
A perturbative algorithm for quasi-periodic linear

systems close to constant coefficients

Ana Arnal∗ Fernando Casas† Cristina Chiralt‡

Abstract

A perturbative procedure is proposed to formally construct analytic
solutions for a linear differential equation with quasi-periodic but close to
constant coefficients. The scheme constructs the necessary linear trans-
formations involved in the reduction process up to an arbitrary order in
the perturbation parameter. It is recursive, can be implemented in any
symbolic algebra package and leads to accurate analytic approximations
sharing with the exact solution important qualitative properties. This al-
gorithm can be used, in particular, to carry out systematic stability anal-
yses in the parameter space of a given system by considering variational
equations.
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Departament de Matemàtiques, Universitat Jaume I, E-12071 Castellón,

Spain.

1 Introduction

In this paper we consider the differential equation

ẏ ≡ dy

dt
= (A0 +Q(t, ε))y, (1)

where y ∈ Cd, ε > 0, A0 is a constant d× d matrix and

Q(t, ε) ≡
∑
j≥1

εjAj(t) (2)

is a quasi-periodic d× d matrix function of t with frequencies (ω1, . . . , ωr).
We recall that a function f is said to be quasi-periodic with basic frequencies

ω = (ω1, . . . , ωr) if f(t) = F (θ1, . . . , θr), where F is 2π-periodic with respect
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to θ1, . . . , θr and θj = ωjt for j = 1, . . . , r. Quasi-periodic functions have a
representation of the form

f =
∑
k∈Zr

fk ei(k,ω)t

where (k, ω) ≡ k1ω1 + · · ·+ krωr and
∑
|fk|2 <∞ [10].

In connection with system (1)-(2), the issue of reducibility has received much
attention along the years. Roughly speaking, equation (1) is said to be reducible
if there exists a change of variables y = P (t)z defined by a nonsingular quasi-
periodic and continuously differentiable matrix P (t) such that z satisfies the
equation ż = Kz, with K a constant matrix. In the purely periodic case, A(t+
T, ε) = A(t, ε), with T > 0, the well known Floquet theorem [24] guarantees
reducibility by means of a periodic transformation P (t) with the same period
T . Moreover, every fundamental matrix solution of (1) can be written globally
as

Y (t) = P (t) eKt. (3)

In the more general case of a quasi-periodic system which is close to constant
coefficients, i.e. eq. (2) with sufficiently small ε, the analysis is more involved.
At least two different strategies can be found in the literature. The first one,
proposed by Shtokalo [23] and later analyzed by several authors [11, 13, 21],
consists in formally constructing a change of variables

y = P (t, ε) z =

(
I +

∞∑
n=1

εnPn(t)

)
z, (4)

as a power series in ε, so that equation (1) with (2) is transformed into

ż = K(ε)z ≡

A0 +
∞∑
j=1

εjKj

 z, (5)

where Kj are constant matrices. Recursive procedures exist to compute the
quasi-periodic matrices Pn(t) and the constant terms Kj at each iteration (see
e.g. [6]). Essentially, the K’s are determined by averaging and subsequently the
P ’s are obtained by solving the corresponding differential equation. Although
the procedure only allows one to construct asymptotic expansions for the solu-
tion, it is still possible to provide sufficient conditions guaranteeing stability or
instability of the trivial solution of (1) from the solution z = 0 of system (5) once
truncated at the, say, the sth-iteration [21, 6]. Moreover, the technique can be
generalized to analyze the asymptotic behavior of linear differential equations
with oscillatory decreasing coefficients [6, 18].

The second approach is very much in the spirit of the proof of KAM theorem
in Hamiltonian systems, as given, for instance, in [1], and was first considered
in [3]: instead of just one change of variables (4), a sequence of successive quasi-
periodic linear transformations is constructed with the aim not of eliminating all
powers of ε at once, but to increase in each step the order of the perturbation by
the square of the preceding one. In this way, it is possible to establish rigorous
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results on the reducibility of (1) when ε is small [3, 15, 14]. More specifically, let
λi denote the eigenvalues of A0 and let αij = λi−λj for i 6= j. Then if all values
Reαij 6= 0 the system is reducible for |ε| < ε0, ε0 sufficiently small [3], whereas if
some of the Reαij are zero (as happens when the λi are purely imaginary) more
hypotheses are required. Thus, if the αij and the basic frequencies of Q(t, ε)
satisfy diophantine (non resonant) conditions and a certain non degeneracy
holds with respect to ε, then there exists a Cantorian set of positive measure
E such that for ε ∈ E system (1) is reducible by means of a quasi-periodic
change of variables [15]. In other words, if the parameter ε is small enough,
reducibility can be achieved only for a set of values of ε with empty interior
but large Lebesgue measure (maybe full measure). On the other hand, just by
assuming a non resonant condition of αij and the basic frequencies of Q(t, ε)
it is possible to transform the original system (1) by means of a sequence of
quasi-periodic matrices to

ż = (K(ε) + εQ∗(t, ε))z, |ε| ≤ ε0 (6)

where Q∗ is exponentially small in ε [14]. Equivalently, instead of aiming at a
total reduction of system (1), the goal is to minimize the quasi-periodic part (up
to exponentially small terms) without taking out any value of ε. In addition,
there is no need to impose further non degeneracy conditions [14]. In fact, the
procedure developed in [14] allowed the authors to compute numerically for a
2 × 2 system the change of variables in such a way that, for a given (small)
value of ε, the size of the remainder Q∗ in (6) is kept below a certain predefined
tolerance.

Our purpose in this paper, rather than analyzing conditions guaranteeing
total or partial reducibility of system (1), consists in devising an algorithm
for constructing the necessary linear transformations involved in the reduction
process in such a way that (i) it is computationally well adapted so that the
analytic procedure can be carried out at high orders in ε and (ii) the “effective”
Floquet factorization that results from the corresponding approximations to
the transformation P (t, ε) and the matrix K(ε) allows us to construct analytic
approximate expressions for the fundamental matrix of (1) in a way that other
qualitative properties of the exact solution (e.g., symplecticity or unitarity)
are exactly preserved. This is so when only one linear change of variables is
involved, as in (4), but also when a sequence of transformations is considered.
The algorithm constitutes a generalization of that presented in [8] for periodic
systems and consists essentially in constructing P (t, ε) as a matrix exponential
whose generator L(t, ε) satisfies a cohomological equation at each order. The
analytic approximations thus obtained are in addition free of secular terms.

We are well aware that, even when the system is reducible for a given value
of ε, the resulting transformation P might be far from the identity. This in fact
is quite common for “moderate” values of ε [15, 14, 20]. Under such circum-
stances, our construction would be purely formal, of course. Nevertheless, as
the examples collected in the paper show, the procedure is still able to provide
reasonably accurate results even in this situation.
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2 The general algorithm

2.1 One transformation

The algorithm we use to construct the approximations can be considered as a
generalization of the procedure presented in [8]. For the benefit of the reader,
we collect here only the main points of this procedure and refer to [8] for a more
detailed treatment. We start with the case of only one transformation.

Let us denote by Y (t, ε) and Z(t, ε) the fundamental d × d matrices of
systems (1) and (5), respectively. In other words,

∂Y

∂t
= (A0 +Q(t, ε))Y (t, ε), Y (0, ε) = I, (7)

∂Z

∂t
= K(ε)Z(t, ε), Z(0, ε) = I, (8)

so that the corresponding solutions are expressed as

y(t) = Y (t, ε) y0 and z(t) = Z(t, ε) z0,

respectively, in terms of the initial conditions. By means of the transformation
y = P (t, ε)z, these fundamental matrices are related by

Z(t, ε) = P−1(t, ε)Y (t, ε)P (0, ε), (9)

whereas the coefficient matrices verify

K(ε) = P−1(t, ε)(A0 +Q(t, ε))P (t, ε) +
∂P−1(t, ε)

∂t
P (t, ε). (10)

The matrix P (t, ε) is assumed to satisfy a differential equation similar as (7)
but with respect to the perturbation parameter ε, i.e.,

∂

∂ε
P−1(t, ε) = L(t, ε)P−1(t, ε), P−1(t, 0) = I, (11)

where the generator L(t, ε) is a formal power series in ε:

L(t, ε) =
∞∑
n=0

εnLn+1(t). (12)

Then the solution of (11) can be expressed as

P−1(t, ε) = exp Ω(t, ε), where Ω(t, ε) =

∞∑
n=1

εnvn(t) (13)

by applying the Magnus expansion to (11) [17, 2]. The terms vn(t) are functions
of Lj(t) that can be determined recursively [8]. By inserting the corresponding
power series in equation (10) and equating terms of the same power in ε one
arrives at K0 = A0 and the so-called cohomological equations

L̇n + [Ln, A0] = nKn − Fn, n ≥ 1 (14)
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with

F1 = A1

Fn =
n−1∑
j=1

[Ln−j ,Kj ] + wn−1, n ≥ 2, (15)

and wn = wn(A1, . . . , An+1, L1, . . . , Ln) ([8], eq. (24)). In particular,

K0 = A0

L̇1 + [L1, A0] = K1 −A1

L̇2 + [L2, A0] = 2K2 − 2A2 − [L1,K1 +A1]

L̇3 + [L3, A0] = 3K3 − 3A3 − [L2,K1 +
1

2
A1]− [L1,K2 + 2A2 +

1

2
[L1, A1]].

(16)
Both Kn and Ln(t) are obtained recursively recursively thanks to eq. (16). For
later use, we notice that eq. (14) can also be written as

L̇n = adA0Ln + nKn − Fn (17)

in terms of the adjoint operator ad: adA0B ≡ [A0, B]. Once the generators
Lj(t), j = 1, . . . ,m have been obtained, we compute the terms v1(t), . . . vm(t)
(by means of the recurrence (22) in [8]), the truncated series Ω[m](t, ε) =∑m

n=1 ε
nvn(t) is formed and finally the transformation P (t, ε) is determined

as P (t, ε) = exp(−Ω[m](t, ε)).
Of course, it is also possible to construct directly the transformation as (13).

In that case, by substituting this series into (10), an equation of type (14) is
obtained for the terms vn(t), although the structure of the functions appearing
in the equation is more tricky.

2.2 Determining the generator

Obtaining the generators Ln(t) is a crucial step according to our objectives.
This latter operation must be done at each step by solving the differential
equation (14) with the requirement that (i) Kn is constant and (ii) Ln(t) is a
quasi-periodic function with the same frequencies as Q(t, ε).

Several possibilities exist for determining Ln(t) verifying such requirements
(see e.g. [3, 15]). Here, as in [9, 8], we write the formal solution of equation
(17) as

Ln(t) = et adA0Ln(0) + et adA0

∫ t

0
e−s adA0 (nKn − Fn(s)) ds, (18)

where
et adA0B = etA0Be−tA0

for any matrix B. Here, by induction, Fn(t) is a quasi-periodic matrix function
with basic frequencies (ω1, . . . , ωr), so that

Fn(t) =
∑
k∈Zr

Cn,k ei(k,ω)t. (19)
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We then take nKn = 〈Fn〉, where 〈Fn〉 denotes the limiting mean value of Fn(t),
i.e.,

〈Fn〉 ≡ lim
T→∞

1

T

∫ a+T

a
Fn(t)dt, (20)

and this limit does not depend upon the choice of a in (20), as shown in [10].
In consequence,

nKn − Fn(t) = 〈Fn〉 − Fn(t) = −
∑

k∈Zr\{0}

Cn,k ei(k,ω)t.

Assume for the time being that the linear system consisting of d2 equations(
adA0 − i(k, ω)I

)
X = Cn,j (21)

has a unique solution, which we denote as X ≡ Rn,j . Then we can write

Gn(t) ≡
∫

e−t adA0 (〈Fn〉 − Fn(t)) dt = −
∫
dt

∑
k∈Zr\{0}

e−t adA0Cn,k ei(k,ω)t

=

∫
dt

∑
k∈Zr\{0}

e−t adA0
+i(k,ω)tI(−adA0 + i(k, ω)I)Rn,k

=
∑

k∈Zr\{0}

e−t adA0
+i(k,ω)tIRn,k = e−t adA0

∑
k∈Zr\{0}

Rn,k ei(k,ω)t,

(22)
and thus eq. (18) leads to

Ln(t) = et adA0 (Ln(0)−Gn(0)) + et adA0Gn(t)

= et adA0 (Ln(0)−Gn(0)) +
∑

k∈Zr\{0}

Rn,k ei(k,ω)t,

so that if we choose Ln(0) = Gn(0) we then have

Ln(t) =
∑

k∈Zr\{0}

Rn,k ei(k,ω)t (23)

i.e., the generator Ln(t) is a quasi-periodic function with the same basic fre-
quencies as Fn(t).

Let us now analyze under which conditions the matrix system of algebraic
equations (21) admits a unique solution Rn,j . This is fulfilled if and only if
X = 0 is the unique solution of(

adA0 − i(k, ω)I
)
X = A0X −X(A0 + i(k, ω)I) = 0. (24)

Let {λj}sj=1 denote the distinct eigenvalues of A0. Then the eigenvalues of
A0+i(k, ω)I are {λj+i(k, ω)}sj=1. If λ`−λm−i(k, ω) 6= 0 for all `,m ∈ {1, . . . , s}
then A0 and A0 + i(k, ω)I do not have common characteristic values, so that,
according to [12, p. 220], equation (24) admits X = 0 as unique solution.
As usual when dealing with this kind of equations, and in order to avoid the
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problem of small divisors, a diophantine condition is introduced, namely we
assume that

|λ` − λm − i(k, ω)| > δ

|k|γ
∀ `,m ∈ {1, . . . , s} ∀ k ∈ Zr\{0} (25)

for some constants δ > 0 and γ > r − 1, see [14, 4, 5] for more details. Here
|k| = |k1|+ · · ·+ |kr| This condition avoids the presence of small denominators
in the expression (23) for Ln(t).

We have thus proved the following result.

Proposition 1 Consider the matrix equation L̇n(t) = [A0, Ln(t)]+nKn−Fn(t),
n ≥ 1, where A0 is a constant matrix with distinct eigenvalues λ1, . . . , λs, Fn(t)
is a quasi-periodic matrix with basic frequencies ω1, . . . , ωr and Kn is a constant
matrix to be determined. If we assume the diophantine condition (25) and fix

Kn =
1

n
〈Fn〉, (26)

where 〈Fn〉 denotes the mean value (20), then there exists a unique solution
Ln(t) with the same frequencies as Fn(t).

As a matter of fact, this unique solution L(t) can be obtained by two differ-
ent but equivalent procedures: either by computing directly the antiderivative
Gn(t) in (22) and then

Ln(t) = et adA0Gn(t) = etA0Gn(t)e−tA0 (27)

or by computing first the expansion (19) and then forming equation (23) for
each k ∈ Zr\{0}, where the matrix Rn,k is the unique solution of system (21).
In both cases we have Ln(0) = Gn(0) and 〈Ln〉 = 0.

This process can be carried out for any n ≥ 1, so that after m steps the
fundamental matrix Y (t, ε) can be formally written as

Y (t, ε) ≈ e−Ω[m](t,ε) etK
[m](ε) eΩ[m](0,ε), (28)

where

Ω[m](t, ε) =

m∑
n=1

εnvn(t), K [m](ε) = A0 +
m∑
n=1

εnKn (29)

and vn(t) are determined from the generators Lj(t) (e.g., by recursion (22) in
[8]).

A remarkable property of equation (17) is the following. If we have con-
structed one solution Kn and Ln(t), then we can get infinite solutions of the
form

K̃n = Kn − (1/n)[A0, U ], L̃n(t) = Ln(t) + U,

where U is an arbitrary constant matrix. This can be verified just by substi-
tuting the expressions of K̃n and L̃n(t) in (17). If we choose U = −Gn(0) then
L̃n(0) = 0 for all n and the solution reads

K̃n = (1/n)(〈Fn〉+ [A0, Gn(0)]) (30)

L̃n(t) = −Gn(0) + et adA0Gn(t).

7



In consequence, we get the approximation

Y (t, ε) ≈ e−Ω̃[m](t,ε) etK̃
[m](ε) (31)

where, as before,

Ω̃[m](t, ε) =
m∑
n=1

εnṽn(t), K̃ [m](ε) =
m∑
n=1

εnK̃n (32)

but ṽn(0) = 0 for all n. Notice that, although (28) and (31) have the same
properties concerning the stability (in other words, both K [m] and K̃ [m] have
the same eigenvalues up to εm), they render in fact different approximations to
the exact solution.

2.3 Illustrative examples

We next illustrate the main features of the previous algorithm by applying it to
two simple examples. In the first example we also analyze how results on the
stability of the system can be derived from the procedure.

Example 1: generalized Hill’s equation. Assume we have a pendulum
with friction which may rotate in a plane around a point of suspension which
can itself undergo vertical oscillations. Then, the equation of motion of the
system near the upper position of equilibrium is given by [23]

ϕ̈+ εc ϕ̇+ ε(q(t)− ερ2)ϕ = 0, (33)

where ϕ stands for the small deviation from the upper equilibrium, ε > 0, c > 0
accounts for the friction in the system, ρ depends on the length of the pendulum
and gravity, and

q(t) =
r∑

k=1

bk cos(ωkt)

is a trigonometric polynomial accounting for the oscillations of the suspension
point. Equation (33) can be replaced by

dy1

dt
= y2

dy2

dt
= −ε c y2 − ε(q(t)− ερ2)y1

or in matrix form
dy

dt
= (A0 + εA1(t) + ε2A2(t)) y (34)

with

A0 =

(
0 1
0 0

)
, A1 =

(
0 0
−q(t) −c

)
, A2 =

(
0 0
ρ2 0

)
.
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In this case λ1,2 = 0, so that the diophantine condition (25) writes |(k, ω)| ≥
δ/|k|γ . Kn and Ln(t) are computed following (26) and (27), respectively, so
that up to second order (K0 = A0) we get

K1 =

(
0 0
0 −c

)
, K2 =

(
0 0

ρ2 − q0 0

)
, with q0 =

r∑
k=1

b2k
2ω2

k

,

whereas the expressions for the generators L1(t), L2(t) are more involved. When
looking at the stability of the trivial solution of equation (34) for sufficiently
small ε, then the eigenvalues of the new matrix K [m](ε) given in (29) are to be
computed, or equivalently the trace and determinant of K [m](ε). Up to second
order, these are

trK [2] = −ε c, detK [2] = −ε2(ρ2 − q0).

Since K [2] has a negative trace, the eigenvalues would have negative real parts
if the determinant is positive, i.e., if ρ2 − q0 < 0, or

−ρ2 +

r∑
k=1

b2k
2ω2

k

> 0. (35)

Therefore, the asymptotic stability follows if (35) holds. Carrying out the pro-
cess up to order 3 we get analogously

K3 = c q1

(
1 0
0 −1

)
, with q1 =

r∑
k=1

b2k
3ω4

k

.

The trace of K [3] takes the same value as before, whereas

detK [3] = −ε2
(
ε2c2q1 + ε4c2q2

1 + (ρ2 − q0)
)
.

In consequence, the condition for asymptotic stability is now

ε2c2q1 + ε4c2q2
1 + (ρ2 − q0) < 0

and this is true for sufficiently small ε if (35) holds. In general, one finds for
the successive Kj the following pattern:

K2n =

(
0 β2n,2

β2n,3 0

)
, K2n+1 =

(
β2n+1,1 0

0 β2n+1,4

)
, n = 1, 2, 3, . . . ,

where β`,j are (complicated) functions of the parameters of the problem and
β2,2 = 0. In any case, the same conclusion is achieved: a necessary condition
for asymptotic stability for sufficiently small ε is eq. (35). This result is in
agreement with the analysis carried out by standard averaging theory [23, 6].

If we apply equations (30)-(32) instead of the former, we clearly get different
expressions for the new coefficient matrices at each order. Thus, in particular,

K̃1 =

(
0 2q2

0 −c

)
, with q2 =

r∑
k=1

bk
ω2
k

.
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In any case, both K̃ [m] and K [m] have the same eigenvalues up to the corre-
sponding order [8].

To have a more quantitative description, we next consider a particular set
of coefficients in (34), namely(

c = 1, r = 2, b1 = 2, b2 = 1, ω1 =
√

2, ω2 = 1, ρ = 1
)
. (36)

We have carried out the two variants (26)-(29) and (30)-(32) of the procedure
proposed in section 2.2 and computed the corresponding approximations (28)
and (31) to the fundamental matrix. These approximations are compared with
the results achieved by applying high order averaging (i.e., equations (4)-(5))
up to the same order in the parameter ε as done e.g. in [6].

In Figure 1 we show the error (in logarithmic scale) of the corresponding
approximation with m = 2, 6 with respect to the exact solution (computed by
numerical integration up to high precision) for two values of the perturbation
parameter: ε = 0.05 and ε = 0.1. The error is computed as the Frobenius norm
of the difference between the exact and the approximate fundamental matrix.

To discern how this error behaves for larger time intervals, in Figure 2 we
depict the results achieved by the same approximations up to ε6 in the interval
t ∈ [60, 120]. Notice that the procedure (26)-(29) provide the most accurate
results in all cases and the improvement over the standard high order averaging
method is quite remarkable, especially for small values of ε.

Example 2: a periodic system. The formalism of section 2.1 can also
be applied of course to a periodic system. We consider now the Schrödinger
equation (~ = 1) for the evolution operator U(t),

i U̇(t) = H(t)U(t), U(0) = I, (37)

with Hamiltonian

H(t) =
1

2
ω0 σ3 + ε (σ1 cosωt+ σ2 sinωt) . (38)

Here σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and ε, ω0, ω 6= ω0 are real parameters. The exact solution of (37) is then

Uex(t) = exp

(
−i
2
ωtσ3

)
exp

[
−it

(
1

2
(ω0 − ω)σ3 + εσ1

)]
, (39)

and the matrix U(t) is unitary: U(t)U †(t) = U †(t)U(t) = I, where U † denotes
the conjugate transpose of U . This feature has the important physical conse-
quence that transition probabilities between different quantum states remain in
the interval [0, 1] for all t.

Notice that equation (37) can be recast in the form (7) with

A0 = − i
2
ω0σ3,

1

ε
Q(t, ε) = A1(t) = −i (σ1 cosωt+ σ2 sinωt)
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with the eigenvalues of A0 being purely imaginary. Once the recursive procedure
(26)-(27) is computed for several orders the general term of Kn and Ln(t) is
guessed by inspection. Specifically, we get

K2j−1 = 0, K2j =
(−1)j+1iσ3Cj−1

(ω − ω0)2j−1
, j = 1, 2, . . .

where Cj denote the Catalan numbers [19]. The series
∑

j≥1 ε
jKj can be

summed up in closed form resulting in

K(ε) =
i

2

(√
(ω − ω0)2 + 4ε2 − ω

)
σ3. (40)

On the other hand, for the generators we get

L2j = 0, L2j−1(t) =
(−1)j i 22j−2

(ω − ω0)2j−1
(cosωtσ2 − sinωtσ1)

j = 1, 2, . . ., so that

L(t, ε) =
i(ω − ω0)

4ε2
(cosωtσ2 − sinωtσ1)

∞∑
j=1

(−1)j
(

2ε

ω − ω0

)2j

. (41)

The series in (41) corresponds to the function

L(t, ε) =
i(ω − ω0)

(ω − ω0)2 + 4ε2
(sinωtσ1 − cosωtσ2) (42)

in the domain
|ω − ω0| > 2ε. (43)

Notice that in this case condition (25) reads |ω0+kω| > δ/|k|, k ∈ Z\{0}, but in
fact the solution for the generator provided by the procedure is valid in the larger
domain (43). The actual transformation is obtained as P (t, ε) = exp(−Ω(t, ε)),
where the exponent can be determined (up to an arbitrary order) either by
computing the previous recurrences for the terms vi(t), or by applying directly
the Magnus expansion to equation (11) with L given by (41) [2].

To illustrate the behavior of the approximations in a particular situation,
we fix ω0 = 1 and ω = 3, so that the previous algorithm for fixing K and the
generator L converges if ε < 1. In Figure 3 we show in logarithmic scale the
error in the probability of transition between states 1 and 2, |(Uex(t))12|2 −
|(Uapprox(t))12|2, obtained when the approximate evolution operator Uapprox(t)
is computed up to ε7 (dashed line) and ε15 (solid line) with (40)-(42) for ε =
0.5. Notice how including additional terms in the expansions provide more
accurate results (the value of ε belongs to the domain of convergence) and
the approximations do not substantially deteriorate even if one consider long
time intervals. It is worth stressing that these approximations are unitary by
construction.
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3 Successive transformations

The algorithm developed in section 2 aims at constructing one transformation
P (t, ε) in such a way that in the new coordinates all the time dependency in the
coefficient matrix of equation (1) is (at least formally) removed up to a certain
order in the perturbation parameter ε whilst the corresponding approximate
solutions thus obtained still share with the exact solution of the problem some
qualitative properties. The procedure does not converge in general, although for
the previous Example 2 it provides indeed unitary convergent approximations
if the parameters satisfy condition (43).

Much in the same spirit as in KAM methods for Hamiltonian mechanics,
one could consider a different but related alternative, namely an iteration of
the previous procedure where now in each step one uses a new (and in a sense
‘improved’) unperturbed matrix. Specifically, in equations (16) one calculates
the L’s simultaneously to as many orders as one can by choosing the K’s in
the same way as before, but without coupling L’s of different orders in the
same equation. In the remaining orders, the L’s are set equal to zero and the
equations are then used to find the corresponding K’s. This fact is just one
variant among many other possibilities along the same lines explored in the
literature (e.g. [14, 16, 22, 7]).

For the sake of illustration, we next carry out the first two iterations and
refer the reader to e.g. [16] for a more detailed discussion. In the first step we
construct a transformation P1(t, ε) = exp(−Ω1(t, ε)) generated by L(1)(t, ε) and
leading to a new coefficient matrix K(1)(ε). We then must deal with equations
(17). Analogously, we set

K
(1)
0 = A0, K

(1)
1 = 〈A1〉,

whereas L
(1)
1 (t) is determined as

L
(1)
1 (t) = et adA0G

(1)
1 (t), with G

(1)
1 (t) =

∫
e−t adA0 (K

(1)
1 −A1(t)) dt

and L
(1)
n (t) = 0 for n > 1 (since L

(1)
1 (t) is already present in the equations for

L
(1)
2 (t), L

(1)
3 (t), . . . ). Then, for n > 1, equation (17) reads 0 = nK

(1)
n − F (1)

n (t),
so that

K(1)
n =

1

n
F (1)
n =

1

n
([L

(1)
1 ,K

(1)
n−1] + w

(1)
n−1),

but now w
(1)
n−1 only depends on Aj and L

(1)
1 (t) (already known). In this way

one computes K
(1)
2 ,K

(1)
3 , . . . which now depend on time. We arrive finally at

K(1)(t) = K
(1)
0 + εK

(1)
1 +

∑
j≥2

εjK
(1)
j (t),

where the piece K
[1]
0 (ε) ≡ K(1)

0 +εK
(1)
1 is constant and K

(1)
j (t) (j ≥ 2) are quasi-

periodic functions of t. We are now in position to start the second iteration,
i.e., to construct a new transformation P2(t, ε) = exp(−Ω2(t, ε)) generated by

12



L(2)(t, ε) and coefficient matrix K(2)(ε), but with the new ‘unperturbed’ ma-

trix K
[1]
0 (ε). For the resulting coefficient matrix K(2)(ε) =

∑
j≥0 ε

jK
(2)
j after

completing the second step we propose

K
(2)
0 (ε) = K

(1)
0 +εK

(1)
1 , K

(2)
1 = 0, K

(2)
2 =

1

2
〈F (2)

2 〉, K
(2)
3 =

1

3
〈F (2)

3 〉,

and K
(2)
j = 1

jF
(2)
j for j ≥ 4, whereas for the corresponding generator one has

L
(2)
1 = 0, L

(2)
2 = etK

[1]
0 G

(2)
2 (t) e−tK

[1]
0 , L

(2)
3 = etK

[1]
0 G

(2)
3 (t) e−tK

[1]
0

and L
(2)
j = 0 for j ≥ 4. In this way,

K(2)(t, ε) = K
[2]
0 (ε) + ε4K

(2)
4 (t) + ε5K

(2)
5 (t) + · · · ,

where
K

[2]
0 (ε) = K

[1]
0 + ε2K

(2)
2 + ε3K

(2)
3

is independent of time, and K
(2)
j (t), j ≥ 4 are quasi periodic. The fundamental

matrix of eq. (1) is accordingly factorized as

Y (t, ε) = P1(t, ε)P2(t, ε)Z2(t, ε)P−1
2 (0, ε)P−1

1 (0, ε),

where Pi(t, ε) = exp(−Ωi(t, ε)) and Z2 obeys the differential equation Ż2 =
K(2)(t, ε)Z2.

Proceeding in the same way, at the third step one can eliminate the time
dependency at orders four through seven, etc. [16]. After n iterations one has

Y (t, ε) = P1(t, ε) · · ·Pn(t, ε)Zn(t, ε)P−1
n (0, ε) · · ·P−1

1 (0, ε) (44)

with

Żn = K(n)(t, ε)Zn, K(n)(t, ε) = K
[n]
0 (ε) + ε2nK

[n]
2n (ε) + · · · . (45)

If one decides to truncate at this point, then we take K(n)(t, ε) = K
[n]
0 (ε) in

(45), Zn(t, ε) is approximated by exp(tK
[n]
0 (ε)) and, for consistency,

Pj(t, ε) ≈ P̃j(t, ε) ≡ exp
(
− Ω

[2n−1]
j (t, ε)

)
, with Ω

[m]
j (t, ε) =

m∑
r=1

εrvj,r.

In this way the approximation is constructed as

Y (t, ε) = P̃1(t, ε) · · · P̃n(t, ε) etK
[n]
0 (ε) P̃−1

n (0, ε) · · · P̃−1
1 (0, ε). (46)

At each step of the procedure we have to deal with equations of the type (17),
and so, according with Proposition 1, a condition like (25) is necessary, but now
the quantities λ`(ε)−λm(ε) clearly depend on the perturbation parameter. Even
in this case, additional conditions can be imposed so that either it is possible to
cancel all of the harmonics below a certain threshold in the Fourier expansion
of K(n)(t, ε) [14] or vanish all of them in a Cantorian set [15].

Rather than analyzing the convergence of the procedure we next illustrate
how it behaves in practice when the approximation (46) is considered for some
examples.
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Example 2 revisited. As a first illustration we take again the simple periodic
example (37)-(38) with exact solution (39) and construct up to four successive
transformations by following the previous iterative scheme. To compare with
the procedure of section 2.2, we also include the result achieved by applying
the procedure (28)-(29). As before, we fix ω0 = 1, ω = 3 but now ε = 1.02,
so that we are outside the domain of convergence given by (43). In Figure 4
we depict the corresponding error in the approximation obtained after three
transformations (so that the approximation is correct up to ε7, dotted red
line) and four linear changes of coordinates (approximation of order ε15, solid
line), together with the error corresponding to the approximation of order ε15

obtained by truncating the series (40) and (42) (dashed blue line). Notice that
the new iterative scheme provides more accurate results in this situation.

Example 3. As a final example, we consider again equation (37), but now
with a quasi periodic Hamiltonian:

H(t) =
1

2
ω0 σ3 + ε (cos t+ cosωt) σ1. (47)

This system describes the dynamics of spin-1
2 particles in an oscillating mag-

netic field [22]. We take ω0 = 2, ω =
√

3 and compute three successive linear
transformations by following the previous algorithm, i.e., approximation (46)
up to n = 3. As before, we compare with the procedure (28)-(29) involving
only one transformation. In principle, with three transformations it is possible
to construct an approximation which is correct up to order ε7 when all steps in
the previous algorithm are carried out. For the sake of illustration, here we also
compare with the result obtained when P̃1, P̃2 in (46) are computed up to order

ε7, but P̃3 = exp(−Ω
[5]
j ) so as to speed up the calculation. The corresponding

errors in the probability of transition between states 1 and 2 are depicted in
Figure 5 as a function of time for ε = 0.6, in the interval t ∈ [0, 10] (left) and
t ∈ [100, 110] (right), but with the same initial condition U(0) = I. Solid lines
correspond to the result achieved by after carrying out three complete trans-
formations (so that the approximation is correct up to ε7), dotted lines are
obtained with three transformations consistent up to order ε5, whereas dashed
lines correspond to the algorithm (28)-(29) up to ε7. We see that even when
the last transformation P̃3 is not computed up to the prescribed order, it is still
possible to obtain more accurate results with the new procedure, and that this
accuracy does not deteriorate with time. We also should emphasize that both
approximations are unitary by construction, just as the physical system they
mimic.

As is well known, for a given ω0, there exist in the parameter space (ω, ε)
the so-called resonance tongues. In fact, these resonance phenomena take place
in an open and dense subset union of tongues, whereas in its complement there
exists a nowhere dense set of positive measure, corresponding to multi- or quasi-
periodic dynamics (see e.g. [5] and references therein for an overview of the
theory). Our algorithm may in principle be used to analyze these regions in
the parameter space and characterize in particular the stability regions and
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transition curves separating different kinds of motion. As a matter of fact,
in [8] it was used to perturbatively determine the first transition curve in the
Mathieu equation. In contrast with numerical procedures (as in e.g. [25]), this
algorithm is able to obtain approximate analytic expressions so that it may
simplify the analysis in the parameter space.

4 Concluding remarks

In this paper we have presented a perturbative algorithm based on linear trans-
formations that leads to constructing analytic approximations to the funda-
mental matrix of a linear system with quasi periodic coefficients in the form
of a Floquet type factorization. This can be done either by carrying out just
one or a sequence of transformations. The very structure of the factorization
guarantees that important qualitative properties of the system (such as sym-
plecticity or unitarity) are preserved by the approximations, which are also free
from secular terms. As a result, as the examples show, they provide reasonably
accurate results even for large time intervals. This technique may also be used
as a convenient tool to analyze in practice the reducibility of the system and its
stability properties in the parameter space, since it can be easily implemented
in symbolic algebra packages.

The convergence of the procedure has not been analyzed here. As in other
related procedures, we can say that only asymptotic expansions are expected
when one transformation is carried out, whereas, by applying the same tech-
niques as in [3, 14, 15] it is possible in principle to establish convergence for
a range of values of ε when enough successive transformations are involved.
In any case, as Example 2 above shows, convergence can be guaranteed for
particular problems.
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Figure 1: Error (in logarithmic scale) of the approximation of order ε2 (top diagrams)

and ε6 (bottom) with respect to the exact solution for the generalized Hill equation.

Solid (blue) line corresponds to scheme (28), dashed (red) line stands for (31) and

dotted (green) line is obtained by high-order averaging. Left column corresponds to

ε = 0.05 and right column to ε = 0.1.

19



¶ =0.05

60 70 80 90 100 110 120
-6

-5

-4

-3

-2

-1

0

t

E
rr

or

¶ =0.1

60 70 80 90 100 110 120
-6

-5

-4

-3

-2

-1

0

t

E
rr

or

Figure 2: Same diagram as in Figure 1 bottom, but now in the interval t ∈ [60, 120]:

error of the approximation of order ε6. Solid (blue) line corresponds to scheme (28),

dashed (red) line stands for (31) and dotted (green) line is obtained by high-order

averaging.
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Figure 3: Error in the transition probability (in logarithmic scale) of the approximation

of order ε7 (dashed line), and ε15 (solid line) for the periodic example (37)-(38) obtained

with algorithm (28)-(29). Two different time intervals are considered for the same

integration: t ∈ [0, 10] (left) and t ∈ [90, 100] (right).
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Figure 4: Error in logarithmic scale with respect to the exact solution. Solid (black)

line and dotted (red) line correspond to the approximations computed after successive

transformations of orders ε15 and ε7, respectively and dashed (blue) line stands for an

approximation of order ε15 with scheme (28)-(29). Here ω0 = 1, ω = 3 and ε = 1.02.
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Figure 5: Error in logarithmic scale with three successive transformations up to order

ε7 (solid line), up to order ε5 (dotted line) and scheme (28)-(29) (dashed line) up to

order ε7 for the Hamiltonian (47). The parameters are ω0 = 2, ω =
√

3 and ε = 0.6.
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