = min

(
1, exp(H(q(n), p(n))−H(q∗, p∗))

)
.

3. Draw u(n) ∼ U(0, 1). If a(n) > u(n), set q(n+1) = q∗ (acceptance); otherwise set
q(n+1) = q(n) (rejection).

4. Set n = n+ 1. If n = N stop; otherwise go to step 1.

Fig. 2. Basic HMC algorithm. M and Ψ are respectively a positive-definite matrix and a
volume-preserving and reversible transformation in phase space; both are chosen by the user. The
function H is given in (2.2). The algorithm generates a Markov chain q(0) �→ q(1) �→ · · · �→ q(N)

reversible with respect to the target probability distribution (2.1).

(◦ denotes composition of mappings, i.e., (S◦Ψ)(q, p) = S
(
Ψ(q, p)

)
), or, since S−1 = S,

(2.6) Ψ−1 = S ◦Ψ ◦ S.

Figure 2 describes the basic HMC procedure. A proof of the fact that the al-
gorithm generates a Markov chain reversible with respect to the target probability
distribution (2.1) may be seen in [17] or [25]. (See also section 2.2 in [8], which contains
additional references.) HMC is of potential interest because by choosing Ψ appropri-
ately it is possible to have a proposal q∗ far away from the current location q(n) while
at the same time having a large probability a(n) of the proposal being accepted; that
is not the case for the random walk proposal in the standard Metropolis algorithm. (In
Figure 1, if the circle and the star correspond to (q(n), p(n)) and (q∗, p∗), respectively,
then the current location is in the neighborhood of the mode at q = −

√
2/2 and the

proposal is close to the other mode.)
It is in order to recall that the reversibility of a Markov chain with respect to

a target distribution is not by itself sufficient to ensure the ergodic behavior that is
required for the chain to yield trajectories that may be successfully used to compute
averages: additional properties like irreducibility are necessary. The discussion of
these issues is outside the scope of the present work and the interested reader is
referred, e.g., to [8] or [17].

Many variants and extension of the procedure in Figure 2 have been suggested in
the literature; see, among others, [1], [4], [11], [12], [22]. It is not our purpose here to
compare the merit of the variants of HMC or to compare HMC with other sampling
techniques.

2.1. Using Hamiltonian dynamics. A potentially interesting choice of trans-
formation (q∗, p∗) = Ψ(q(n), p(n)) would be obtained by fixing a number T > 0 and
setting q∗ = q(T ), p∗ = p(T ), where (q(t), p(t)) is the solution of the system of
differential equations

(2.7)
d

dt
q = ∇pH(q, p),

d

dt
p = −∇qH(q, p)

with initial condition q(0) = q(n), p(0) = p(n). In more technical words, in this choice,
Ψ coincides with the T -flow ϕH

T of the Hamiltonian system (2.7) [2], [10], [16], [26].
By selecting T suitably large, one then obtains a point (q∗, p∗) = ϕH

T (q(n), p(n)) away
from (q(n), p(n)). Furthermore, (2.7) implies

d

dt
H(q(t), p(t)) = 0
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(conservation of energy), so that in step 2 of the algorithmH(q(n), p(n))−H(q∗, p∗) = 0
and, accordingly, the probability of acceptance is a(n) = 1.

It is important to note here that for each choice of T , Ψ = ϕH
T satisfies the

requirements in Figure 2. In fact, the preservation of volume as in (2.4) is a well-
known result of the Hamiltonian formalism; see, e.g., [2], [10], [26]. Moreover, the
transformation Ψ = ϕH

T is reversible as in (2.5); this is checked by observing that
(q̄(t), p̄(t)) = (q(T − t),−p(T − t)) is the solution of (2.7) with initial condition q̄(0) =
q∗, p̄(0) = −p∗ and that (q̄(T ), p̄(T )) = (q(n),−p(n)).

Unfortunately the choice Ψ = ϕH
T is unfeasible: in cases of practical interest (2.7)

cannot be integrated in closed form and it is not possible to compute ϕH
T (q(n), p(n)).

HMC then resorts to transformations Ψ that approximate the true flow ϕH
T ; more

precisely (q∗, p∗) is obtained by integrating (2.7) with initial condition (q(n), p(n))
with a suitable numerical method. Not all methods can be considered: Ψ has to
satisfy the requirements (2.4) and (2.5). The well-known Verlet method, which we
describe next, is at present the method of choice.

2.2. The Verlet integrator. If h > 0 and I ≥ 1 denote respectively the step-
size and the number of time-steps, a velocity Verlet integration starting from (q0, p0)
may be represented as

(2.8) Ψ(q0, p0) = (qI , pI),

where (qI , pI) is the result of the time-stepping iteration:

pi+1/2 = pi −
h

2
∇qV (qi),(2.9)

qi+1 = qi + hM−1pi+1/2,

pi+1 = pi+1/2 −
h

2
∇qV (qi+1), i = 0, 1, . . . , I − 1.

For our purposes, the velocity Verlet algorithm is best seen as a splitting algorithm
(see [20] and [7]), where the Hamiltonian (2.2) (total energy) is written as a sum
H = A+B of two partial Hamiltonian functions,

(2.10) A = (1/2)pTM−1p, B = V (q)

that correspond to the kinetic and potential energies, respectively. The Hamiltonian
systems corresponding to the Hamiltonian functions A, B are given respectively by
(cf. (2.7))

d

dt
q = ∇pA(q, p) = M−1p,

d

dt
p = −∇qA(q, p) = 0

and

d

dt
q = ∇pB(q, p) = 0,

d

dt
p = −∇qB(q, p) = −∇qV (q)

and may be integrated in closed form. Their solution flows are respectively given by

(q(t), p(t)) = ϕA
t (q(0), p(0)), q(t) = q(0) + tM−1p(0), p(t) = p(0),

and

(q(t), p(t)) = ϕB
t (q(0), p(0)), q(t) = q(0), p(t) = p(0)− t∇qV (q(0)).
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Thus the Verlet time-step2 (qi, pi) → (qi+1, pi+1) in (2.9) corresponds to a transfor-
mation in phase space (qi+1, pi+1) = ψh(qi, pi) with

(2.11) ψh = ϕB
h/2 ◦ ϕA

h ◦ ϕB
h/2,

and the transformation Ψ = Ψh,I over I time-steps (see (2.8)) to be used in the
algorithm in Figure 2 is given by the composition

(2.12) Ψ = Ψh,I =

I times︷ ︸︸ ︷
ψh ◦ ψh ◦ · · · ◦ ψh .

Here ψh is volume-preserving as a composition of volume-preserving Hamiltonian
flows. Furthermore ψh is reversible because ϕB

h/2 and ϕA
h are both reversible and the

right-hand side of (2.11) is a palindrome (see (2.6)):

ψ−1
h =

(
ϕB
h/2

)−1 ◦
(
ϕA
h )

−1 ◦
(
ϕB
h/2)

−1

=
(
S ◦ ϕB

h/2 ◦ S
)
◦
(
S ◦ ϕA

h ◦ S
)
◦
(
S ◦ ϕB

h/2 ◦ S
)

= S ◦ ψh ◦ S.

It then follows that Ψh,I is volume-preserving and reversible. Note that Ψh,I is an
approximation to the true solution flow at time Ih: Ψh,I ≈ ϕH

Ih. Since ϕH
Ih preserves

energy exactly, the transformation Ψh,I may be expected to preserve energy approxi-
mately, so that in Figure 2, H(q(n), p(n))−H(q∗, p∗) ≈ 0 leading to large acceptance
probabilities.

Alternatively, the roles of q and p and those of the potential and kinetic energies
may be replaced to obtain the position Verlet time-stepping [28] (cf. (2.9)):

qi+1/2 = qi +
h

2
M−1pi,

pi+1 = pi − h∇qV (qi+1/2),

qi+1 = qi+1/2 +
h

2
M−1pi+1, i = 0, 1, . . . , I − 1.

This is obviously a splitting integrator:

(2.13) ψh = ϕA
h/2 ◦ ϕB

h ◦ ϕA
h/2.

The bulk of the work required to implement the Verlet velocity or position algo-
rithms comes from the evaluation of the gradient ∇qV . In this connection it should
be noted that the value ∇qV (qi+1) in (2.9) coincides with the value to be used at
the beginning of the subsequent i+ 1 → i+ 2 time-step. Thus both the velocity and
position versions require essentially one evaluation of ∇qV per time-step. In fact, in
the velocity or position version, it is possible to merge the last substep of the i → i+1
time-step, i = 1, . . . , I − 1, with the first substep of the subsequent time-step. This is
illustrated in Figure 3 for the velocity algorithm.

There is a feature of the velocity or position Verlet algorithms that, while not
being essential for the validity of the algorithm in Figure 2 (based on preservation

2In the numerical analysis literature it is customary to write “step” rather than “time-step.” Here
we use “step” to refer to the Markov chain transitions and “time-step” to refer to the integration.
Steps are indexed by the superindex n and time-steps by the subindex i.
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Given q(n), p(n) ∈ R
d, I ≥ 1, h > 0.

1. Set q = q(n), p = p(n), i = 0.
2. Evaluate ∇qV (q) and set p = p− (h/2)∇qV (q).
3. Set q = q + hM−1p, i = i+ 1.
4. If i < I, evaluate ∇qV (q) and set p = p− h∇qV (q), go to step 3. Otherwise go

to step 5.
5. Set q∗ = q, evaluate ∇qV (q), set p∗ = p− (h/2)∇qV (q) and stop.

Fig. 3. Velocity Verlet algorithm to find (q∗, p∗) = Ψ(q(n), p(n)) in Figure 2.

of volume and reversibility), plays an important role: symplecticness [2], [10], [16],
[26]. When d = 1 symplecticness is equivalent to preservation of volume (i.e., of
planar area); when d > 1 it is a stronger property. The symplecticness of the Verlet
algorithm is a direct consequence of two facts: (i) Hamiltonian flows like ϕA

t and ϕB
t

are automatically symplectic and (ii) the composition of symplectic transformations
is symplectic. It is well known that symplectic algorithms typically lead to energy
errors smaller than its nonsymplectic counterparts.

3. Integrating the equations of motion: Guidelines. The aim of this paper
is to ascertain whether there exist alternative integrators that improve on the per-
formance of the Verlet algorithm within HMC and related simulations. We limit our
attention to one-step integrators where the approximation at time (i + 1)h is recur-
sively computed as (qi+1, pi+1) = ψh(qi, pi). Then the transformation required by the
algorithm is given by performing I time-steps as in (2.12). If ψh is volume-preserving
(reversible), then Ψh will also be volume-preserving (reversible).

The following considerations give some guidelines for the choice of integrator:
1. In “general purpose” integrations, the error after I time-steps (global error)

(3.1) Ψh,I(q, p)− ϕH
Ih(q, p)

is of paramount importance. Here we are interested in energy errors3

Δ(q, p) = H(Ψh,I(q, p))−H(ϕH
Ih(q, p))

or, by conservation of energy,

(3.2) Δ(q, p) = H(Ψh,I(q, p))−H(q, p),

as only these determine the acceptance probability.
2. The sign of the energy error matters: Δ(q(n), p(n)) < 0 always leads to ac-

ceptance of the proposal.
In connection with the second item, it is remarkable that (see Figure 1) if Ψ is a

reversible transformation and (q, p) is a point in phase space with an energy increase
Δ(q, p) = H(Ψ(q, p))−H(q, p) > 0, then the point (q∗,−p∗) obtained by flipping the
momentum in Ψ(q, p) leads a decrease of the same magnitude

Δ(q∗,−p∗) = H(Ψ(q∗,−p∗))−H(q∗,−p∗) = −Δ(q, p) < 0.

Applying this argument to each point of a domain D, we see that if the transformation
is also volume-preserving, to each domain D with Δ > 0 there corresponds a domain

3While Δ depends on h and I, this dependence is not incorporated in the notation to avoid
cumbersome formulae.
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S(Ψ(D)) of the same volume with Δ < 0. The conclusion is that, speaking informally,
for the algorithm in Figure 2 the phase space will always be divided into two regions
of the same volume, one with Δ > 0 and the other with Δ < 0 (and hence leading to
acceptance).

It would be wrong to infer from this that the acceptance rate should always be at
least 50%. In fact, the standard volume (Lebesgue measure in phase space) is of little
relevance and we are rather interested in the measure Π in (2.3), as this gives the
distribution of (q(n), p(n)) at stationarity of the Markov chain. Note in Figure 1 that
a domain D with ΔH > 0 as above has lower values of H and carries more probability
under Π than the corresponding S(Ψ(D)); therefore when averaging Δ with respect
to Π the symmetry of the roles of the domains with positive and negative Δ will not
be complete.

More precisely, if

E(Δ) =

∫
R2d

Δ(q, p) exp
(
−H(q, p)

)
dq dp

denotes the average energy error, in Figure 1 we may observe

E(Δ) = −
∫
R2d

Δ(q, p) exp
(
−H(Ψ(q, p))

)
dq dp

(an analytic proof is provided in [3]). Thus

E(Δ) =
1

2

∫
R2d

Δ(q, p)
[
exp

(
−H(q, p)

)
− exp

(
−H(Ψ(q, p))

)]
dq dp

=
1

2

∫
R2d

Δ(q, p)
[
1− exp

(
−Δ(q, p)

)]
exp

(
−H(q, p)

)
dq dp

and from here one may prove [3]

0 ≤ E(Δ) ≤
∫
R2d

Δ(q, p)2 exp
(
−H(q, p)

)
dq dp.

This is a rigorous bound very relevant to our aims. It shows that the average energy
error E(Δ) is of the order of Δ2 and not of the order of Δ, as one may first have
guessed; the result holds under the only hypothesis that the transformation Ψ is
volume-preserving and reversible. If Ψ = Ψh,I corresponds to an integrator of order
ν, then the global error (3.1) and the energy error (3.2) may be bounded as O(hν)
provided that V is smooth and Ih remains bounded above and, accordingly, E(Δ) =
O(h2ν) (see [3] for technical details): for our purposes the order of the method is
doubled. Reversible integrators have necessarily an even order ν, Verlet has ν = 2 and
E(Δ) = O(h4); a fourth-order integrator would have E(Δ) = O(h8). To sum up: due
to the symmetries inbuilt in the situation, average size of Δ will be smaller than one
would have first anticipated. (See the numerical illustrations at the end of the next
section.)

4. Integrating the equations of motion: The model problem. A tradi-
tional approach in the analysis of integrators consists in the detailed study of the
application of the numerical method to the model scalar linear equation dy/dt = λy.
The conclusions are then easily extended, via diagonalization, to general linear, con-
stant coefficient problems and it is hoped that they also possess some relevance in
nonlinear situations. From a negative point of view, methods that are not successful
for the model equation cannot be recommended for real problems.
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4.1. The univariate case. In our setting, a similar approach leads us to con-
sider integrators as applied to the harmonic oscillator with Hamiltonian

(4.1) H =
1

2
(p2 + q2), q, p ∈ R,

and equations of motion

(4.2)
d

dt
q = p,

d

dt
p = −q.

From the sampling point of view, this corresponds to studying the case where the
target (2.1) is the standard univariate Gaussian distribution, the mass matrix is M =
1, and (2.3) is a bivariate Gaussian with zero mean and unit covariance matrix.4

We remark that the relevance of this simple model problem to realistic quantum
chromodynamics computations has been discussed in [14].

In matrix form, the solution flow of (4.2) is given by

(4.3)

[
q(t)

p(t)

]
= Mt

[
q(0)

p(0)

]
, Mt =

[
cos t sin t

− sin t cos t

]
.

For all integrators of practical interest, a time-step (qi+1, pi+1) = ψh(qi, pi) may be
expressed as

(4.4)

[
qi+1

pi+1

]
= M̃h

[
qi

pi

]
, M̃h =

[
Ah Bh

Ch Dh

]

for suitable method-dependent coefficients Ah, Bh, Ch, Dh, and the evolution over i
time-steps is then given by

(4.5)

[
qi

pi

]
= M̃ i

h

[
q0

p0

]
.

For a method of order ν,

(4.6) M̃h = Mh +O(hν+1), h → 0,

so that M̃ i
h = Mih +O(hν), as h → 0 with ih bounded above.

We restrict our interest hereafter to integrators that are both reversible and
volume-preserving (symplectic since here d = 1). For the model problem, (2.6) leads
to Ah = Dh and (2.4) implies AhDh − BhCh = 1. It is well known that then there
are four possibilities:

1. h is such that |Ah| > 1. In that case M̃h has spectral radius > 1 and therefore
the powers M̃ i

h grow exponentially with i. For those values of h the method
is unstable and does not yield meaningful results.

2. h is such that |Ah| < 1. In that case, M̃h has complex conjugate eigenvalues
of unit modulus and the powers M̃ i

h, i = 0, 1, . . . , remain bounded. The
integration is then said to be stable.

4We emphasize that it makes no practical sense to use a Markov chain algorithm to sample from
a Gaussian distribution, just as it makes no sense to integrate numerically the equation dy/dt = λy.
In both cases it is a matter of considering simple problems as a guide to the performance of the
algorithms in more realistic circumstances.



A10 SERGIO BLANES, FERNANDO CASAS, AND J. M. SANZ-SERNA

3. Ah = ±1 and |Bh| + |Ch| > 0. Then the powers M̃ i
h grow linearly with i

(weak instability).
4. Ah = ±1, Bh = Ch = 0, i.e., M̃h = ±I (stability).

For a consistent method, Ah = 1− h2/2 +O(h3), as h → 0, and therefore case 2
above holds for h positive and sufficiently small. The stability interval of the method
is defined as the largest interval (0, hmax) such that the method is stable for each h,
0 < h < hmax.

For h such that |Ah| ≤ 1, is expedient to introduce θh ∈ R such that Ah = Dh =
cos θh. For |Ah| < 1, we have sin θh �= 0 and we may define

(4.7) χh = Bh/ sin θh.

In terms of θh and χh, the matrices in (4.4) and (4.5) are then

(4.8) M̃h =

[
cos θh χh sin θh

−χ−1
h sin θh cos θh

]

and

(4.9) M̃ i
h =

[
cos(iθh) χh sin(iθh)

−χ−1
h sin(iθh) cos(iθh)

]
.

In the (stable) case Ah = ±1, Bh = Ch = 0, one has sin θh = 0 and the matrix M̃h is
of the form (4.8) for arbitrary χh.

5

From (4.6) it is easily concluded that for a method of order ν, χh = 1 + O(hν),
θh = h +O(hν+1) as h → 0. By comparing the numerical M̃ i

h in (4.9) with the true
Mih in (4.3), one sees that a method with θh = h would have no phase error: the
angular frequency of the rotation of the numerical solution would coincide with the
true angular rotation of the harmonic oscillator. On the other hand a method with
χh = 1 would have no energy error: the numerical solution would remain on the
correct level curve of the Hamiltonian (4.1), i.e., on the circle p2+q2 = p20+q20 . These
considerations may be made somewhat more precise with the help of the following
well-known proposition (cf. Example 10.1 in [26]), whose proof is a simple exercise
and will not be given.

Proposition 4.1. Consider a (reversible, volume-preserving) integrator (4.4)
and used with a stable value of h so that M̃h may be written in the form (4.8). Then

ψh = ϕH̃h

h , where

H̃h =
θh
2h

(
χhp

2 +
1

χh
q2
)

is the so-called modified (or shadow) Hamiltonian. In other words, one time-step of
length h of the numerical integrator coincides with the exact solution flow at time
t = h of the Hamiltonian system with Hamiltonian function H̃h.

As a consequence, i time-steps of length h coincide with the exact solution flow
at time t = ih of the Hamiltonian system with Hamiltonian function H̃h.

5Typically, it is still possible to define χh uniquely by continuity, i.e., by taking limits as ε → 0
in χh+ε = Bh+ε/ sin θh+ε. A similar remark applies to the quantity ρ(h) defined later; see (4.11).
Section 6 contains several examples of such a definition by continuity.
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Remark. The existence of a modified Hamiltonian is not restricted to harmonic
problems: symplectic integrators possess modified Hamiltonians such that the numer-
ical solution (almost) coincides with the true solution of the modified Hamiltonian
system; see, e.g., the discussion in [26, Chapter 10].

The preceding result implies that for each fixed initial point (q0, p0), the points
(qi, pi), i = 1, 2, . . . , obtained by iterating the integrator, (qi+1, pi+1) = ψh(qi, pi), lie
on the level set H̃h(q, p) = H̃h(q0, p0), i.e., on the ellipse

(4.10) χhp
2 +

1

χh
q2 = χhp

2
0 +

1

χh
q20 .

Proposition 4.2. In the situation of the preceding proposition, for a transition
over I time-steps (qI , pI) = Ψh,I(q0, p0), the energy error, Δ(q0, p0) = H(qI , pI) −
H(q0, p0), may be bounded as

Δ(q0, p0) ≤
1

2
(χ2

h − 1)p20

if χ2
h ≥ 1 or as

Δ(q0, p0) ≤
1

2

(
1

χ2
h

− 1

)
q20

if χ2
h ≤ 1.
Proof. We only deal with the first item; the other is similar. The ellipse (4.10) has

its major axis along the coordinate axis p = 0 of the (q, p) plane. Hence 2H(q, p) =
p2 + q2 attains its maximum on that ellipse if p = 0, which implies q2 = q20 +χ2

hp
2
0. If

(qI , pI) happens to be at that maximum, 2Δ(q0, p0) = (q20 + χ2
hp

2
0)− (q20 + p20).

Proposition 4.3. In the situation of the preceding propositions, assume that
(q0, p0) is a random vector with distribution (2.3), (4.1). Then the expectation of the
random variable Δ(q0, p0) is given by

E(Δ) = sin2(Iθh) ρ(h),

where

ρ(h) =
1

2

(
χ2
h +

1

χ2
h

− 2

)
=

1

2

(
χh − 1

χh

)2

≥ 0,

and accordingly

0 ≤ E(Δ) ≤ ρ(h).

Proof. With the shorthand c = cos(Iθh), s = sin(Iθh), we may write

2Δ(q0, p0) =

(
− 1

χh
sq0 + cp0

)2

+
(
cq0 + χhsp0

)2 − (
p20 + q20

)
or

2Δ(q0, p0) = s2
(

1

χ2
h

− 1

)
q20 + 2cs

(
χh − 1

χh

)
q0p0 + s2

(
χ2
h − 1

)
p20.

Since E(q20) = E(p20) = 1 and E(q0p0) = 0, the proof is ready.
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A trivial computation shows that, for |Ah| < 1,

(4.11) ρ(h) =
(Bh + Ch)

2

2(1−A2
h)

,

a formula that will be used repeatedly in section 6.
Remark. It is relevant to note that in the last two propositions the bounds

depend on h but do not grow with the number I of time-steps. It is typical of
symplectic integration that the energy error does not grow unboundedly as t increases;
see [10], [26].

Let us illustrate the preceding results in the case of the Verlet integrator. The
velocity version has Ah = 1−h2/2, Bh = h; therefore the stability interval is 0 < h < 2
(which is well known to be optimally long; see section 5.2 below) and, for those values
of h,

χ2
h =

h2

1−
(
1− h2

2

)2 =
1

1− h2

4

> 1.

The bound in Proposition 2 reads

(4.12) Δ(q0, p0) ≤
h2

8(1− h2

4 )
p20.

For h = 1, Δ(q0, p0) ≤ p20/6; therefore, if −2 < p0 < 2 (an event that for a standard
normal distribution has probability > 95%), then Δ(q0, p0) < 2/3, which results in a
probability of acceptance ≥ 51%, regardless of the number I of time-steps.

The position Verlet integrator has χ2
h = 1 − h2/4 < 1 provided that 0 < h < 2.

Proposition 2 yields

Δ(q0, p0) ≤
h2

8(1− h2

4 )
q20

(as one may have guessed from (4.12)).
From Proposition 3, for both the velocity and the position versions,

(4.13) E(Δ) ≤ ρ(h) =
h4

32(1− h2

4 )
.

(Note the exponent 4 in the numerator in agreement with the discussion in the pre-
ceding section.) For h = 1 the expected energy error is ≤ 1/24. Halving h to h = 1/2
leads to an expected energy error ≤ 1/480.

Remark. A comparison of a given integrator (4.4) with (4.3) shows that

(4.14)

[
qi+1

pi+1

]
= M̃h

[
qi

pi

]
, M̃h =

[
Ah −Ch

−Bh Dh

]

is a second integrator of the same order of accuracy. The integrators (4.4) and (4.14)
share the same interval of stability and the same θh. The function χh of (4.14) is
obtained by changing the sign of the reciprocal of the function χh of (4.4). Accordingly,
(4.4) and (4.14) share a common ρ(h). The velocity Verlet algorithm and the position
Verlet algorithm provide an example of this kind of pair of integrators.
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4.2. The multivariate case. We now consider general Gaussian targets

π(q) ∝ exp

(
−1

2
qTC−1q

)
.

(C is a symmetric, positive-definite, d × d matrix of covariances.) Elementary re-
sults on the simultaneous diagonalization of two quadratic forms show that there is a
canonical linear change of variables q = LQ, p = L−TQ that brings the Hamiltonian

H =
1

2
pTMp+

1

2
qTC−1q

to the format

1

2
PTP +QTDQ,

where D is a diagonal matrix with positive diagonal entries ω2
j . It is clear that in the

new variables the equations of motion are uncoupled:

d

dt
Q(j) = P(j),

d

dt
P(j) = −ω2

jQ(j), j = 1, . . . , d;

in fact this uncoupling is standard in the classical theory of small oscillations around
stable equilibria of mechanical systems [2].

The scaled variables P̄(j) = P(j), Q̄(j) = ωjQ(j) are uncorrelated and possess
standard normal distributions. For these variables, the equations of motion read

(4.15)
d

dt
Q̄(j) = ωjP̄(j),

d

dt
P̄(j) = −ωjQ̄(j).

Now for all integrators of practical interest, the changes of variables above com-
mute with the time-integration, i.e., the application of the change of variables to the
numerically computed q, p vectors yields the same results as the numerical integra-
tion of the differential system written in the new Q̄, P̄ , variables. Integrating the
j-oscillator in (4.15) with time-step length h is equivalent to integrating the standard
oscillator (4.2) with time-step length ωjh. Furthermore in the variables Q̄, P̄ the
value of the original energy H is simply∑

j

1

2
(̄P̄ 2

(j) + Q̄2
(j))̄.

Therefore, by applying Proposition 3 to each of the individual oscillators and then
summing over j, we conclude that, at stationarity, the error in the total energy H
satisfies, for stable h,

(4.16) 0 ≤ E(Δ) ≤
d∑

j=1

ρ(ωjh).

Thus the function ρ(h), defined in the context of the standard harmonic oscillator,
is really relevant to simulations of all Gaussian measures, regardless of the choice of
(symmetric, positive-definite) mass matrix.
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4.3. Numerical illustration. We have implemented the HMC algorithm based
on the position Verlet integrator for the target given by

∝ exp

⎛⎝1

2

d∑
j=1

j2q2(j)

⎞⎠
for 11 choices of the number of variates d = 1, 2, 4, . . . , 1024. (This distribution arises
by truncating a well-known Gaussian distribution on a Hilbert space; see details in
[4].) The mass matrix was chosen to be the identity so that the frequencies in the
harmonic oscillators are ωj = j and stability requires that the step-length be chosen
≤ 2/d. The chain was started with q(0) at stationarity and N = 5000 samples q(n)

were generated. In all experiments in this paper, the step-length was randomized
at the beginning of each Markov step by allowing ±20% variations around a mean
value h0,

h = (1 + u)h0, u ∼ U(−0.2, 0.2);

among other benefits, this recipe—taken from [22]—ensures that the observed results
are not contingent on a special choice of time-step length. We first set h0 = 1/d
(half the maximum allowed by stability). The number of time-steps was chosen as
I = 2d so that T = Ih ≈ 2, a reasonable value to uncorrelate succesive samples of the
“slowest” variate q(1). The results are displayed in Figure 4. The left panel presents
the observed fraction of accepted steps; as expected (energy and energy error grow
with the number of degrees of freedom) the fraction decreases as d increases and for
d = 1024 is ≈ 20%. (Let us observe that, according to Figure 2, with an energy error
Δ(q(n), p(n)) = 1, the proposal q∗ will be accepted with probability exp(−1) > 36%.)
The figure shows that choosing h0 to ensure stable integrations is not enough to
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Fig. 4. Position Verlet algorithm. The time-step length is randomized with mean h0 = 1/d
(stars) or h0 = 1/(2d) (squares). On the left the observed fraction of accepted steps as a function
of the number of variates d = 1, 2, . . . , 1024. On the right the time-average of the energy increment
as a function of d. The straight line corresponds to an increase proportional to d.
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achieve high rates of acceptance when the dimensionality of the problem is large. The
choice h0 = 1/d works very well in this example for d less than, say, 50.

The right panel displays

1

N

N−1∑
n=0

Δ(q(n), p(n)),

i.e., the observed time-average of the energy error; this is seen to grow linearly with
d in agreement with the behavior of the expectation in (4.16):

d∑
j=1

ρ(jh0) =

d∑
j=1

ρ(j/d) ≈ d

∫ 1

0

ρ(z) dz.

In the language of statistical physics, the time-average and the ensemble average
coincide, i.e., the behavior of the chain is ergodic.

Next we halved the time-step size to make it a quarter of the maximum allowed
by stability (h0 = 1/(2d), I = 4d). The Verlet integrator works well (acceptance
above 70%) with as many as 1,000 variates.

The right panel in the figure very clearly bears out the h4
0 behavior of the average

energy error. Accordingly, halving the value of h0 makes it possible to multiply by 16
the number of variates. The conclusion is that, for the problem at hand and if the
dimensionality is not exceptionally high, the Verlet integrator may operate well even
if the scaled (nondimensional) time-steps h0ωj are not much smaller than the upper
limit imposed by stability (say, if the maximum over j of h0ωj is between 1/2 and 1).

5. Splitting methods. In this paper we try to replace the Verlet formulae (2.11)
or (2.13) by more sophisticated palindromic compositions such as

(5.1) ψh = ϕB
b1h ◦ ϕA

a1h ◦ ϕB
b2h ◦ ϕA

a2h ◦ ϕB
b2h ◦ ϕA

a1h ◦ ϕB
b1h

or

(5.2) ψh = ϕA
a1h ◦ ϕB

b1h ◦ ϕA
a2h ◦ ϕB

b2h ◦ ϕA
a2h ◦ ϕB

b1h ◦ ϕA
a1h

(aj and bj are real parameters). For the reasons outlined in section 2, the single time-
step mappings ψh in (5.1) or (5.2) are volume-preserving, reversible, and symplectic.
In order to simplify the notation, we shall use the symbols

(b1, a1, b2, a2, b2, a1, b1)

and

(a1, b1, a2, b2, a2, b1, a1)

to refer to (5.1) and (5.2), respectively.
With a similar notation, one may consider r-stage compositions, r = 1, 2, . . . :

(5.3)

2r+1 letters︷ ︸︸ ︷
(b1, a1, b2, . . . , a1, b1)

or

(5.4)

2r+1 letters︷ ︸︸ ︷
(a1, b1, a2, . . . , b1, a1) .
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Obviously (5.4) requires r evaluations of ∇qV at each time-step. The same is essen-
tially true for (5.3), because, as discussed for the velocity Verlet algorithm, the last
evaluation of ∇qV at the current time-step is reused at the next time-step. As in the
Verlet algorithms, both (5.3) and (5.4) are best implemented by combining the last
substep of the current time-step with the first substep of the subsequent time-step.

5.1. Taylor expansion of the energy error. The Lie bracket of vector fields
plays an important role in the analysis of splitting integrators (see [20] and [7]). In the
Hamiltonian context, the vector-valued Lie bracket may be advantageously replaced
by the real-valued Poisson bracket of the Hamiltonian functions; recall that if F and G
are smooth real-valued functions in phase space, their Poisson bracket is, by definition,
the function [2], [26]

{F,G} =

d∑
j=1

(
∂F

∂q(j)

∂G

∂p(j)
− ∂F

∂p(j)

∂G

∂q(j)

)
.

(As before, q(j) and p(j) are the scalar components of the vectors q and p.) The prop-
erties of (5.3) or (5.4) are encapsulated in the corresponding modified Hamiltonian,
which, for consistent methods and in the limit h → 0, has an expansion

H̃h = H + h2k3,1{A,A,B}+ h2k3,2{B,A,B}(5.5)

+h4k5,1{A,A,A,A,B}+ h4k5,2{B,A,A,A,B}
+h4k5,3{A,A,B,B,A}+ h4k5,4{B,B,A,A,B}+O(h6),

where k�,m are polynomials in the coefficients aj , bj and expressions like {A,A,B} (or
{A,A,A,A,B}) are abbreviations to refer to iterated Poisson brackets {A, {A,B}}
(or {A, {A, {A, {A,B}}}}).6 Order ν ≥ 4 is then equivalent to the conditions k3,1 =
k3,2 = 0, while order ν ≥ 6 would require, in addition, k5,1 = k5,2 = k5,3 = k5,4 = 0.

By using the Lie formalism, the Taylor expansion of the energy after one time-step
is found to be [26, section 12.2]

H(qi+1, pi+1) = exp(−hLH̃h
)H(qi, pi)

= H(qi, pi)− hLH̃h
H(qi, pi) +

1

2
h2L2

H̃h
H(qi, pi) + · · · ,

where LH̃h
is the Lie operator LH̃h

(·) = {H̃h, ·}. A trite computation then yields

(5.6) Δ(qi, pi) = h3k3,1{A,A,A,B}+ h3(k3,1 + k3,2){A,B,A,B}+O(h4).

(The iterated brackets in the right-hand side are evaluated at (qi, pi).) Thus, when h
is small, E∗ = k23,1 + (k3,1 + k3,2)

2 is a measure of energy errors. The velocity Verlet
integrator has a value of E∗ larger than that of its position counterpart.

5.2. Optimal stability of the Verlet integrator. The application of a method
of the form (5.3) or (5.4) to the standard harmonic oscillator (4.1) results in a recursion of
the form (4.4). (Of course Ah = Dh, A

2
h −BhCh = 1 due to reversibility and volume

preservation.) Additionally Ah is a polynomial of degree ≤ r in ζ = h2 and, for

6Here we have used that {B,B,A,B} = 0, a condition that is implied by the fact that A is
quadratic in the momentum p (see (2.10)). For splittings with {B,B,A,B} 	= 0 there are six O(h4)
terms in the expansion of H̃h.
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consistent methods, Ah = 1−h2/2+O(h4) as h → 0. By using well-known properties
of the Chebyshev polynomials it is not difficult to prove that a polynomial P (ζ)
of degree ≤ r subject to the requirements P (0) = 1, P ′(0) = −1/2 cannot satisfy
−1 ≤ P (ζ) ≤ 1 for 0 < ζ < ζmax if ζmax > 4r2. This proves that there is no choice of
coefficients for which the stability interval (0, hmax) of (5.3) or (5.4) has hmax > 2r
(see [13]).7 Furthermore, since the velocity Verlet algorithm has stability interval
0 < h < 2, the concatenation ψh = ψVelVer

h/r ◦ · · · ◦ψVelVer
h/r of r time-steps of length h/r

is a method of the form (5.3) that attains the optimal value hmax = 2r; similarly the
r-fold concatenation ψh = ψPosVer

h/r ◦ · · · ◦ ψPosVer
h/r is a method of the form (5.4) with

optimal stability interval.
When comparing the size of stability intervals the computational effort has to

be taken into account: with a given amount of computational work, an integrator
with fewer function evaluations per time-step may take shorter time-steps to span
a given time interval 0 ≤ t ≤ T . It is therefore a standard practice to normalize
the length hmax of the stability interval of explicit integrators by dividing by the
number of force evaluations per time-step. According to the preceding discussion,
the (position or velocity) Verlet algorithm and its concatenations have an optimal
normalized stability interval of length 2. Integrators with short normalized stability
intervals are of no interest here as they cannot compete with the Verlet scheme. (See
the conclusion at the end of the preceding section.) In particular and as we shall see
later, high-order methods proposed in the literature have stability intervals far too
short and cannot compete in practice with the performance of the Verlet scheme in
HMC simulations.

6. Choice of coefficients. In this section we address the question of how best
to choose the number of stages r and the coefficients aj and bj in (5.3) or (5.4). In the
derivation of numerical integrators, both for general and HMC use (see, e.g., [29]), it is
customary to first determine r to achieve a target order of accuracy ν and to then use
any remaining free parameters to minimize the error constants. In the Hamiltonian
scenario a standard way of minimizing the error constants is to reduce the coefficients
of the modified Hamiltonian (5.5). For instance, for a method of second order, one
would try to minimize some norm of the vector (k3,1, k3,2). However, the ideas of
order of accuracy and local error constants both refer to the asymptotic behavior of
the integrator as h → 0 and we have seen in sections 3 and 4 that the Verlet integrator
is capable of performing well in HMC simulations for rather large values of the time-
step h. Accordingly, we shall determine r, aj , and bj by means of a different strategy
based on Gaussian models. Given a family of methods, we shall express the quantity
ρ(h) defined in Proposition 4.3 as a function of the method coefficients and then we
shall choose these coefficients to minimize

‖ρ‖(h̄) = max
0<h<h̄

ρ(h),

where h̄ is a suitable maximum time-step. (It is tacitly understood that h̄ is smaller
than the maximum step-size allowed by stability.) More precisely, since in section 4

7By arguing as in [27], the conclusion hmax ≤ 2r also follows from the well-known Courant–
Friedrichs–Lewy (CFL) restriction for the integration of hyperbolic partial differential equations.
Consider the familiar wave equation ∂tQ(x, t) = P (x, t), ∂tP (x, t) = ∂2

xQ(x, t) with periodic boundary
conditions and discretize the space variable x by standard central differences. The highest frequency
is ω = 2/Δx. A consistent, explicit, one-step integrator using r force evaluations per time-step
with stability interval longer than 2r would yield a convergent approximation to the wave problem
for h/Δx > r and this violates the CFL restriction.
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we saw that for the standard harmonic oscillator, the Verlet method is capable of
performing well in HMC simulations when h ≈ 1, an efficient r-stage method should
be able to operate well with h ≈ r. (If that were not the case, use of the Verlet method
with time-step h/r would outperform the more complex integrator with time-step h.)
Following this rationale, we set h̄ = r and use ‖ρ‖(r) as a metric for the quality of an
integrator within the HMC algorithm.8

6.1. Two-stage methods: (a1, b1, a2, b1, a1). We start by discussing in de-
tail methods of the form (a1, b1, a2, b1, a1). Consistent integrators have to satisfy
b1 = 1/2, a2 = 1− 2a1 and this leaves the one-parameter family

(6.1) (a1, 1/2, 1− 2a1, 1/2, a1).

The choices a1 = 0 and a1 = 1/2 are singular; for them the integrator reduces to the
velocity Verlet and position Verlet algorithm, respectively. Furthermore, for a1 = 1/4
one time-step ψh of (6.1) coincides with the concatenation ψPosVer

h/2 ◦ ψPosVer
h/2 of two

time-steps of length h/2 of the position Verlet integrator. A standard computation
(say, using the Baker–Campbell–Hausdorff9 (BCH) formula [26]) yields

k3,1 =
12a21 − 12a1 + 2

24
, k3,2 =

−6a1 + 1

24
.

Since no choice of a1 leads to k3,1 = k3,2 = 0, no method of the family achieves order
4; see (5.5). The expression E = k23,1 + k23,2 that measures the leading error terms
turns out to be a convex function of the free parameter a1 and has a minimum value
E ≈ 7× 10−5 at a1 ≈ 0.1932, as first observed by McLachlan [18].

For comparison, a1 = 1/4, which is equivalent to the standard position Verlet
integrator, yields a much worse E ≈ 9×10−3. Therefore the choice a1 ≈ 0.193 has been
recommended in the HMC context10 [29] (this paper and [18] give a representation of
a1 in terms of surds).11

As discussed above, we here follow a different strategy, based on Gaussian models.
We first find from (4.11)

(6.2) ρ(h) =
h4

(
2a21(1/2− a1)h

2 + 4a21 − 6a1 + 1
)2

8
(
2− a1h2

)(
2− (1/2− a1)h2

)(
1− a1(1/2− a1)h2

) .
Stability is equivalent to the positivity of the denominator. Note that for a1 = 0 or
a1 = 1/2 the quotient (6.2) reduces to (4.13), as it should. When a1 ≤ 0 or a1 ≥ 1/2,
k3,1 and k3,2 are too large and the stability interval too small. Therefore, useful
methods have 0 < a1 < 1/2. In this parameter range, the stability interval is

(6.3) 0 < h < min
{√

2/a1,
√

2/(1/2− a1)
}
,

8It is clear that it is also possible to consider alternative values of h̄ or norms different from the
maximum norm. Such a fine tuning will not be undertaken here.

9The use of the BCH formula to analyze splitting algorithms may be bypassed by following the
approach in [21].

10The paper [29] does not cite McLachlan [18] and attributes the method to later papers by
Omelyan and his coworkers.

11The expansion (5.6) may suggest minimizing E∗ = k23,1 + (k3,1 + k3,2)2. This leads to a1 =
0.1956 . . . . We shall not be concerned with this value of a1, as the method is very similar to the one
derived via minimization of E.
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Fig. 5. ρ(h) as a function of h, 0 < h < 2, for three members of the family (6.1): a1 = 0.25
(equivalent to the position Verlet algorithm), a1 with mimimum error coefficient E (a1 ≈ 0.1932),
and a1 in (6.4). With a1 = 0.25, ρ(h) ↑ ∞ as h → 4; for the other two choices the vertical asymptote
is located at h ≈ 2.55 and h ≈ 2.63, respectively. The right panel, with an enlarged vertical scale,
0 < ρ < 0.001, shows the superiority of the minimum error coefficient method for small h.

provided that a1 �= 1/4. When a1 = 1/4, the product
(
2 − a1h

2
)(
2 − (1/2 − a1)h

2
)

in the denominator of (6.2) is a factor of the numerator and a simplification takes
place: the fraction reduces to (4.13) with h replaced by h/2 and the stability interval
is 0 < h < 4 in lieu of the shorter interval 0 < h < 2

√
2 in (6.3). This corresponds to

the earlier observation that for a1 = 1/4, the method coincides with the concatenation
ψPosVer
h/2 ◦ ψPosVer

h/2 .

The next task is to determine a1 to minimize ‖ρ‖(2). This yields a1 = 0.21178 . . .
but, to avoid cumbersome decimal expressions, we shall instead use the approximate
value12

(6.4) a1 =
3−

√
3

6
≈ 0.21132,

which gives ‖ρ‖(2) ≈ 5 × 10−4. For comparison, a1 = 1/4 has a substantially larger
‖ρ‖(2) ≈ 4 × 10−2 and the method of McLachlan with minimum error constant has
‖ρ‖(2) ≈ 2× 10−2. Thus, when using ‖ρ‖(2) as a metric, the minimum error constant
method provides only a marginal improvement on Verlet. In Figure 5, we see that
while the minimum error constant method leads to the smallest values of ρ(h) for h <
1, the choice (6.4) ensures a much better behavior over the target interval 0 < h < 2.

We have considered again the experiment in section 4.3, this time comparing the
position Verlet algorithm with h0 = 1/d and I = 2d (i.e., the parameters for the run
marked by stars in Figure 4) with members of the family (6.1) with h0 = 2/d, I = d, so
as to equalize work. The results are shown in Figure 6. In this problem the minimum
error constant method provides an improvement on Verlet, but its performance is

12For this choice of a1, k3,1 = 0, so that the literature [19] has suggested this value for cases where
in (5.5) {A,A,B} is much larger than {B,A,B}.
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Fig. 6. Observed fraction of accepted steps as a function of the number of variates d =
1, 2, . . . , 1024. Stars: position Verlet with (average) step-size h0 = 1/d. Circles: two-stage method
with minimum error constant, average step-size h0 = 2/d. Diamonds: suggested two-stage method
(6.4), (average) step-size h0 = 2/d.

markedly worse than that of the method with the value (6.4) suggested here. While
the advantage of the method (6.4) over Verlet in Figure 6 occurs for all values of d,
it becomes more prominent as d increases.

A comparison of Figures 4 and 6 shows that the fraction of accepted steps is
larger for the two-stage method (6.4) with h0 = 2/d (diamonds) than for the Verlet
algorithm with h0 = 1/(2d) (squares). (The latter simulation is twice as costly.)

6.2. Two-stage methods: (b1, a1, b2, a1, b1). Let us now turn our atten-
tion to the format (b1, a1, b2, a1, b1). By the remark at the end of section 4.1 the
function ρ(h) of such a method coincides with that of the method of the format
(a1, b1, a2, b1, a1) based on the same sequence of numerical values of the coefficients.
This leads to the integrator

b1 =
3−

√
3

6
, a1 = a2 = 1/2, b2 = 1/2− b1,

which has

k3,1 =
6λ− 1

24
, k3,1 + k3,2 =

−12λ2 + 18λ− 3

24
, λ =

3−
√
3

6
.

For (6.1) with a1 given in (6.4)13

k3,1 = 0, k3,1 + k3,2 =
−12λ2 + 18λ− 3

24
;

we find no reason to prefer in this context the (b1, a1, b2, a1, b1) sequence, since both
methods share the value of k3,1 + k3,2 and |k3,1| is smaller for the (a1, b1, a2, b1, a1)
format.

For brevity in what follows we shall not consider again formats beginning with
the letter b.

13The lack of symmetry of the (a1, b1, a2, b1, a1) and (b1, a1, b2, a1, b1) formats is due to the fact
that (5.6) is not symmetric in A and B, which in turn is a consequence of the fact that {B,B,A,B} =
0, while nothing can be said in general about {A,A,B,A}.
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6.3. Three stages. For the three-stage format (a1, b1, a2, b2, a2, b1, a1), consis-
tency requires a2 = 1/2 − a1, b2 = 1 − 2b1 and therefore we have to consider the
two-parameter family

(a1, b1, 1/2− a1, 1− 2b1, 1/2− a1, b1, a1).

The choice a1 = (1/2)(2− 21/3)−1, b1 = 2a1 leads to a fourth-order integrator (k3,1 =
k3,2 = 0) that goes back to Suzuki, Yoshida, and others; see, e.g., [26, Chapter 13].
Its stability interval is very short: approximately 0 < h < 1.573. In the HMC context,
this fourth-order integrator has been considered by the physics literature (see, e.g.,
[14], [29]; the former reference notes the poor stability properties).

According to our methodology, we choose the free parameters so as to minimize
the maximum of ρ(h) over the interval 0 < h < 3. The situation is somewhat delicate,
as we shall explain presently. Let us first consider the choice a1 = 1/6, b1 = 1/3,
leading to the concatenation ψPosVer

h/3 ◦ ψPosVer
h/3 ◦ ψPosVer

h/3 , that as discussed in section

5.2 possesses optimal stability interval (0, 6). At h = 3, this method has Ah = −1,
Bh = Ch = 0. Furthermore h = 3 is a simple root of the equations Bh = 0 and
Ch = 0 and a double root of the equation Ah = −1. By the implicit function theorem,
when the coefficients a1 and b1 are perturbed away from a1 = 1/6, b1 = 1/3, the
root h = 3 of the equation Bh = 0 moves to a location hB(a1, b1) ≈ 3. In a similar
manner, the root of Ch = 0 moves to a location hC(a1, b1) ≈ 3, that, generically,
does not coincide with hB(a1, b1). Now, the relation A2

h = 1 + BhCh, which follows
from conservation of volume, ensures that both hB and hC are roots of Ah = −1.
In other words, perturbations generically change the double root h = 3 of Ah = −1
present in the concatenated Verlet method into two real simple roots hB , hC ; in the
neighborhood of such simple roots Ah cannot remain ≥ −1 and we conclude that, for
generic perturbations, the integrator is unstable near h ≈ 3.

In order to identify integrators (not necessarily close to the concatenated Verlet
method) that do not turn unstable for h ≈ 3 due to Ah becoming < −1 we proceed as
follows. We write Ah, Bh, Ch in terms of the parameters a1, b1 (the expressions are

cumbersome and will not be reproduced here), fix a value ĥ, and consider the system
of two (nonlinear) equations

(6.5) A
̂h = −1, B

̂h + C
̂h = 0

for the two unknowns a1, b1. When these relations hold, from A2
h−BhCh = 1, we infer

that B
̂h = C

̂h = 0 and ĥ is a stable value. Furthermore, if ′ denotes differentiation
with respect to h,

2AhA
′
h −B′

hCh −BhC
′
h = 0

and therefore A′
̂h
= 0, so that Ah will have a minimum at h = ĥ and thus remain ≥ −1

in the neighborhood of ĥ. Note also that in (4.11), the zero of the denominator at

h = ĥ may be simplified with the corresponding zero of the numerator (an occurrence
we already found when discussing (6.2) and that entails an “enlargement” of the
stability interval).

We solve the system of equations (6.5) and find the following family of integrators

parameterized by the location ĥ of the double root of Ah = −1:

(6.6) a1 =
1

2
− 3

ĥ2
±

√
9− ĥ2

ĥ2
, b1 =

3

ĥ2
±

√
9− ĥ2

ĥ2
, 0 < ĥ ≤ 3.
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Fig. 7. Observed fraction of accepted steps as a function of the number of variates d =
2, 4, . . . , 1024. Stars: position Verlet algorithm with (average) step-size h0 = 1/d. Triangles: three-
stage method (6.7) with h0 = 3/d.

For ĥ = 3, the integrator is the concatenation of three Verlet substeps discussed above.
For ĥ = 2

√
2 and the positive value of the square root, we find a1 = 0, b1 = 1/4 and

the integrator is ψVelVer
h/2 ◦ ψVelVer

h/2 , with stability interval 0 < h < 4. The negative

value of the square root leads to a1 = 1/4, b1 = 1/2 (b2 = 0), i.e., to ψPosVer
h/2 ◦ψPosVer

h/2 ,

whose stability interval is again 0 < h < 4.14

Finally we determine ĥ in (6.6) by minimizing ‖ρ‖(3). This yields the parameter
values

(6.7) a1 = 0.11888010966548, b1 = 0.29619504261126,

with ‖ρ‖(3) = 7 × 10−5 and stability interval of length ≈ 4.67. (The double root is

located at ĥ ≈ 2.98.)15

An illustration of the performance of the new integrator may be seen in Figure 7,
which refers again to the experiment in section 4.3. The position Verlet algorithm
is run with h0 = 1/d (as in Figures 4 and 6) and, in order to equalize work, the
three-stage method (6.7) was used with h0 = 3/d. The number of time-steps was
taken to be (the integer closest to) 2d/3 for (6.7) and thrice that number for Verlet,
so that the (average) final time is T = 2 and both methods use the same number of
force evaluations. The advantage of the three-stage method over both Verlet and the
optimized two-stage integrator is clearly felt.

It is of interest to point out that with the present choice h0 = 3/d the fourth-
order, three-stage integrator is unstable; in fact h0 would have to be halved to barely
ensure stability. However, when the step-length is halved, Verlet delivers satisfactory
acceptance rates, as we saw in Figure 4. We conclude that the benefits of high order
take place only when h0 is too small for the goals of the integration.

14Not all members of the family of methods (6.6) are stable for all values of h, 0 < h < 3, as
instability may also occur by Ah becoming larger than 1.

15The perturbation argument presented above for the concatenated Verlet method applies to
perturbations of any member of the family (6.6): generic perturbations turn the double root into

two simple real roots, which leads to instability near ĥ.
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6.4. Four stages. With four stages (a1, b1, a2, b2, a3, b2, a2, b1, a1), by using a
similar procedure we find the method, with ‖ρ‖(4) ≈ 7× 10−7,

a1 = 0.071353913450279725904,(6.8)

a2 = 0.268548791161230105820,

b1 = 0.191667800000000000000.

(The remaining parameter values are determined by consistency, i.e. b2 = 1/2 − b1,
a3 = 1 − 2a1 − 2a2.) The method has a stability interval of length ≈ 5.35. (The
equation Ah = −1 possesses a double root at ≈ 3.04.) For the target in section 4.3
with h0 = 4/d and I = d/2 (which involves the same computational effort as the
Verlet runs marked by stars in Figures 4 and 6) the observed fraction of accepted
steps remains above 98% for all values of d = 2, 22, . . . , 210. Such large acceptance
rates would be most welcome in variants of HMC, including the generalized HMC of
Horowitz [11], [1], where rejections are particularly troublesome.

7. A small molecule. A detailed benchmarking of the various integrators in
different application examples will be considered elsewhere and is not within the
scope of our work here. However, since our methodology is based on a Gaussian
model problem, it is of clear interest to run some proof-of-concept experiments with
non-Gaussian targets. We have used as a test problem the Boltzmann distribution of
a pentane molecule, as in the numerical comparisons in [8]. The model has 15 degrees
of freedom (the Cartesian coordinates of the five carbon atoms); it includes very
strong forces associated with the carbon-carbon covalent bond length and softer forces
associated with the bond and dihedral angles and also Van der Waals interactions.
The number of vibrational degrees of freedom, nine, as there are six corresponding to
rigid-body motions, is modest and therefore we may expect that the Verlet algorithm
may be able to work with step-sizes not much smaller than the maximum allowed by
stability; thus the choice of problem may be considered to be biased in favor of Verlet.
The molecule has several stable configurations (minima of the potential energy) and
therefore the target distribution is multimodal; the highly nonlinear Hamiltonian
dynamics moves the molecule among the different configurational energy basins. Some
degrees of freedom (i.e., bond lengths) have very small variances; others (such as
dihedral angles) vary by substantial amounts. We set the molecule parameters as in
[8] and the results reported here correspond to an inverse temperature β = 1/2. The
simulation starts from the most stable configuration and from there takes 200 Markov
burn-in HMC steps to bring the chain to stationarity; after that, samples are taken
from the next 512 Markov steps. Five integrations are considered:

• position Verlet integrator, h0 = 0.02, I = 24;
• minimum error constant two-stage integrator, h = 0.04, I = 12;
• two-stage integrator (6.4), h = 0.04, I = 12;
• three-stage integrator (6.7), h = 0.06, I = 8;
• four-stage integrator (6.8), h = 0.08, I = 6.

The values h0 = 0.02, I = 24 were tuned to provide a good performance of the
Verlet algorithm. (Performance was measured by the efficiency in computing the
probabilities that the molecule is in its different configurational basin.) After that,
the values of h0 and I for the other integrators were determined to ensure that all
integrations share a common computational effort.

For each integrator we computed 100 realizations of the Markov chain; Table 1
displays the mean value (over the 100 samples) of the empirical acceptance rate (after
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Table 1

Pentane molecule. Mean value and standard deviation, over 100 realizations of the Markov
chain, of the observed acceptance ratio.

Integrator μ σ

(One-stage) Verlet 85% 2.0%
Two-stage minimum error constant 80% 1.9%
Two-stage minimum ρ (6.4) 92% 1.2%
Three-stage minimum ρ (6.7) 97% 0.7%
Four-stage minimum ρ (6.8) 97% 0.8%

burn-in) and the associated standard deviation. It is apparent in Table 1 that the
performance of the minimum error constant integrator is worse than that of the Ver-
let algorithm. No doubt this is due to the fact that the time-step-sizes involved are
too large for the Taylor expansions (5.5) and (5.6) to be meaningful for the problem
under consideration. In fact, additional experiments with the pentane molecule prove
that when the integrator with minimum error constant and Verlet are used with step-
lengths that equalize work, the energy errors of the former improve on those of Verlet
only for step-sizes so small that the acceptance rate for Verlet is very approximately
100%. On the other hand, Table 1 reveals that the two-stage integrator suggested here
does improve on the Verlet integrator. The most efficient integrations are afforded
by the three- and four-stage schemes, even though, as pointed out before, the low di-
mensionality of the problem biases this model problem against the more sophisticated
integrators.

8. Conclusions. We have suggested a methodology for constructing efficient
methods for the numerical integration of the Hamiltonian differential equations that
arise in HMC and related algorithms. The new approach is based on optimizing
the behavior of a function ρ(h) over a relevant range of values of the step-length
h. We have constructed new split-step integrators with two, three, or four function
evaluations per time-step. Unlike integrators derived by minimizing the size of error
constants, the splitting formulae suggested here are more efficient than the standard
Verlet method, specially if the number of dimensions is high.

The detailed benchmarking of the new integrators will be the subject of subse-
quent work.

Acknowledgment. The authors are thankful to A. Murua for some useful dis-
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