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1. Introduction

Splitting and composition methods are of particular interest in the numerical integration of differential equations when 
the vector field is separable into solvable parts or when a low order basic method is known, and the goal is to construct 
higher order schemes by composing the basic method with fractional time steps [25,26].

Although integrators of this class have a long history in numerical mathematics and have been applied, sometimes with 
different names, in many different contexts (partial differential equations [32], quantum statistical mechanics [34], chemical 
physics [16,18], molecular dynamics [36], celestial mechanics [11,23], etc.), it has been with the advent of the so-called 
Geometric Numerical Integration that the interest in splitting and composition has revived and new and very efficient schemes 
have been designed in the simulation of physical systems. The goal in Geometric Numerical Integration is to construct 
schemes in such a way that the numerical approximation shares with the exact solution many of its relevant qualitative 
(very often, geometrical) properties, such as symplecticity, unitarity, orthogonality, etc. [5,19]. If the basic method possesses 
(some of) these geometric properties, so do the schemes obtained by composing them. In addition, when they are used with 
a constant time step, they show a more favorable error growth behavior than standard integrators, especially in long term 
integrations. Symplectic integration schemes for Hamiltonian dynamical systems constitute a classical example of geometric 
numerical integrators [30].

Even in problems where no qualitative properties have to be preserved and/or only short time integrations are required, 
splitting and composition methods have shown to be an excellent option (see e.g. [17] and references therein), even when 
compared with other standard integrators.

As is well known, some of the most popular and efficient standard schemes are embedded methods: the numerical 
procedure contains, besides the numerical approximation xn , a second approximation ̃xn (usually of a lower order) obtained 
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from intermediate outputs, so that the difference is used as an estimate of the local error for the less precise result and can 
subsequently be used for step size control [20]. Well known examples in this area are the class of high order embedded 
Runge–Kutta methods constructed by Verner [37] (implemented as the DVERK code) and Prince & Dormand [29], giving rise 
to the code DOP853 [20].

Since splitting and composition methods also provide intermediate outputs when computing the numerical approxima-
tion at every step, it seems then natural to analyze whether these intermediate outputs can also be used along the same 
lines as standard embedded methods to endow the schemes with a step size control. We will see that this is indeed the 
case as long as the splitting scheme involves a sufficiently large number of stages and, furthermore, we will show how to 
construct explicitly the lower order approximation ̃xn from these intermediate outputs at virtually cost free.

It is important to remark that, whereas splitting and composition methods implemented with a constant step size are 
specially well suited in geometric numerical integration for long time integrations, this is not the case of the variable step 
size schemes constructed by applying the strategy proposed here [10]. In any case, the second approximation x̃n is only 
used to estimate the local error and this is not propagated along the integration interval.

Of course, the idea of endowing splitting methods with a local error estimator is not new. We can mention in particular 
references [13,14], where a embedded splitting method is constructed for the second-order Strang splitting for stiff evolu-
tionary partial differential equations, and [2,3,35], where a controller splitting method of order r + 1 is selected and then 
an integrator of order r is constructed for which a maximal number of compositions coincide with those of the controller. 
The methods thus built are then applied for the numerical solution of nonlinear parabolic problems with periodic boundary 
conditions.

By contrast, the approach we follow here allows one, given a splitting or composition method of order r, to construct 
a second, lower order approximation as a linear combination of the outputs generated at the intermediate stages. This is 
essentially similar to the procedure presented in [8] for computing cheap approximations to the optimal postprocessor in 
composition methods with processing, and can be done virtually cost-free. The lower order methods thus designed can 
be used to endow some of the most popular splitting and composition schemes with a reliable and easy-to-evaluate error 
estimator [9,12,28].

The plan of the paper is the following. In section 2 we briefly summarize the mathematical formalism to be used in the 
subsequent analysis. Then, in section 3 we proceed to obtain estimators for symmetric compositions of second order basic 
schemes and of a first order method with its adjoint, whereas an analogous treatment is discussed in section 4 for splitting 
methods. The relationship between composition and splitting methods, together with their respective estimators, is treated 
in section 5. The new estimators are illustrated in section 6 in comparison with other well established techniques. Finally, 
section 7 contains some concluding remarks.

2. Flows and Lie derivatives

The analysis of splitting and composition methods can be conveniently carried out with the formalism of Lie derivatives. 
In that case both the exact flow and the numerical flow corresponding to an integrator, as well as compositions of this 
integrator, can be associated to the exponential (or products of exponentials) of operators, just as in the linear case, so that 
the order conditions can be obtained by applying the familiar Baker–Campbell–Hausdorff formula.

To be more specific, given the initial value problem

ẋ = f (x), x0 = x(0) ∈RD (1)

with f :RD −→RD and flow ϕt , we can associate with f the first order differential operator (the Lie derivative) L f , whose 
action on differentiable functions G :Rd −→R is (see [1, Chap. 8])

L f G(x) =
d∑

i=1

f i(x)
∂G

∂xi
,

so that formally

L f =
d∑

i=1

f i
∂

∂xi
. (2)

Moreover, one can also introduce an operator �t acting on functions G as [27]

�t[G](x) = (G ◦ ϕt)(x). (3)

Then, the Taylor series of G(ϕt(x0)) at t = 0 is given by [19,5]

G(ϕt(x0)) =
∑ tk

k! (Lk
f G)(x0) ≡ exp(tL f )[G](x0), (4)
k≥0
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and so

�t[G](x) = exp(tL f )[G](x) ≡ exp(t F )[G](x), (5)

where, for the sake of simplicity in the notation, we write F ≡ L f . If we replace G in (5) by the identity map Id(x) = x, we 
get for the exact solution of (1)

ϕt(x0) = exp(t F )[Id](x0). (6)

In the same way as for the exact flow ϕt , we can associate to each numerical integrator for a time step h, χh :Rd −→Rd , 
the operator

X(h) = I +
∑
n≥1

hn Xn, (7)

where I denotes the identity operator and each Xn acts on smooth functions G as

Xn[G](x) = 1

n!
dn

dhn

∣∣∣∣
h=0

G(χh(x)), (8)

so that X(h)[G](x) = (G ◦ χh)(x). It is then possible to write X(h) formally as the exponential of another operator Y (h),

(G ◦ χh)(x) = X(h)[G](x) = exp(Y (h))[G](x), (9)

where

Y (h) =
∑
n≥1

hnYn = log(X(h)). (10)

Clearly, the integrator χh is of order r if exp(Y (h)) = exp(hF ) up to terms hr , or equivalently, if

Y1 = F , and Yn = 0 for 2 ≤ n ≤ r.

Thus, in particular, if r = 1, then

exp(Y (h)) = exp
(
hF + h2Y2 + h3Y3 +O(h4)

)
,

whereas for its adjoint method χ∗
h ≡ χ−1

−h , one has analogously

(G ◦ χ∗
h )(x) = exp(−Y (−h))[G](x)

with

exp(−Y (−h)) = exp
(
hF − h2Y2 + h3Y3 +O(h4)

)
.

A second-order method S [2]
h is (time-)symmetric if and only if (S [2]

h )∗ = S[2]
h , or equivalently, if its corresponding operator 

has the form Y (h) = hF + h3Y3 + h5Y5 +O(h7).

3. Estimators for composition methods

3.1. Composition of symmetric second order methods

Suppose now that, starting with a basic symmetric second order integrator S [2]
h , we form the composition

ψh = S[2]
hαs

◦ · · · ◦ S[2]
hα2

◦ S[2]
hα1

. (11)

If the coefficients α1, . . . , αs satisfy some requirements (the order conditions), then ψh provides an approximation of order r
to the exact solution. The number of order conditions is considerably reduced for symmetric compositions, i.e.,

α j = αs− j+1, for all j (12)

in (11). In that case its associated series of differential operators reads

�(h) = exp(Y (hα1)) exp(Y (hα2)) · · · exp(Y (hα2))exp(Y (hα1)),

where
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exp(Y (hαk)) = exp
(
hαk F + h3α3

k Y3 + h5α5
k Y5 +O(h7)

)
(13)

is the operator associated with S [2]
h . By requiring that

�(h) = exp(hF +O(hr+1)),

one gets the order conditions to be satisfied by the coefficients α1, . . . , αs in the composition (11). Up to order r = 6 these 
conditions read explicitly

s∑
j=1

α j = 1,

s∑
j=1

α3
j = 0 (14)

s∑
j=1

α5
j = 0,

s∑
j=1

α3
j

⎛
⎜⎝

⎛
⎝ j−1∑

	=1

α	

⎞
⎠2

+ α j

j−1∑
	=1

α	

⎞
⎟⎠ = 0.

Notice that, when computing the numerical approximation xn+1 = ψh(xn) ≈ x(tn+1) = x(tn +h) with (11), the procedure also 
provides s − 1 intermediate outputs in addition to xn , i.e.,

xn,k = S[2]
hαk

◦ · · · ◦ S[2]
hα1

xn, k = 1, . . . , s − 1,

and the question we pose is whether one can obtain another approximation ̃xn+1 of x(tn+1) by a linear combination

x̃n+1 =
s−1∑
k=0

wk xn,k (15)

of these intermediate values xn,k , with xn,0 = xn . It turns out that this is indeed possible, but the highest order of approxi-
mation that can be achieved in this way depends on the number of intermediate stages s. The procedure is similar to the 
technique used in [7,8] to construct cheap postprocessors for composition methods with processing.

One should note that ws is not included in the linear combination (15). Otherwise, only the trivial solution

ws = 1, wk = 0, k = 0,1, . . . , s − 1

is obtained.
Our goal is then to find coefficients wk so that, given a number of stages s, the linear combination (15) is an approxi-

mation to x(tn+1) of order 	, or equivalently,

w0 I +
s−1∑
k=1

wk

k∏
i=1

exp(Y (hαi)) = exp(hF ) +O(h	+1), (16)

where exp(Y (hαk)) is given by (13) and 	 is as large as possible. Since a linear combination of exponential operator is not, 
in general, a exponential operator, the conditions to be satisfied by wk can be derived by expanding both terms in (16) in 
powers of h and equating their respective coefficients. Thus, in particular, up to order 	 = 4, one has explicitly

exp(hF ) = I + hF + h2

2
F 2 + h3

3! F 3 + h4

4! F 4 +O(h5)

and

w0 I +
s−1∑
k=1

wk

k∏
i=1

exp(Y (hαi)) = f0 I + hf1 F + h2

2
f2 F 2

+ h3
(

1

3! f3,1 F 3 + f3,2Y3

)
+ h4

(
1

4! f4,1 F 4 + 1

2
f4,2 F Y3 + 1

2
f4,3Y3 F

)
+O(h5),

whence the following system of linear equations results:
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Table 1
Number of order conditions, in addition to the trivial one for w0, required by a linear 
combination of intermediate outputs to achieve order 	 for symmetric compositions 
of 2nd-order symmetric schemes (SS), compositions of a first order method with 
its adjoint (28) (method-adjoint) and a splitting method (36) (splitting).

Order 	 1 2 3 4 5 6

SS 1 2 4 7 12 20
Method-adjoint 1 3 7 15 31 63
Splitting 2 6 14 30 62 126

f0 ≡ w0 +
s−1∑
k=1

wk = 1

f1 ≡
s−1∑
k=1

wk

k∑
j=1

α j = 1

f2 ≡
s−1∑
k=1

wk

( k∑
j=1

α j

)2 = 1

f3,1 ≡
s−1∑
k=1

wk

( k∑
j=1

α j

)3 = 1

f3,2 ≡
s−1∑
k=1

wk

( k∑
j=1

α3
j

)
= 0

f4,1 ≡
s−1∑
k=1

wk

( k∑
j=1

α j

)4 = 1

f4,2 ≡
s−1∑
k=1

wk

( k∑
j=1

α4
j + 2

k−1∑
j=1

α3
j

k∑
	= j+1

α	

)
= 0

f4,3 ≡
s−1∑
k=1

wk

( k∑
j=1

α4
j + 2

k∑
j=2

α3
j

j−1∑
	=1

α	

)
= 0.

(17)

Notice that the first equation is trivially solved in w0, so to achieve an approximation ̃xn+1 of order 4, we have to verify 7 
linear equations. More generally, the total number of equations (in addition to the trivial one) required to achieve a given 
order 	 is collected in Table 1 for orders 	 = 1, . . . 6. Strictly speaking, this number is the sum of the dimensions mk , k ≥ 1, 
of the subspaces Ak of the universal enveloping algebra A = ⊕

k≥0 Ak associated to the graded Lie algebra of operators 
corresponding to the composition method, with A0 = span(I) [8].

Next we analyze in detail the construction of numerical schemes of orders 3, 4 and 5 within this approach to be used as 
error estimators for symmetric compositions of the form (11).

Third-order estimators Only the first five equations in (17) have to be satisfied to get order three. This can be achieved if 
the composition (11) has at least s = 5. For s = 5, when the symmetry of the coefficients (12) (i.e., α5 = α1, α4 = α2) and 
the order conditions of a 4th-order composition (i.e., equations in the first line of (14)) are taken into account, then the 
unique solution of the system is given by

w1 = w4 = g2(1 − g2)

g1(g1 − 1) − g2(g2 − 1)
, w2 = w3 = 1 − w1

g1 = α1, g2 = α1 + α2

(18)

so that w0 = −1. A popular (and efficient) 4th-order composition method within this class is the one devised by Suzuki 
[33], with coefficients

α1 = α2 = 1

4 − 41/3
, α3 = 1

1 − 42/3
, (19)

so that its third-order estimator reads
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x̃n+1 = −xn + w1(xn,1 + xn,4) + w2(xn,2 + xn,3). (20)

Another widely used 4th-order method involving s = 7 stages is due to McLachlan [24], with coefficients

α1 = α2 = α3 = 1

6 − 61/3
, α4 = 1

1 − 62/3
.

Its corresponding estimator now involves a free parameter, which can be taken to be w3, and reads

x̃n+1 = −xn + w1(xn,1 + xn,6) + w2(xn,2 + xn,5) + w3(xn,3 + xn,4).

Here

w1 = g2(1 − g2) + w3(g2(g2 − 1) − g3(g3 − 1))

g1(g1 − 1) − g2(g2 − 1)

w2 = g1(g1 − 1) − w3(g1(g1 − 1) + g3(g3 − 1))

g1(g1 − 1) − g2(g2 − 1)
,

with g1 = α1, gi = gi−1 + αi , i = 2, 3.
The same strategy can also be applied to the popular 4th-order 3-stage Yoshida’s method [38]

φ
[4]
h = S[2]

hα1
◦ S[2]

hα2
◦ S[2]

hα1
, (21)

with

α1 = 1 + 2−5/3

2 + 21/3 + 2−1/3
± i

4

√
3

1 + 22/3 + 2−2/3
, α2 = 1 − 2α1

which is known to lead to small errors when complex coefficients are taken [6]. Since only three intermediate outputs per 
step are available, one needs at least two steps of it as if it were one single method, i.e., one can take as integrator the 
composition

φ
[4]
h = S[2]

hα1/2 ◦ S[2]
hα2/2 ◦ S[2]

hα1/2 ◦ S[2]
hα1/2 ◦ S[2]

hα2/2 ◦ S[2]
hα1/2. (22)

In this case the corresponding estimator reads

x̃n+1 = −xn + w1(xn,1 + xn,5) + w2(xn,2 + xn,4),

with

w1 = 1 − α2
1

α2
, w2 = 1 − w1.

We can adopt the terminology of embedded Runge–Kutta methods [20] and denote the previous compositions with their 
respective estimators as methods of order 4(3).

Compositions of order 6(4) To get linear combinations (15) of order four one has to solve the whole set of equations (17). 
Although in principle this would require s = 8 stages, it turns out that if the underlying time-symmetric composition (11)
satisfies the order conditions up to order 6 given by (14) with the minimum number of stages (s = 7), one gets a unique 
solution of the form

x̃n+1 = xn + w1(xn,1 − xn,6) + w2(xn,2 − xn,5) + w3(xn,3 − xn,4),

where wi can be expressed analytically in terms of the αi coefficients of the composition. For the particular method found 
by Yoshida [38], with coefficients

α1 = 0.78451361047755726382, α2 = 0.23557321335935813369

α3 = −1.17767998417887100695, α4 = 1 − 2(α1 + α2 + α3)

one has

w1 = −0.90983233007647709242,

w2 = 2.16331188722978237305,

w3 = 0.55695580387159066608.

The same strategy can be applied of course if 6th-order compositions with more stages are considered. For instance, we 
have found an estimator within this class for the symmetric method proposed by Kahan & Li [21], with s = 9 stages.
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Compositions of order 6(5) and 8(5) A system of 13 linear equations has to be solved for getting an estimator of order five. 
Although not all of them are independent when the time-symmetry and the order conditions for the underlying composi-
tion are introduced, at least s = 11 stages are necessary. Starting from the 6th-order symmetric composition obtained by 
Sofroniou & Spaletta [31] with coefficients

α1 = 0.21375583945878254555, α2 = 0.18329381407425713911

α3 = 0.17692819473098943795, α4 = −0.44329082681170215849

α5 = 0.11728560432865935385, α6 = 1 − 2(α1 + α2 + α3 + α4 + α5),

(23)

there is just one set of coefficients satisfying all the order conditions. The resulting method of order 6(5) is of the form

x̃n+1 = −xn +
5∑

i=1

wi (xn,i + xn,11−i), (24)

with

w1 = −4.70925883588386976399, w2 = 24.61043285614692442695
w3 = −19.39218824966918044634, w4 = 6.17441462307605721006
w5 = −5.68340039366993142668.

The same strategy can be applied to compositions (11) of order 8. A well known example within this class is the symmetric 
method proposed by Kahan & Li [21] with s = 17 and coefficients

α1 = 0.13020248308889008088, α2 = 0.56116298177510838456
α3 = −0.38947496264484728641, α4 = 0.15884190655515560090
α5 = −0.39590389413323757734, α6 = 0.18453964097831570709
α7 = 0.25837438768632204729, α8 = 0.29501172360931029887
α9 = 1 − 2(α1 + · · · + α8),

(25)

the estimator reads

x̃n+1 = −xn +
8∑

i=1

wi (xn,i + xn,17−i), (26)

with

w1 = −2.77811433347582461058, w2 = 1.43336350604816157334
w3 = −2.35490307436226712937, w4 = 0.27249477875971647996
w5 = 3.09204406313073660493, w6 = 1.33511505989947708172
w7 = 0, w8 = 0.

The DOP853 algorithm based on a 12-stage RK8(6) method by Dormand & Prince (announced but not published in [15]), 
where the embedded 6th-order method is replaced by a pair of embedded methods of order five and three by Hairer, Nørsett 
and Wanner [20]), is one of the most efficient schemes within this framework. In comparison, the previous composition 
method involves more stages, but on the other hand does not require to keep up to 12 vectors in memory.

As a matter of fact, we can apply the same strategy to the 8th-order composition method considered here and construct 
a second estimator of order 3 to avoid any possible over-estimation of the error. One possible 3th-order estimator is given 
by

x̃[3]
n+1 = −xn + w1(xn,1 + xn,16) + w7(xn,7 + xn,10), (27)

with w1, w7 verifying

w1 + w7 = 1

g1(g1 − 1)w1 + g7(g7 − 1)w7 = 0

where g1 = α1, g7 = α1 + · · · + α7, i.e.

w1 = 1.828514038642564624, w7 = −0.828514038642564624.

We then have two error estimators for the scheme (11) with coefficients (25),

err5 = ‖̃x[5]
n − xn‖ = O(h6), err3 = ‖̃x[3]

n − xn‖ = O(h4).
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Applying now the same strategy as in [20], we consider

err = err5 · err5√
err2

5 + 0.01 · err2
3

= O(h8)

as an error estimator that behaves asymptotically like the global error of the method.
Notice that we can obtain error estimators for other composition schemes in a similar way. For example, at order eight 

one can find in the literature methods with up to 21 stages [19,21,31], and their relative performance depend on the 
particular problem to solve as well as on the symmetric second order scheme used as the basic scheme for the composition.

3.2. Composition of a first order method with its adjoint

Higher order methods can also be obtained by composing a first order basic method χh and its adjoint χ∗
h = χ−1

−h ,

ψh = χα2sh ◦ χ∗
α2s−1h ◦ · · · ◦ χα2h ◦ χ∗

α1h, (28)

with appropriately chosen real coefficients (α1, . . . , α2s). The associated series of differential operators is of the form

�(h) = e−Y (−hα1) eY (hα2) · · · e−Y (−hα2s−1) eY (hα2s), (29)

where Y (hαk) = hαk F + h2α2
k Y2 + h3α3

k Y3 + O(h4). Again, by requiring that �(h) = exp(hF + O(hr+1)), one gets the or-
der conditions to be satisfied by the coefficients to achieve order r. These order conditions are considerably simplified if 
α2s− j+1 = α j for all j. In that case the composition (28) is time-symmetric.

As with symmetric compositions of symmetric second order schemes, here we can also take a linear combination

x̃n+1 = w0 xn +
2s−1∑
k=1

wk xn,k (30)

of intermediate outputs

xn,2i−1 = χ∗
α2i−1

(xn,2i−2), xn,2i = χα2i (xn,2i−1),

to produce an approximation of order 	 < r to be used as an error estimator for the composition (28). The coefficients wk

can be determined by requiring that

w0 I + w1 e−Y (−hα1) + w2 e−Y (−hα1)eY (hα2) + · · · = exp(hF ) +O(h	+1).

By expanding the product of exponentials we get the number of conditions the wk have to satisfy at a given order in a 
similar way as with compositions of 2nd-order symmetric methods. This number is collected in Table 1.

In particular, 8 linear equations are required to get a 3rd-order approximation in this way. Since several efficient 4th-
order methods of this class with up to 6 stages (or 12 intermediate outputs) are available in the literature, it is in principle 
possible to get third order estimators for them (even with free parameters for optimization). As an illustration, for the 
symmetric 4th-order method (28) with s = 6 and coefficients

α1 = 0.08298440641740484666, α2 = 0.16231455076686615333
α3 = 0.23399525073150184666, α4 = 0.37087741497957699562
α5 = −0.40993371990192559562, α6 = 0.05976209700657575333

(31)

we propose the linear combination (30) with w0 = −1 and

w1 = 1.48889386198802799037, w2 = −0.03049911761922725390
w3 = −0.32603028933442750875, w4 = −0.05468276894167474320
w5 = −0.02746220037522580999, w6 = −0.10043897143494534902
w12−i = wi, i = 1, . . . ,5.

(32)

4. Estimators for splitting methods

If f in equation (1) can be split as f = ∑m
i=1 f [i] for certain functions f [i] :RD −→RD , in such a way that the equations

ẋ = f [i](x), x0 = x(0) ∈RD , i = 1, . . . ,m (33)

can be integrated exactly, with solutions x(h) = ϕ[i]
h (x0) at t = h, then the basic first-order method in the composition (28)

can be taken simply as
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χh = ϕ[m]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ[1]
h , (34)

whereas its adjoint is just the reversed composition

χ∗
h = ϕ[1]

h ◦ ϕ[2]
h ◦ · · · ◦ ϕ[m]

h . (35)

For m = 2, i.e., when f (x) is decomposed in just two pieces,

f = f [1] + f [2],

one could also consider a time-symmetric composition

ψh = ϕ[2]
bs+1h ◦ ϕ[1]

ash ◦ ϕ[2]
bsh ◦ · · · ◦ ϕ[2]

b2h ◦ ϕ[1]
a1h ◦ ϕ[2]

b1h (36)

with appropriately chosen coefficients ai , bi verifying

as+1− j = a j, bs+2− j = b j, j = 1,2, . . .

to achieve a prescribed order. Here it is also possible to take advantage of the intermediate outputs to construct a lower 
order approximation which may be used as an error estimator for the integrator (36). In this case it has the form

x̃n+1 = w0 xn +
2s∑

k=1

wk xn,k, (37)

with

xn,2i−1 = ϕ[2]
bih

(xn,2i−2), xn,2i = ϕ[1]
aih

(xn,2i−1).

As before, the analysis can be carried out with the associated series of differential operators, which in this case reads

�(h) = exp(b1hB) exp(a1h A) · · · exp(bshB) exp(ash A) exp(bs+1hB),

where A and B denote the Lie derivatives corresponding to f [1] and f [2] , respectively:

A ≡
D∑

i=1

f [1]
i (x)

∂

∂xi
, B ≡

D∑
i=1

f [2]
i (x)

∂

∂xi
.

Analogously, the conditions to be satisfied by the wi are determined by expanding the exponentials in

w0 I + w1eb1hB + w2eb1hB ea1h A + · · · = exp(hF ) +O(h	+1).

The number to achieve a given order is collected in Table 1 (last line).
Now a system of 15 equations have to be satisfied by the coefficients wi in the linear combination (37) to achieve 

order 3. As in the preceding cases, we can take several efficient splitting methods of the form (36) involving enough 
intermediate steps and construct estimators for them. In particular, for the 4th-order symmetric splitting scheme designed 
by Blanes & Moan [9], with 12 intermediate outputs

ψh = ϕ[2]
b1h ◦ ϕ[1]

a1h ◦ · · · ◦ ϕ[1]
a3h ◦ ϕ[2]

b4h ◦ ϕ[1]
a3h ◦ · · · ◦ ϕ[1]

a1h ◦ ϕ[2]
b1h (38)

and coefficients

b1 = 0.07920369643119565, a1 = 0.209515106613361
b2 = 0.35317290604977372, a2 = −0.143851773179818
b3 = −0.04206508035771952, a3 = 1/2 − (a1 + a2)

b4 = 1 − 2(b1 + b2 + b3)

we propose the linear combination

x̃n+1,k = −xn,0 +
5∑

i=1

wi(xn,i + xn,13−i) (39)

solving all order conditions with

w1 = 1, w2 = 0.43458657385433203071,

w = −w , w = 0.27273581001405423884, w = −w .
(40)
3 2 4 5 4
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Another particularly efficient 4th-order splitting method designed for systems of the form

ÿ = g(y), y ∈RD (41)

when written as a first order system

d

dt

(
y
ẏ

)
=

(
ẏ
0

)
︸ ︷︷ ︸

f [1]

+
(

0
g(y)

)
︸ ︷︷ ︸

f [2]

corresponds to the composition (38) with

b1 = 0.082984406417404, a1 = 0.245298957184271
b2 = 0.396309801498368, a2 = 0.604872665711078
b3 = −0.039056304922348, a3 = 1/2 − (a1 + a2)

b4 = 1 − 2(b1 + b2 + b3).

(42)

In this case the estimator has also the form (39) with

w1 = 1, w2 = 0.43541552923952936004,

w3 = −w2, w4 = −0.17978889668391821731, w5 = −w4.
(43)

This splitting method, as well as the error estimator, can also be used to integrate in time the Schrödinger equation

i
∂

∂t
ψ =

(
− 1

2m
� + V (x)

)
ψ,

where m is the reduced mass, � is the Laplacian operator and V (x) is the potential. After spatial discretization one has to 
solve a linear system of ODEs

iu̇ = (A + B)u, u0 ∈CD ,

where A corresponds to the spatial discretization of the kinetic part and B to the potential part. Here B is a diagonal matrix 
in the coordinate space, whereas A is diagonal in the momentum space, so fast Fourier transform (FFT) algorithms F can 
be used to compute the action of a A on a vector, Au = F −1 D A F u, with D A a diagonal matrix.

5. Connection between splitting and composition

Splitting and composition methods for a system ẋ = f [1](x) + f [2](x) are closely connected. On the one hand, if S [2]
h =

ϕ[2]
h/2 ◦ϕ[1]

h ◦ϕ[2]
h/2 or S[2]

h = ϕ[1]
h/2 ◦ϕ[2]

h ◦ϕ[1]
h/2, then the composition scheme (11) can be written as (36), although the opposite 

is not true in general. On the other hand, if χh = ϕ[2]
h ◦ ϕ[1]

h , then χ∗
h = ϕ[1]

h ◦ ϕ[2]
h and the composition (28) reads

ψh = (
ϕ[2]

α2sh ◦ ϕ[1]
α2sh

) ◦ (
ϕ[1]

α2s−1h ◦ ϕ[2]
α2s−1h

) ◦ · · · ◦ (
ϕ[2]

α2h ◦ ϕ[1]
α2h

) ◦ (
ϕ[1]

α1h ◦ ϕ[2]
α1h

)
. (44)

Since ϕ[i]
h (i = 1, 2) are exact flows, then they verify1 ϕ[i]

βh ◦ ϕ[i]
δh = ϕ[i]

(β+δ)h , and the method can be rewritten as the splitting 
scheme

ψh = ϕ[2]
bs+1h ◦ ϕ[1]

ash ◦ ϕ[2]
bsh ◦ · · · ◦ ϕ[2]

b2h ◦ ϕ[1]
a1h ◦ ϕ[2]

b1h, (45)

if b1 = α1 and

a j = α2 j + α2 j−1, b j+1 = α2 j+1 + α2 j, j = 1, . . . , s (46)

(with α2s+1 = 0). Conversely, any integrator of the form (45) with 
∑s

i=1 ai = ∑s+1
i=1 bi can be expressed in the form (28)

with χh = ϕ[2]
h ◦ ϕ[1]

h and

α2s = bs+1,

α2 j−1 = a j − α2 j, α2 j−2 = b j − α2 j−1, j = s, s − 1, . . . ,1,
(47)

with α0 = 0 for consistency. Nevertheless, the intermediate outputs are different in each implementation as well as the 
number of order conditions for the estimators. In general this number grows faster with the order for splitting methods. 

1 This property is not satisfied, in general, if the exact flows are replaced by numerical approximations.
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Moreover, implementing the splitting scheme ψh as a composition method is in general more costly because explicitly 
obtaining the intermediate values requires the computation of additional basic flows. In more detail, suppose we write (45)
as a composition:

ψh = · · · ◦ ϕ[2]
b2h ◦ ϕ[1]

a1h ◦ ϕ[2]
b1h

= · · · ◦ ϕ[2]
(b2−(a1−b1))h ◦ ϕ[2]

(a1−b1)h ◦ ϕ[1]
(a1−b1)h︸ ︷︷ ︸

χ(a1−b1)h

◦ϕ[1]
b1h ◦ ϕ[2]

b1h︸ ︷︷ ︸
χ∗

b1h

.

Then, for the first intermediate output we have

xn+1,1 = χ∗
b1h(xn,0) = ϕ[1]

b1h ◦ ϕ[2]
b1h(xn,0).

However, whereas obviously ϕ[1]
(a1−b1)h ◦ ϕ[1]

b1h = ϕ[1]
a1h , the computational cost of computing z = ϕ[1]

b1h(y) and then ϕ[1]
(a1−b1)h(z)

can be in many cases up to twice more costly than directly evaluating ϕ[1]
a1h(y).

For example, taking this composition for solving the Schrödinger equation requires the computation of s additional 
inverse FFTs with respect to the same scheme written as a splitting method. Similarly, taking a composition with the 
symmetric second order scheme S [2]

h = ϕ[2]
h/2 ◦ ϕ[1]

h ◦ ϕ[2]
h/2 requires the same number of FFTs as the corresponding splitting 

composition, but taking instead S [2]
h = ϕ[1]

h/2 ◦ ϕ[2]
h ◦ ϕ[1]

h/2 as the basic scheme, requires s additional inverse FFTs for the 
intermediate outputs because ϕ[1]

h carries the costly part of the scheme.
A noteworthy exception is the case in which f [1] and f [2] originate from a partitioned ordinary differential equation of 

the form

q̇ = g(p), ṗ = f (q). (48)

The system can then be written as

d

dt

(
q
p

)
=

(
g(p)

0

)
︸ ︷︷ ︸

f [1]

+
(

0
f (q)

)
︸ ︷︷ ︸

f [2]

and

ϕ[1]
b1h

(
qn

pn

)
=

(
qn + b1hg(pn)

pn

)
, ϕ[1]

(a1−b1)h

(
qn

pn

)
=

(
qn + (a1 − b1)hg(pn)

pn

)
,

where the same evaluation g(pn) is used in both cases.
The algorithm corresponding to the splitting method (45) for the step (q0, p0) �→ (q1, p1) reads

Q 0 = q0, P0 = p0

for i = 1, . . . , s

Q 2i−1 = Q 2i−2

P2i−1 = P2i−2 + hbi f (Q 2i−1)

Q 2i = Q 2i−1 + hai g(P2i−1)

P2i = P2i−1

q1 = Q 2s, p1 = P2s + hbs+1 f (Q 2s),

so that it can be seen as an explicit partitioned Runge–Kutta method. On the other hand, the composition (28) with (44)
leads to the algorithm

Q 0 = q0, P0 = p0

for i = 1, . . . , s

P2i−1 = P2i−2 + hα2i−1 f (Q 2i−2)

Q 2i−1 = Q 2i−2 + hα2i−1 g(P2i−1)

Q 2i = Q 2i−1 + hα2i g(P2i−1)

P2i = P2i−1 + hα2i f (Q 2i)

q1 = Q 2s, p1 = P2s
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requiring exactly the same evaluations of f and g . If in addition g(p) = p (i.e., if we are solving the second order differential 
equation q̈ = f (q)), then the estimator for (48) takes the form (for appropriate choices of the parameters wi )(

q̃n+1
p̃n+1

)
= w0

(
qn

pn

)
+

s−1∑
i=1

(
w2i−1

(
Q 2i−1
P2i−1

)
+ w2i

(
Q 2i
P2i

))

+w2s−1

(
Q 2s−1
P2s−1

)
=

⎛
⎜⎜⎜⎜⎝

qn + hpn + h2
s∑

i=1

δi f (Q 2i−2)

pn + h
s∑

i=1

γi f (Q 2i−2)

⎞
⎟⎟⎟⎟⎠

in a similar way as for embedded Runge–Kutta–Nyström methods. In any case, other choices of δi , γi can also lead to 
estimators associated to a given s-stage composition scheme [10], and that can not be obtained by taking intermediate 
outputs.

6. Numerical examples

In this section we analyze the accuracy and reliability of the estimators presented in this work in comparison with other 
well established schemes for a simple example. Specifically, the methods (and notation) we consider are the following:

• RKN 643: The 6-stage 4th-order splitting method (38) for systems of the form (41) with the 3rd-order estimator (43).
• PRK643: The 6-stage 4th-order splitting (38), with the 3rd-order estimator (39) and coefficients given by (40).
• S643: The 6-stage 4th-order method-adjoint symmetric composition (28) with coefficients (31) and 3rd-order estimator 

(32).
• SS543: The 5-stage 4th-order symmetric composition (11) with coefficients (19) and 3rd-order estimator (20).
• SS1165: The 11-stage 6th-order symmetric composition (11) with coefficients (23) and 5th-order estimator (24).
• SS17853: The 17-stage 8th-order symmetric composition (11) with coefficients (25) with the 5th- and 3rd-order esti-

mators (26) and (27).

These are compared with:

• eRKN443: the non-symmetric 4-stage 4th-order Runge–Kutta–Nyström (RKN) method with a 3rd-order estimator pre-
sented in [10]. This method has an error estimator that is only valid for equations of the form (41), so that it cannot be 
used in particular for the Schrödinger equation.

• ePRK543: The 5-stage 4th-order splitting method given by the composition

ψh = ϕ[2]
b5h ◦ ϕ[1]

a5h ◦ ϕ[2]
b4h ◦ ϕ[1]

a4h ◦ ϕ[2]
b3h ◦ ϕ[1]

a3h ◦ ϕ[2]
b2h ◦ ϕ[1]

a2h ◦ ϕ[2]
b1h ◦ ϕ[1]

a1h (49)

with the symmetry b6−i = ai, i = 1, 2, . . . , 5, and the 3rd-order estimator given by a similar composition sharing the 
first stages2

ψ̃h = ϕ[2]
b̃5h

◦ ϕ[1]
ã5h ◦ ϕ[2]

b̃4h
◦ ϕ[1]

ã4h ◦ ϕ[2]
b̃3h

◦ ϕ[1]
ã3h ◦ ϕ[2]

b2h ◦ ϕ[1]
a2h ◦ ϕ[2]

b1h ◦ ϕ[1]
a1h (50)

with ãi, ̃bi, i = 3, 4, 5 chosen appropriately. The estimator requires three new evaluations. We take in particular the 
scheme3 Emb 4/3 AK p, in which case ̃a3 = 0, so that only two new evaluations are required and the overall cost is 
taken as 7 evaluations per step.

• RK6(5): the well known 8-stage Verner’s method of order 6(5) (see Table 5.4 in [20], page 181) that is implemented in 
the routine DVERK.

• DOP853: the 12-stage embedded Runge–Kutta method of order 8(5) by Dormand & Prince [15] and improved as the 
routine DOP853 in [20].

Specifically, we consider as a test bench the two-dimensional Kepler problem with Hamiltonian

H(q, p) = T (p) + V (q) = 1

2
pT p − μ

1

r
. (51)

Here q = (q1, q2), p = (p1, p2), μ = GM , G is the gravitational constant and M is the sum of the masses of the two bodies. 
Taking μ = 1 and initial conditions

2 The idea to consider estimators using a second composition sharing some of the stages was first proposed in [22].
3 The corresponding coefficients are available at http://www.asc .tuwien .ac .at /~winfried /splitting.

http://www.asc.tuwien.ac.at/~winfried/splitting


412 S. Blanes et al. / Applied Numerical Mathematics 146 (2019) 400–415
Fig. 1. Methods of order 6(5). Maximum error in positions, E1 (thin lines), and maximum error estimator, E2 (thick lines), versus the computational cost 
measured as the number of force evaluations in double logarithmic scale: (dashed lines) DVERK; and (solid lines) SS1165. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =
√

1 + e

1 − e
, (52)

if 0 ≤ e < 1, then the total energy is H = H0 = −1/2, the solution is periodic with period 2π , and the trajectory is an ellipse 
of eccentricity e.

The performance of an embedded Runge–Kuta method depends on the performance of the high order method used to 
propagate the solution, but also on the accuracy of the lower order one as well as how the error estimator approaches the 
true error of the high order method. Some times the error estimator is much larger than the true error and the algorithm 
uses smaller time steps than necessary to reach a given accuracy. Some other times, however, this error can be considerably 
smaller than the true error (usually due to cancellations because the methods share internal stages) and the algorithm takes 
longer time steps than required which lead to undesirable large errors.

In this example we integrate with a constant time step and compute the maximum true error

E1 = max
n

‖x(tn) − xn‖
and the maximum error estimator

E2 = max
n

‖̃xn − xn‖.
An efficient method should give E2 ∼ E1, while being both as small as possible at a given computational cost.

The integration is carried out in the time interval t ∈ [0, 20] with a constant time step, and this integration is repeated 
for different values of the time step and for several values of the eccentricity, in particular for e = 1

5 , 2
5 , 3

5 , 4
5 . This is done 

first for RK6(5) (or DVERK subroutine) and the composition scheme SS1165.
Fig. 1 shows in double logarithmic scale the error E1 (thin lines) and the estimate E2 (thick lines) versus the com-

putational cost measured as the number of force evaluations. Dashed lines are obtained with RK6(5), whereas solid lines 
correspond to SS1165.

We notice from the figure that the composition method is not only more accurate at the same cost (even for such a 
short time integration) but also the error estimator is much closer to the true error. The error estimator of DVERK is very 
optimistic: E2 is much smaller that E1, especially when the eccentricity takes large values (and thus adjusting the step size 
is increasingly relevant). The reason lies in the fact that both xn and ̃xn are computed using very similar procedures, since 
they share the intermediate stages. This is not the case for the error estimators proposed here, and thus the error E2 is 
reasonably close to the true error of the method, even when the coefficients for this specific method are not particularly 
small.
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Fig. 2. Methods of order 8(5)(3). Maximum error in positions, E1 (thin lines), and maximum error estimator, E2 (thick lines), versus the computational cost 
measured as the number of force evaluations in double logarithmic scale: (dashed lines) DOP853; and (solid lines) SS17853.

Fig. 3. General methods of order 4(3). Comparison of the true error (thin lines) and the estimator (thick lines) for e = 1/2 and the following schemes: 
PRK643 (dashed lines); ePRK543 (dot-dashed lines); and SS543 (solid lines).

Next the same numerical experiment is carried out again, but this time with DOP853 and the composition scheme 
SS17853. Fig. 2 shows the results obtained.

We observe that, for this example, the symplectic composition method is as efficient as the 8th-order RK method even 
for such a short time integration. In addition, our error estimator for the composition method is closer to the true error 
providing a better error estimator and as a result allowing to choose more appropriate time steps.

Next we compare the results achieved by methods of order 4(3) that are valid for general splitting methods and 
symmetric-symmetric compositions. This is shown in Fig. 3 for eccentricity e = 1/2 in eq. (52): PRK643 (dashed lines); 
ePRK543 (dot-dashed lines); and SS543 (solid lines). We observe that the embedded scheme ePRK543 provides an exceed-
ingly optimistic error estimator as well as a lower performance due to its higher cost per step.
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Fig. 4. RKN methods of order 4(3). Same as Fig. 3 for the following methods: S643 (dashed lines); eRKN443 (dot-dashed lines); and RKN 643 (solid lines).

Finally, Fig. 4 shows the same results as Fig. 3 for the RKN methods of order 4(3) and the composition method-adjoint 
obtained from the coefficients of the 6-stage RKN method and the relation (47). It provides the same results for the 4th-
order method, but different outputs for the estimator. Specifically, we collect the results obtained with S643 (dashed lines), 
eRKN443 (dot-dashed lines), and RKN 643 (solid lines). We observe that the scheme eRKN443 provides an optimistic error 
estimator as well as a lower performance.

7. Concluding remarks

In this work we have proposed a procedure to estimate the local error of splitting and composition methods based on the 
construction of a second lower order integrator by linear combinations of the intermediate outputs of the original scheme. 
The difference can then be combined with standard strategies of automatic step size control [20] to use the original splitting 
and composition methods with adaptive step size along the integration. In contrast with other approaches, the proposed 
strategy does not increase the computational cost of the overall scheme and provides a reliable estimate of the error, so 
that it can be safely used in problems where keeping the step size constant is not of paramount importance, such as it 
is the case in certain partial differential equations of evolution. In any event, in that case one should use a very precise 
discretization in space to guarantee that the main source of error originates when integrating in time.

We should remark in particular the good properties exhibited by the estimator constructed for the 17-stage 8th-order 
composition scheme (11) with coefficients (25) in comparison with the well known routine DOP853. Taking into account 
that even more efficient composition methods involving 19 and 21 stages do exist within this class, we conclude that these 
can constitute a worthwhile alternative for integrating problems when high accuracy is required.

The error estimator proposed here coupled with a variable step size strategy could be most useful for the application of 
splitting methods for solving the Schrödinger eigenvalue problem with the imaginary time propagation technique, in order 
to reduce the overall computational cost, as illustrated e.g. in [4].

Although only several representative schemes have been considered, it is clear that the same strategy can be applied to 
any other splitting and composition method. In particular, we can also construct estimators for the high-order methods with 
complex coefficients collected in [6] and schemes involving double commutators, such as those presented in [12,23,28], as 
long as they involve a sufficiently large number of intermediate stages to form the required linear combinations.
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