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Different families of Runge–Kutta–Nyström (RKN) symplectic splitting methods of order 8 
are presented for second-order systems of ordinary differential equations and are tested 
on numerical examples. They show a better efficiency than state-of-the-art symmetric 
compositions of 2nd-order symmetric schemes and RKN splitting methods of orders 4 and 
6 for medium to high accuracy. For some particular examples, they are even more efficient 
than extrapolation methods for high accuracies and integrations over relatively short time 
intervals.
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1. Introduction

Second-order systems of ordinary differential equations (ODEs) of the form

ÿ ≡ d2 y

dt2
= g(y), (1.1)

where y ∈Rd and g :Rd −→Rd , appear very often in applications, so that special numerical integrators have been designed 
for them, such as the Runge–Kutta–Nyström (RKN) class of methods. As is well known, if one introduces the new variables 
x = (y, v = ẏ) and the maps

fa(x) = fa(y, v) = (v,0), fb(x) = fb(y, v) = (0, g(y)), (1.2)

then eq. (1.1) is equivalent to

ẋ = fa(x) + fb(x) (1.3)

and moreover each subsystem ẋ = f i(x), i = a, b, is explicitly integrable, with exact flow

ϕ[a]
t (y, v) = (y + tv, v) and ϕ[b]

t (y, v) = (y, v + tg(y)),

respectively. An important class of problems leading to equations of the form (1.1) corresponds to Hamiltonian dynamical 
systems of the form
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H(q, p) = 1

2
pT M−1 p + V (q), (1.4)

where q and p denote coordinates and momenta, respectively, M is a symmetric positive definite square constant matrix 
and V (q) is the potential. Then, the corresponding equations of motion can be written as (1.1) with y = q, v = ẏ = M−1 p
and g(y) = −M−1∇V (q).

Splitting methods constitute a natural option for integrating numerically the initial value problem defined by (1.3). These 
are schemes of the form

ψh = ϕ[a]
has

◦ ϕ[b]
hbs

◦ · · · ◦ ϕ[a]
ha1

◦ ϕ[b]
hb1

, (1.5)

where the coefficients a j , b j are conveniently chosen so as to achieve high order approximations to the exact flow of (1.3), 
namely ϕh(x) = ψh(x) +O(hr+1) for a given order r and step size h. Familiar examples of splitting methods are the so-called 
Strang/leapfrog/Störmer–Verlet second order schemes:

S[2]
h = ϕ[a]

h/2 ◦ ϕ[b]
h ◦ ϕ[a]

h/2, (1.6)

and

S[2]
h = ϕ[b]

h/2 ◦ ϕ[a]
h ◦ ϕ[b]

h/2. (1.7)

In fact, efficient schemes of this class up to order r = 6 have been designed along the years (see e.g. [5] and references 
therein). In addition, they preserve qualitative properties of the continuous system and show a very good behavior with 
respect to the propagation of errors, especially for long time integrations [11].

There are situations, however, when even higher-order numerical approximations (r = 8, 10, . . .) are required, for instance 
in problems arising in astrodynamics. In that case, although generic splitting methods exist, they involve such a large 
number of elementary flows ϕ[a]

h , ϕ[b]
h , that are not competitive with other integrators. This is so due to the exponential 

growth with the order r of the required number of conditions to be satisfied to achieve that order [19]. For this reason, 
palindromic compositions of the form

S[2]
αmh ◦ S[2]

αm−1h ◦ · · · ◦ S[2]
α2h ◦ S[2]

α1h with (α1, . . . ,αm) ∈Rm (1.8)

and αm+1−i = αi , have been considered instead for order r > 6. In practice, schemes (1.8) are the most realistic option when 
one is interested in integrating (1.3) with high-order (r = 8, 10, . . .) splitting methods.

It turns out, however, that the special structure of (1.2)-(1.3) corresponding to the system (1.1) leads to a reduction in the 
number of order conditions when r > 4 with respect to the generic problem. This allows one to construct highly efficient 
4th- and 6th-order splitting methods especially tailored for this class of problems which show a better performance than 
schemes of the family (1.8) [8,24]. They can be naturally called RKN splitting methods, and the question of the existence of 
eighth-order schemes, more efficient than methods of type (1.8), formulated some 25 years ago [21, p. 153], still remains 
unanswered, no doubt due to the technical difficulties involved.

It is our purpose in this note to present new RKN splitting methods of order 8 that provide higher efficiency than 
state-of-the-art composition methods (1.8) on a variety of examples arising in physical applications. They should then be 
considered as the natural option when one is interested in integrating numerically problems of the form (1.2)-(1.3) with 
medium to high precision whereas preserving by construction the main qualitative features of the continuous system.

Remark 1.1. It turns out that this class of schemes can also be used to solve the slightly more general problem

ÿ = α ẏ + β y + g(t, y), (1.9)

where α, β ∈Rd×d are constant: by taking time t as a new coordinate and considering x = (y, v, t), it is clear that equation 
(1.9) can be again expressed as (1.3), this time with

fa(x) = fa(y, v, t) = (v,αv + β y,1), fb(x) = fb(y, v, t) = (0, g(t, y),0), (1.10)

and each sub-system being explicitly integrable.

2. Order conditions

As shown e.g. in [4], to each integrator (1.5) one can associate a series �(h) of differential operators given by

�(h) = exp(hb1 Fb) exp(ha1 Fa) · · · exp(hbs Fb) exp(has Fa), (2.1)

where Fa , Fb are the Lie derivatives corresponding to fa and fb , respectively [3]: for each smooth function g : Rd −→ Rd

and x ∈Rd one has
15
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Table 1
Number of independent order conditions (at order r) of compo-
sitions of symmetric second order methods of the form (1.8), sr , 
of splitting methods in the general case, nr , and in the RKN case, 
�r .

r 1 2 3 4 5 6 7 8 9 10
sr 1 0 1 1 2 2 4 5 8 11
nr 2 1 2 3 6 9 18 30 56 99
�r 2 1 2 2 4 5 10 14 25 39

Table 2
Minimum number of stages required 
to achieve order r = 2k with sym-
metric compositions (1.8), Sr , with 
general splitting (1.5), Nr , and for 
RKN splitting methods, Lr .

r 2 4 6 8 10
Sr 1 3 7 15 31
Nr 1 3 9 27 83
Lr 1 3 7 17 42

Fa g(x) = fa(x) · ∇g(x), Fb g(x) = fb(x) · ∇g(x), (2.2)

so that, for the whole integrator, g(ψh(x)) = �(h)g(x). For g(x) = (g1(x), . . . , gd(x)), we denote

f (x) · ∇g(x) ≡ ( f (x) · ∇g1(x), . . . , f (x) · ∇gd(x))

in eq. (2.2). The main advantage of using the series �(h) for representing the method ψh is that one can formally apply the 
Baker–Campbell–Hausdorff formula [28] and express �(h) as only one exponential,

�(h) = exp(F (h)), with F (h) =
∑
j≥1

h j F j, (2.3)

and each F j is a linear combination of nested commutators involving j operators Fa and Fb whose coefficients are polyno-
mials of degree j in the coefficients ai , bi . A method of order r requires that F1 = Fa + Fb for consistency, and F j = 0 for 
1 < j ≤ r. These constraints in turn lead to a set of polynomial equations to be satisfied by the coefficients of the splitting 
method. The number nr of such order conditions at each r is collected in Table 1 [19]. For comparison, we also include the 
number sr of order conditions for compositions of the form (1.8).

As is well known, if the composition (1.5) is left-right palindromic, then all the order conditions at even order are 
automatically satisfied and the method is time-symmetric. For systems of the form (1.2)-(1.3), the flow ϕ[b]

h is typically the 
most expensive part to evaluate (for the Hamiltonian (1.4), it corresponds essentially to the force ∇V (q)). It makes sense, 
then, to characterize a given splitting method according to the number of flows ϕ[b]

h involved. This is called the number of 
stages of the method. Notice that, if the Strang splitting is used as the scheme S [2]

h in the composition (1.8), the number of 
stages is also m.

From Table 1 it is then straightforward to estimate the minimum number of stages to achieve an even order r = 2k. For 
the composition (1.8) and the general splitting (1.5) these values are, respectively,

Sr = 2
k∑

i=1

s2k−1 − 1, Nr =
k∑

i=1

n2k−1 − 1,

and are collected in Table 2 up to r = 2k = 10. Notice that, when counting the number of stages per step, we have used 
the so–called FSAL (First Same As Last) property: the last map in one step can be saved in the following one and does not 
count for the total number of stages.

The number of order conditions to be solved for each family of methods is, respectively, (Sr + 1)/2 and Nr + 1. It is 
clear that symmetric compositions (1.8) require to solve a considerably smaller number of order conditions to achieve high 
order methods. On the other hand, the space of solutions is significantly larger in the case of general splitting methods, and 
consequently also the chance of finding highly efficient schemes within this class. Thus, in particular, the general splitting 
methods of order four and six presented in [8] outperform compositions (1.8) of the same order. At order eight, however, 
one has to solve a system of 28 polynomial equations for general splitting methods, and although it seems quite likely that 
very efficient solutions exist, to carry out a thorough analysis constitutes a formidable task.

Notice that for systems of the form (1.2)-(1.3) one has further restrictions: since Fa = v ∇y , and Fb = g(y)∇v , one has 
for symmetric methods

[Fb, [Fa, Fb]] = g̃(y)∇v , with g̃(y) = 2∇y g(y) · g(y),
16
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where [Fa, Fb] = Fa Fb − Fb Fa , etc. In consequence, [Fb, [Fb, [Fa, Fb]]] ≡ 0, and many terms in (2.3) vanish identically, so 
that their order conditions can be ignored. This can be seen in the last row of Tables 1 and 2, where we collect the order 
conditions �r and the minimum number of stages,

Lr =
k∑

i=1

�2k−1 − 1

up to r = 10. Notice that, whereas the reduction up to r = 6 with respect to general splitting methods is only of two 
equations, for a time-symmetric method of order r = 8 one has to solve 18 order conditions (instead of 28). This problem, 
although more amenable, is still far from trivial. In addition, to get significant solutions, the relevant issue here is whether 
the resulting 8th-order RKN splitting schemes are competitive in terms of the number of flows involved with methods 
within the class (1.8).

Remark 2.1. With respect to the more general system (1.9)-(1.10), one has

Fa = v ∇y + (αv + β y)∇v + 1 · ∂t, Fb = g(t, y)∇v ,

so that

[Fb, [Fa, Fb]] = g̃(t, y)∇v , with g̃(y) = 2∇y g(t, y) · g(t, y)

and therefore [Fb, [Fb, [Fa, Fb]]] ≡ 0 also here.

Before starting a systematic search of solutions to the order conditions, it seems appropriate to make explicit several 
considerations:

1. Due to the different qualitative character of the operators Fa and Fb , it is clear that the role of ϕ[a]
h and ϕ[b]

h in (1.5)
is not interchangeable, and so two different orderings have to be considered. Specifically, we will analyze two types of 
composition:

As = ϕ[a]
has+1

◦ ϕ[b]
hbs

◦ ϕ[a]
has

◦ · · · ◦ ϕ[b]
hb1

◦ ϕ[a]
ha1

, (2.4)

with as+2−i = ai , bs+1−i = bi , and

Bs = ϕ[b]
hbs+1

◦ ϕ[a]
has

◦ ϕ[b]
hbs

◦ · · · ◦ ϕ[a]
ha1

◦ ϕ[b]
hb1

, (2.5)

with bs+2−i = bi , as+1−i = ai . Since for methods (2.4) and (2.5) one can always apply the FSAL property, we say that 
both schemes involve the same number s of stages.

2. Very often, compositions with a higher number of stages than the minimum required to solve the order conditions are 
considered in the literature. This is so because, typically, (i) methods with the minimum number of stages show a poor 
performance, and (ii) the presence of free parameters allows one to optimize the schemes according with some appro-
priate criteria, so that the extra computational cost is compensated by the reduction in the error. Thus, in particular, 
8th-order methods within the class (1.8) with 17, 19 and 21 stages exist that are more efficient than schemes with the 
minimum number m = 15. Notice in this respect that the minimum number of stages for a RKN splitting method of 
order 8 is s = 17. Although one such method of the form As was proposed in [23], the numerical results collected there 
show no clear improvement with respect to the 8th-order method of type (1.8) with m = 24 presented in [9].

3. Given a method ψh , one may consider a near-to-identity map πh so that the integrator ψ̂h = π−1
h ◦ ψh ◦ πh is more 

accurate than ψh , for instance, by increasing its order. In this context, ψh is called the kernel of the processed method 
ψ̂h , and πh is the processor or corrector. Notice that N consecutive steps correspond to ψ̂N

h = π−1
h ◦ ψN

h ◦ πh , i.e., the 
cost of applying the processed scheme is basically the cost of the kernel. This technique allows one to separate the 
order conditions into two sets: the conditions satisfied by the kernel itself, and those to be verified by the processor. 
As a result, it is possible to construct high-order RKN splitting methods involving a reduced number of stages in the 
kernel, although building a particular processor is far from trivial. Methods of this class have been presented in [6,7], 
so that they will not be considered here.

4. For the initial value problem defined by (1.2)-(1.3), it is possible to include in the compositions (2.4) and (2.5) the flows 
generated by other vector fields lying in the Lie algebra generated by Fa and Fb . For instance, one could use the h-
flow of the vector fields [Fb, [Fa, Fb]], [Fb, [Fb, [Fa, [Fa, Fb]]]], and other more general nested commutators [6,7]. These 
give rise to the so-called ‘modified potentials’, and allow one to reduce the number of stages (although at the price of 
an additional computational cost to evaluate the flows). Methods of this class with and without processing have been 
analyzed in particular in [6] and [24]. Here, by contrast, we are only interested in standard compositions (2.4)-(2.5).
17
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Table 3
Effective error Ef , 1- and ∞-norm of the vector of coeffi-
cients for different 8th-order RKN splitting methods of type 
As and Bs .

Ef 
 δ

A17 3.45 8.42 0.5459 (|a9|)
A18 3.65 7.42 0.6406 (|a9|)
A19 2.76 5.98 0.4237 (|a4|)
B17 2.80 8.93 0.6355 (|a5|)
B18 3.44 9.68 0.9303 (|a4|)
B19 3.41 6.94 0.5238 (|a6|)

3. New methods of order 8

We next analyze families of schemes (2.4) and (2.5) involving s = 17, 18 and 19 stages, so that one always has enough 
parameters in the compositions to solve the order conditions. Of course, even with the minimum number of parameters, 
these order conditions possess a large number of real solutions, so that some criterion has to be adopted to select “good” 
methods. As is customary in the literature, and assuming h is sufficiently small and g is sufficiently smooth, we propose to 
take the leading term in the asymptotic expansion of the modified vector field associated with the integrator as the main 
contribution to the truncation error. Without any specific assumption on the function g , we take this error as (

∑25
i=1 k2

9,i)
1/2. 

Here k9,i are the coefficients of the asymptotic expansion of the modified vector field at order h9 when it is expressed as 
a linear combination of the 25 independent nested commutators involving 9 operators Fa and Fb . This corresponds to the 
subspace of the Lie algebra generated by Fa and Fb with the commutator as the Lie bracket (for more details, see [20,18]). To 
take into account the computational cost, we multiply this error by the number of stages s, thus resulting in the following 
effective error for a method of order 8,

E f = s ·
⎛
⎝

√√√√ 25∑
i=1

k2
9,i

⎞
⎠

1/8

, (3.1)

which should be minimized by the integrator. One has to take into account, however, that the expression of E f depends on 
the particular basis of nested commutators one is considering and that we are also assuming that all these commutators 
contribute in a similar way, something that is not guaranteed to take place in all applications. It makes sense, then, to 
introduce other quantities as possible estimators of the error committed. In particular, it has been noticed that large coef-
ficients ai , bi in the splitting method usually lead to large truncation errors, since the expressions of k�, j for � ≥ 9 depend 
on increasingly higher powers of these coefficients. For this reason, we also keep track of the quantities


 ≡
s∑

i=1

(|ai| + |bi|) and δ ≡ s
max
i=1

(|ai|, |bi |) (3.2)

and eventually discard solutions with large values of 
 and/or δ. By following a similar approach as for instance in [8,24], 
we will select particular schemes with small values of E f , 
 and δ, and then we will test them on an array of numerical 
examples to check their efficiency in practice.

s = 17 stages In this case one has as many parameters as order conditions, 18 in total. Given the complexity of the problem, 
it is not possible to solve these nonlinear equations with a computer algebra system, and so one has to turn to numerical 
techniques. Specifically, they are solved with the Python [27] function fsolve of the SciPy library [29], a wrapper of the 
classic subroutines HYBRD and HYBRJ of MINPACK [22]. The algorithm is based on a modification of the Powell hybrid 
method and involves the choice of the correction as a convex combination of the Newton method and scaled gradient 
directions and the updating of the Jacobian by the rank-1 method (except at the starting point, where it is approximated by 
forward differences). Since we are not interested in methods with large values of δ, a uniform distribution in the interval 
[−1, 1] in each variable was taken to generate about 2 × 106 initial points to start the procedure.

When a composition of type As is considered, we have obtained 376 real solutions that cannot be obtained as a compo-
sition of 2nd-order symmetric schemes (1.8), with parameters E f ∈ [2.77, 18.05] and 
 ∈ [8.40, 63.05], respectively. Among 
these, we select those solutions within the more restricted range E f ∈ [2.86, 3.45] and 
 ∈ [8.42, 19.30] and check them on 
the test problems of sections 4 and 5. Finally, we have chosen the scheme whose coefficients are listed in Table 4, and pa-
rameters given in Table 3. The final values of the coefficients (with 30 digits of accuracy) have been obtained by taking the 
solution found by fsolve as the starting point of the function FindRoot of Mathematica. The method can be represented 
in the compact form

A17 ≡ (a1,b1,a2,b2,a3,b3,a4,b4,a5,b5,a6,b6,a7,b7,a8,b8,a9,b9,
18
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Table 4
Coefficients of 8th-order RKN splitting methods of type As , with s = 17, 18 and 19 stages.

ai bi

A17

a1 = 0.0520924343840339006426037968353 b1 = 0.145850304812644731608096609877
a2 = 0.225287493267702165807274831864 b2 = 0.255156544139293944162028807345
a3 = 0.416276189612257117795363856737 b3 = 0.0181334688208317251361460684041
a4 = −0.384567270213950399652168569029 b4 = −0.179040110299264554587007062749
a5 = 0.0997271783470514816674547589369 b5 = −0.118470801433302245053382954342
a6 = −0.108833834399100218757003157958 b6 = 0.186461689273821083344937258279
a7 = 0.222010736648991680848341975522 b7 = 0.459041581767136840219244627361
a8 = 0.523879522036734296002247438223 b8 = −0.003660836270318358975321459399
a9 = 1

2 − ∑8
i=1 ai b9 = 1 − 2

∑8
i=1 bi

A18

a1 = 0.0866003822712445920135805954462 b1 = −0.08
a2 = −0.0231572735424388070228714693753 b2 = 0.209460550048243262121199483001
a3 = 0.191410576083774088999564416369 b3 = 0.274887805875735483503233064415
a4 = 0.378895558692931579545387584925 b4 = −0.224214208870409561366168655624
a5 = −0.0467359566364556111599485526051 b5 = 0.347657740563761656321390026010
a6 = −0.156198111997810415438979605642 b6 = −0.168783183866211679175007668385
a7 = 0.156025836895094823718831871041 b7 = 0.144209344805460873709120777707
a8 = 0.252844012473796333586850465807 b8 = 0.0116851121360265483381405054244
a9 = −0.640644212172254239866860564270 b9 = 1

2 − ∑8
i=1 bi

a10 = 1 − 2
∑9

i=1 ai

A19

a1 = 0.0505805 b1 = 0.129478606560536730662493794395
a2 = 0.149999 b2 = 0.222257260092671143423043559581
a3 = −0.0551795510771615573511026950361 b3 = −0.0577514893325147204757023246320
a4 = 0.423755898835337951482264998051 b4 = −0.0578312262103924910221345032763
a5 = −0.213495353584659048059672194633 b5 = 0.103087297437175356747933252265
a6 = −0.0680769774574032619111630736274 b6 = −0.140819612554090768205554103887
a7 = 0.227917056974013435948887201671 b7 = 0.0234462603492826276699713718626
a8 = −0.235373619381058906524740047732 b8 = 0.134854517356684096617882205068
a9 = 0.387413869179878047816794031058 b9 = 0.0287973821073779306345172160211
a10 = 1

2 − ∑9
i=1 ai b10 = 1 − 2

∑9
i=1 bi

a9,b8,a8,b7,a7,b6,a6,b5,a5,b4,a4,b3,a3,b2,a2,b1,a1). (3.3)

For compositions of type Bs , by applying the same methodology, we have found 149 different solutions out of more than 
1.2 × 106 starting points. We have selected the four solutions in the region E f ∈ [2.80, 3.85], 
 ∈ [7.30, 9.95] and finally we 
take the one whose coefficients are collected in Table 5. The method thus reads

B17 ≡ (b1,a1,b2,a2,b3,a3,b4,a4,b5,a5,b6,a6,b7,a7,b8,a8,b9,a9

b9,a8,b8,a7,b7,a6,b6,a5,b5,a4,b4,a3,b3,a2,b2,a1,b1). (3.4)

s = 18 stages With one more stage we have one free parameter that can be used to get in principle smaller values of the 
effective error and eventually more efficient schemes, as is common in the literature. Notice that the problem in this case 
involves solving a system of 18 polynomial equations with 19 variables. Our strategy is the following: for a composition of 
type As with s = 18, we take a1 as the free parameter, and explore the interval a1 ∈ [0, 1] (since we are interested in small 
values of the coefficients) by fixing each time the value of a1. Starting with 2 × 106 initial points, we have found 722 valid 
solutions, the most promising corresponding to the choice a1 = 0.08. This solution is then taken as the starting point of an 
arc-length continuation method and follow the solution along the curve leading to a local minimum of the 1-norm of the 
vector of coefficients. In doing so we apply the algorithm presented in [1,2]. After this process, we check several methods 
in practice and finally the solution A18 collected in Table 4, with E f , 
 and δ given in Table 3.

The same technique is applied to compositions B18 leading to the solution collected in Table 5 after 1070748 initial 
points and the application of arc-length continuation.

s = 19 stages Adding an additional stage and so forming the composition A19, we have explored the space of parameters in 
the region a1, a2 ∈ [0.05, 0.15], where we have found 295 valid solutions. Then, we start from the one with best parameters 
and apply the following strategy: let us denote by u0 the vector of coefficients of this initial solution. Then we generate a 
random vector α verifying α · (u − u0) = 0. Now we apply continuation along the curve that results from the intersection 
of the space of solutions (with 2 free parameters) with the random generated hyperplane. The final solution is collected in 
Table 5.

Concerning the composition B19, 173 solutions have been obtained out of more than 1.3 × 106 initial points. After 
applying the previous technique, we arrive at the solution reported in Table 5.
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Table 5
Coefficients of 8th-order RKN splitting methods of type Bs , with s = 17, 18 and 19 stages.

ai bi

B17

a1 = 0.160227696073839513690970240076 b1 = 0.0514196142537210073343152693459
a2 = 0.306354507436867319879440957100 b2 = 0.250497030318342871458417941091
a3 = 0.308395508895171191756544975556 b3 = 0.512412268300327350035492806653
a4 = 0.120362086566233408450063177659 b4 = −0.231597138650894401279645184364
a5 = −0.622888687549183872072186218718 b5 = 0.116091323536875759881216298975
a6 = 0.635560951632990078378672016548 b6 = −0.0098365173246965763985763034283
a7 = −0.144226974795419229640437363913 b7 = −0.108032771466281638634277563747
a8 = −0.284867527074173816678992817545 b8 = 0.249039864198023642002940910070
a9 = 1 − 2

∑8
i=1 ai b9 = 1

2 − ∑8
i=1 bi

B18

a1 = 0.144410089394373457971755553148 b1 = 0.045
a2 = 0.911935520865154315536815857376 b2 = 0.459016679491512416807266107555
a3 = −0.00072932909837392655161199996844 b3 = −0.0456553445594333153223655352757
a4 = −0.930317101800698721159455541447 b4 = 0.0457031020401841003192648096559
a5 = 0.253804074671714046593439154323 b5 = −0.216814341025322492810152535338
a6 = 0.147948981530918626913598733391 b6 = 0.163168264552484857133047358600
a7 = −0.448814759614614928125216243784 b7 = −0.0857080319814376219389850039430
a8 = 0.0824123980794580106751237195418 b8 = 0.0265745810650523466142922093591
a9 = 1

2 − ∑8
i=1 ai b9 = −0.0365538332992893220147096150675

b10 = 1 − 2
∑9

i=1 bi

B19

a1 = 0.337548675291317241942440116575 b1 = 0.036132460472136313416730168194
a2 = −0.223647977575409990331768222380 b2 = 0.012697863961074113381675193011
a3 = 0.168949714872223740906385138015 b3 = 0.201318391240629276109068041836
a4 = 0.171179938816205886154783136334 b4 = 0.135683350134504233201330671671
a5 = −0.349765168067292877221144631312 b5 = −0.0579071833999963041504740663015
a6 = 0.523808861006312397712070357524 b6 = −0.0772509501792649549463874931821
a7 = −0.194208871063049124066394765282 b7 = −0.00264758266409925952822161203471
a8 = −0.323496751337931087309823477561 b8 = −0.0329844384945603065320797537355
a9 = 0.322817287614899749216601693799 b9 = 0.0476781560950366927530646289755
a10 = 1 − 2

∑9
i=1 ai b10 = 1

2 − ∑9
i=1 bi

Although the quantities (3.1) and (3.2) provide useful information about the quality and relative performance of the 
methods, one should have in mind that the size of the error terms and therefore the efficiency of each scheme ultimately 
depends on the particular problem one is considering and even on the initial conditions. For this reason it is convenient to 
check the behavior of the different schemes on a variety of differential equations and initial conditions, and also to compare 
them with other efficient numerical integrators available in the literature. We have separated the numerical illustrations 
into two sections. Thus, in section 4 we compare the new schemes with symmetric compositions (1.8) of order 8, whereas 
in section 5 we also consider RKN splitting integrators of orders 4 and 6, as well as extrapolation methods.

4. Numerical tests I: 8th-order schemes

The first set of examples is intended to illustrate the performance of the new RKN splitting methods in comparison with 
the most efficient symmetric compositions of the form (1.8) we have found in the literature. In addition, we also include 
in the tests the only 8th-order RKN splitting method with 17 stages. Specifically, in addition to the previous As and Bs

schemes, we consider the following 8th-order integrators:

• O17: the RKN splitting method of type As presented in [23], with s = 17 stages.
• SS17: the symmetric composition of m = 17 symmetric 2nd-order methods of the form (1.8) obtained in [15] (the 

coefficients are also collected in [11, p. 157]).
• SS19 and SS21: schemes (1.8) with m = 19 and m = 21, respectively, presented in [25].

These SSm methods have been shown to be the most efficient 8th-order schemes within the family of composition methods 
(1.8). We collect in Table 6 the corresponding values of the quantities E f and 
 for methods SSm when they are used with 
S[2]

h as in (1.6) (ABA) or (1.7) (BAB). The values of E f are always greater when the basic scheme is (1.7).
The implementation of all the integrators has been done in Python 3.7 [27] running on Debian GNU/Linux 10 [16] and 

the array operations have been coded using the NumPy library [13].

Example 1: Kepler problem We take the 2-body gravitational problem with Hamiltonian

H(q, p) = 1
pT p − μ

1
, (4.1)
2 r
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Table 6
Effective error Ef and 1-norm of the vector of 
coefficients for 8th-order symmetric composi-
tions of symmetric methods SSm and the RKN 
splitting method of [23].

Ef 


ABA BAB
O17 4.78 – 16.63
SS17 3.12 3.30 8.33
SS19 2.66 2.68 6.84
SS21 2.59 2.88 6.43

Fig. 1. (a) Efficiency diagram for the Kepler problem with e = 0.5 for all RKN splitting methods of As type. The final time is t f = 1000. (b) Maximum error 
in energy for different values of the eccentricity with t f = 1000 and s/h = 340.

where q = (q1, q2), p = (p1, p2), μ = GM , G is the gravitational constant and M is the sum of the masses of the two bodies. 
We take μ = 1 and initial conditions

q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =
√

1 + e

1 − e
, (4.2)

so that the trajectory corresponds to an ellipse of eccentricity e, with period 2π and energy E = − 1
2 . We first check the 

order of the new RKN splitting methods and compare their efficiency with respect to O17. Thus, Fig. 1 (left panel) shows 
the relative error in energy with respect to s/h (which is proportional to the number of force evaluations) for e = 0.5 and a 
final time t f = 1000 for methods of type As , whereas in the right panel we explore the range of eccentricities 0 ≤ e ≤ 0.8. 
All schemes involve the same number of evaluations of the potential in this case. Fig. 2 shows analogous results for methods 
of type Bs . Notice that the order 8 is clearly visible in the figures and that the new methods are more efficient than O17 . 
The improvement is particularly prominent for A17 and specially A19 (up to four orders of magnitude for the same value 
of h/s) and is more moderate for methods Bs . In fact, all of them show essentially the same performance, which is lower 
than that of A19.

We next carry out the same experiment, but in this case we compare the performance of the new schemes A17 and 
A19 with the previous state-of-the-art symmetric compositions of the Strang splitting SSm , m = 17, 19, 21. We take the 
composition (1.6) as the basic S[2]

h method because it shows the best performance in the numerical experiments. The corre-
sponding results are shown in Fig. 3. We notice that A19 is the more efficient method for the whole range of eccentricities 
explored.

Example 2: simple pendulum Our next example is the simple mathematical pendulum. In appropriate units, it corresponds 
to the 1-degree-of-freedom Hamiltonian system with

H(q, p) = 1

2
p2 − cos q. (4.3)

We explore the set of initial conditions (q, p) = (0, α), with 0 ≤ α ≤ 5, integrate until the final time t f = 1000 and check 
the error in energy along the integration. Since the error achieved by O17 is always 3-4 orders of magnitude larger than the 
new schemes, we no longer include them in the diagrams, so that we only compare with symmetric compositions SSm . 
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Fig. 2. (a) Efficiency diagram for the Kepler problem with e = 0.5 for all RKN splitting methods of Bs type. The final time is t f = 1000. (b) Maximum error 
in energy for different values of the eccentricity with t f = 1000 and s/h = 340.

Fig. 3. (a) Efficiency diagram for the Kepler problem with e = 0.5 for composition SSm and the new RKN splitting methods A17 and A19. Final time 
t f = 1000. (b) Maximum error in energy for different values of the eccentricity with t f = 1000 and s/h = 340.

Fig. 4 shows the efficiency diagram corresponding to α = 3 (panel (a)) and the maximum of the relative error in the energy 
along the integration interval. In this case, the new schemes A17 and A18 are the most efficient. Scheme A19 shows a 
similar behavior as SS19, and thus it has not been included in the diagrams. On the other hand, the most efficient scheme 
of the BAB type in this case is B18 (not shown), providing similar results as A18.

Example 3: Hénon–Heiles potential For our next experiment we choose the well known two-degrees of freedom Hénon–
Heiles Hamiltonian [14]

H = 1

2
(p2

1 + p2
2) + 1

2
(q2

1 + q2
2) + q2

1q2 − 1

3
q3

2. (4.4)

It has been the subject of extensive numerical experimentation and is considered, in particular, as a model problem 
to characterize the transition to Hamiltonian chaos. In this case we take the same initial conditions as in [8], the set 
(q1, q2, p1, p2) = (α/2, 0, 0, α/4), with 0 ≤ α ≤ 1. The corresponding results are depicted in Fig. 5. In this case B18 and A18
are the most efficient schemes, whereas A17 is similar as A18 and it is not shown in the figure.

Example 4: Schrödinger equation with Pöschl–Teller potential Finally, we apply our integrators to the one-dimensional 
Schrödinger equation (h̄ = 1)
22



S. Blanes, F. Casas and A. Escorihuela-Tomàs Applied Numerical Mathematics 182 (2022) 14–27
Fig. 4. Simple pendulum. (a) Efficiency diagram for α = 3.0 and final time t f = 1000. (b) Maximum error in energy for initial conditions (q0, p0) = (0, α)

for SS and the best RKN methods at final time t f = 1000 with s/h = 85.

Fig. 5. Hénon–Heiles Hamiltonian. (a) Efficiency diagram with initial condition corresponding to α = 0.2 and final time t f = 1000. (b) Maximum error in 
energy for 0 ≤ α ≤ 1 at final time t f = 1000 with s/h = 85.

i
∂

∂t
ψ(x, t) = −1

2

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t), (4.5)

with the well known Pöschl–Teller potential [10],

V (x) = −λ(λ + 1)

2
sech2(x), (4.6)

with λ(λ + 1) = 10. When a Fourier spectral collocation method is used for discretizing in space [26], one ends up with the 
N-dimensional linear ODE

i
d

dt
u(t) = H u(t) ≡ (T + V ) u(t), u(0) = u0 ∈CN , (4.7)

where T is a (full) differentiation matrix related with the kinetic energy, V is a diagonal matrix associated with the potential 
and the components of the vector u are the approximations to the wave function at the nodes, un ≈ ψ(xn, t). The action 
of T on the wave function vector u is then carried out by the forward and backward discrete Fourier transform (computed 
with the FFT algorithm) [17]. The initial condition is taken as ψ0(x) = σ e−x2/2, with σ a normalizing constant, the interval 
is x ∈ [−8, 8] with N = 256 nodes, and the integration is done until the final time t f = 1000. In this case we check the error 
in the expected value of the energy,

energy error: |u∗
ap(t) · (Huap(t)) − u∗ · (Hu0)|, (4.8)
0

23



S. Blanes, F. Casas and A. Escorihuela-Tomàs Applied Numerical Mathematics 182 (2022) 14–27
Fig. 6. Efficiency diagram of different methods. Schrödinger equation with Pöschl–Teller potential.

where uap(t) stands for the numerical approximation obtained by each method. The results are shown in Fig. 6. Observe 
that the new RKN splitting method A19 is also the most efficient in this setting.

5. Numerical tests II: RKN splitting and extrapolation methods

Given the observed improvement of the new 8th-order RKN splitting methods with respect to the symmetric composi-
tions of a basic 2nd-order symmetric scheme, it seems appropriate to carry out further comparisons with other lower-order 
RKN splitting methods when medium to high accuracy is desired. Specifically we consider the following optimized 4th- and 
6th-order methods of type Bs presented in [8]:

• RKN46: order 4 with 6 stages (the scheme SRKNb
6 in [8]).

• RKN611: order 6 with 11 stages (the scheme SRKNb
11 in [8]).

On the other hand, extrapolation methods constitute one of the most efficient classes of schemes for the numerical 
integration of the second order differential equation (1.1) when high accuracy is required [12]. Notice, however, that in 
contrast with RKN splitting methods, they do not preserve by construction geometric properties of the exact solution. To 
carry out our comparisons, we take (1.6) as the symmetric second order basic method (which corresponds to Störmer’s rule
[12, eq. (14.32)]) and apply the harmonic sequence to construct by extrapolation schemes of orders 4, 6 and 8 with only 3, 
6 and 10 stages, respectively. For completeness, the resulting methods can be written explicitly as

�(r=2k) =
k∑

�=1

α
(k)
�

�∏
i=1

S[2]
h/�

, k = 2,3,4,

with α(k) = (α
(k)
1 , . . . , α(k)

k ) and

α(2) =
(

−1

3
,

4

3

)
, α(3) =

(
1

24
,−16

15
,

81

40

)
, α(4) =

(
− 1

360
,

16

45
,−729

280
,

1024

315

)
. (5.1)

Example 5: Kepler problem revisited For the Hamiltonian (4.1) with initial conditions (4.2) we compare the most efficient 8th-
order RKN splitting method A19 with the 4th- and 6th-order schemes RKN46 and RKN611, and the previous extrapolation 
methods of orders 4, 6 and 8 for the final time t f = 1000. The results achieved for the maximum error in energy and 
positions are displayed in Fig. 7. To reduce round-off errors when computing the linear combinations in extrapolation 
methods, instead of evaluating directly the numerical solution as yn+1 = �(r=2k) yn , we express y(�)

n+1 ≡ ∏�
i=1 S

[2]
h/�

yn as 

y(�)
n+1 = yn + 
y(�)

n+1. In this way we compute only 
y(�)
n+1, then extrapolation is used only for these increments, namely,


yn+1 =
k∑

�=1

α
(k)
� 
y(�)

n+1

and finally we form yn+1 = yn + 
yn+1. In doing so, round-off errors are reduced by two or more digits.
Fig. 7 shows that the new RKN splitting methods are competitive with extrapolation methods and, in particular, A19 is 

the most efficient when medium to high accuracy is desired.
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Fig. 7. (a) Maximum error in the energy for the Kepler problem with e = 0.5 obtained by RKN splitting methods RKN46, RKN611, A19 (solid lines), and 
extrapolation (dashed lines) of orders 4 (circles), 6 (squares) and 8 (stars). (b) Same for the maximum error in position.

Fig. 8. Simple pendulum. Maximum error in the energy for the simple pendulum with initial conditions (q, p) = (0, 0.3) and final time t f = 1000 obtained 
by RKN splitting methods RKN46, RKN611, A19 (solid lines), and extrapolation (dashed lines) of orders 4 (circles), 6 (squares) and 8 (stars).

Example 6: simple pendulum revisited Let us consider again the simple pendulum, this time with initial conditions (q, p) =
(0, 0.3). We measure the error in energy along the integration for the schemes RKN46, RKN611, A18 and the extrapolation 
methods until the final time t f = 1000. Fig. 8 shows the efficiency diagram corresponding to the maximum of the relative 
error in the energy along the integration interval. In this case, the new scheme A18 is the most efficient when high accuracy 
is desired. There are initial conditions, however, for which RKN611 provides better results up to round-off.

Very similar results are obtained for the Hénon-Heiles potential, and for this reason they are not shown here. From the 
previous experiments, we can conclude that the new scheme A19 outperforms the symplectic methods of order 4 and 6 
from medium to high accuracy when the potential has a singularity, whereas A17, A18 and B18 deliver the best results only 
at high accuracy for smooth potentials. To provide further evidence to this class, we next consider a slightly more involved 
example.

Example 7: the restricted three body problem In this case we have two bodies of masses 1 − μ and μ in circular rotation in a 
plane and a third body of negligible mass moving around in the same plane. The equations of motion in a fixed coordinate 
system read [12, p. 129]

ÿ1 = y1 + 2 ẏ2 − μ′ y1 + μ

D1
− μ

y1 − μ′

D2

ÿ2 = y2 − 2 ẏ1 − μ′ y2 − μ
y2

,

(5.2)
D1 D2

25



S. Blanes, F. Casas and A. Escorihuela-Tomàs Applied Numerical Mathematics 182 (2022) 14–27
Fig. 9. Error with respect to the initial conditions after one period, T , of the Arenstorf orbit versus the number of force evaluations for the 4th-, 6th- and 
8th-order RKN splitting methods, RK4N6 (circles), RKN611 (squares) and A19 (stars).

where D1 = ((y1 + μ)2 + y2
2)

3/2, D2 = ((y1 − μ′)2 + y2
2)

3/2, and μ′ = 1 − μ. This system can be split as in (1.9)-(1.10). 
Alternatively, in a rotating system the equations of motion become

ÿ1 = μ′ a1(t) − y1

D1
+ μ

b1(t) − y1

D2

ÿ2 = μ′ a2(t) − y2

D1
+ μ

b2(t) − y2

D2
,

(5.3)

where now

D1 = ((y1 − a1(t))
2 + (y2 − a2(t))

2)3/2, D2 = ((y1 − b1(t))
2 + (y2 − b2(t))

2)3/2,

and the motion of the massive bodies is described by

a1(t) = −μ cos(t), a2(t) = −μ sin(t); b1(t) = μ′ cos(t), b2(t) = μ′ sin(t).

We take, as in [12], μ = 0.012277471 and the following initial conditions in the rotating system:

y1(0) = 0.994, ẏ1(0) = 0, y2(0) = 0, ẏ2(0) = −1.00758510637908252240.

The resulting closed trajectory corresponds to the so-called Arenstorf orbit in the fixed coordinate system, with period 
T = 17.06521656015796255889.

In this case we integrate for one period with the RKN splitting methods of order 4 and 6, and the new 8th-order scheme 
A19. We measure the error with respect to the initial conditions (taking into account that we are integrating in the rotating 
system) and display the corresponding errors in Fig. 9. Again, A19 is the most efficient scheme even for medium accuracies.

6. Conclusions

We have presented new RKN splitting methods of order 8 that show a better efficiency than the best existing symmetric 
compositions of 2nd-order symmetric schemes on a variety of examples. We have thus answered in the affirmative the 
question formulated by [21] in 1996 and filled the existing gap in the classification of the most efficient splitting and 
composition methods [5,19]. The technical difficulties involved in the process have been overcome by applying standard 
techniques for solving nonlinear polynomial equations and free software on a personal computer. Whereas previous 8th-
order RKN splitting methods require the evaluation of ‘modified potentials’ or force-gradients [24], the schemes collected 
here only involve the evaluation of the force g(y), just as compositions (1.8) and thus they should be considered as the 
natural option when one is interested in integrating the system (1.1) with high precision and the evaluation of modified 
potentials is computationally expensive or not feasible.

Both types of compositions (2.4) and (2.5) have been analyzed and different schemes with up to two free parameters 
have been constructed and tested on different numerical examples. These show that A18 and B18 provide better efficiencies 
when the force is derived from a smooth, singularity-free potential, whereas for problems involving singularities A19 ex-
hibits the best results. As representatives of the first situation (i.e., singularity-free potentials), we have examined the simple 
pendulum, the Hénon–Heiles potential and the quantum treatment of the Pöschl–Teller potential. The second case, involving 
singularities, corresponds to the Kepler problem and the restricted planar three body problem. Moreover, the new schemes 
are more efficient than lower order RKN splitting methods for medium to high accuracies, and provide better results than 
extrapolation methods of order 8 even for relatively short time integrations.
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