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Abstract. We present a new family of fourth-order splitting methods with positive co-
efficients especially tailored for the time integration of linear parabolic problems and,
in particular, for the time dependent Schrödinger equation, both in real and imaginary
time. They are based on the use of a double commutator and a modified processor, and
are more efficient than other widely used schemes found in the literature. Moreover,
for certain potentials, they achieve order six. Several examples in one, two and three
dimensions clearly illustrate the computational advantages of the new schemes.
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1 Introduction

The eigenvalue problem for the stationary Schrödinger equation constitutes an important
part in the understanding of basic atomic and molecular phenomena. It is defined by

∗Corresponding author. Email addresses: serblaza@imm.upv.es (S. Blanes), fernando.casas@uji.es

(F. Casas), ome@am.uva.es (C. González), mechthild.thalhammer@uibk.ac.at (M. Thalhammer)

http://www.global-sci.com/cicp 937 ©2023 Global-Science Press



938 S. Blanes et al. / Commun. Comput. Phys., 33 (2023), pp. 937-961

(h̄=m=1)
Ĥϕj(x)=Ejϕj(x), j=0,1,2,··· ,

Ĥ= T̂+V̂(x)=−1
2

∆+V̂(x),
(1.1)

where V̂ is the potential energy operator and ∆ is the Laplacian, an unbounded differen-
tial operator. Since the Hamiltonian Ĥ is Hermitian, then its eigenvalues Ej are real, and
the corresponding eigenfunctions ϕj can be chosen to form a real orthonormal basis on
their domain. By an appropriate election of the origin of the potential we can guarantee
that V̂(x)≥0 in the region of interest, so that 0≤E0≤E1≤···. Given the time-dependent
Schrödinger equation

i
∂

∂t
ψ(x,t)= Ĥψ(x,t), ψ0(x)=ψ(x,0), (1.2)

if the initial wave function ψ0(x) is expanded in the orthonormal basis of eigenfunctions
ϕj,

ψ0(x)=∑
j≥0

cj ϕj(x), cj =
〈
ϕj(x)|ψ(x,0)

〉
,

where ⟨·|·⟩ is the usual L2-scalar product, then the solution is given by [22]

ψ(x,t)=e−itĤψ(x,0)=∑
j≥0

e−itEj cj ϕj(x) (1.3)

and, in particular, the norm of the solution is preserved for any value of t.
Very often, the so-called imaginary time propagation (ITP) method is the preferred

option for solving the eigenvalue problem (1.1) [3, 5, 19] as well as for carrying out path
integral simulations in condensed phase quantum systems [16]. By considering the time
transformation t=−iτ, Eq. (1.2) is transformed into

∂

∂τ
ψ(x,τ)=−Ĥψ(x,τ), ψ0(x)=ψ(x,0). (1.4)

In this case the solution reads

ψ(x,τ)=e−τĤψ(x,0)=∑
j≥0

e−τEj cj ϕj(x). (1.5)

Notice that, in contrast with (1.3), for sufficiently large τ one gets ψ(x,τ)→ e−τE0 c0ϕ0,
since the other exponentials decay more rapidly. In other words, any given wave func-
tion at τ = 0 in which c0 ̸= 0 converges towards the ground state solution when τ →∞.
Once an accurate approximation to ϕ0 is obtained, the associated eigenvalue E0 can be
easily obtained by computing E0 = ⟨ϕ0(x)| Ĥ|ϕ0(x)⟩. Other functions ϕj can also be ap-
proximated, e.g., by propagating different wave functions simultaneously in time [2].
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To carry out practical computations, it is assumed that x ∈ [a1,b1]×···×[ak,bk] with
each interval [aj,bj] sufficiently large so that the wave function and all its derivatives of
interest vanish at the boundaries. In this case, we can safely consider periodic boundary
conditions and use a pseudo-spectral space discretization. When this is done, one ends
up with a finite-dimensional vector u(τ) approximating the wave function, in the sense
that its components uj(τ)≈ψ(xj,τ). Then, the problem to be solved corresponds to the
linear ODE {

u′(τ)=−
(
T+V

)
u(τ), τ∈ [0,τf ],

u(0) given,
(1.6)

with solution
u(τ)=e−τ(T+V)u(0), t∈ [0,τf ]. (1.7)

Here T and V are the matrices obtained after space discretization approximating the ki-
netic energy T̂ and potential V̂, respectively.

A common approach for the time integration of the linear evolution equation (1.6) in
the interval [0,τf ] is to compute approximations to the exact solution values at certain
time grid points by a one-step recurrence:

0=τ0<τ1< ···<τN =τf ,

un+1=S(hn)un ≈ u(τn+1)=e−hn(T+V)u(τn), n=0,1,2,··· ,

where hn = τn+1−τn. For simplicity, we assume that τj = j∆τ. In other words, we use a
constant step size hn = h≡∆τ along the integration. Notice that, since V is diagonal, the
computation of e−τV is trivial, whereas e−τT can be done efficiently with the Fast Fourier
Transform (FFT). It makes sense, then, to consider splitting methods to approximate the
exact evolution, the Strang splitting being a prototypical example:

S [2](h)u0≡e−
h
2 V e−hT e−

h
2 V u0. (1.8)

It is verified that S [2](h)=e−h(T+V)+O(h3). Since the problem is assumed to be periodic,
each operator (or exponential) satisfies the boundary conditions and no order reduction
occurs. Moreover, this scheme can be used for integrating the Schrödinger equation both
in real time and in imaginary time because ∥e−

h
2 V∥≤1 and ∥e−hT∥≤1.

Higher order approximations (say, of order p≥3) can be achieved by a more general
composition of the form

S [p](h)u0=e−hbs+1V e−has+1T ···e−hb1V e−ha1T u0, (1.9)

where the coefficients aj, bj are chosen so that S [p](h) = e−h(T+V)+O(hp+1). Splitting
methods of this form have also been recently applied in different areas, as shown e.g. in
the contributions [1, 11, 14].

Notice that ∥e−aihT∥ is bounded only if ai > 0, whereas ∥e−bihV∥ is bounded in the
domain of interest even if bi < 0, although in regions where the potential takes large
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values it can take exponentially large values and significant roundoff errors may occur.
It is therefore desirable to have all coefficients bi >0, otherwise one has to incorporate an
upper cut off of the potential to reduce such errors.

In this respect, a well known result establishes that there are no splitting methods of
the form (1.9) of order greater than two (i.e., p> 2) with all their coefficients being real
and positive. Thus, if one is interested in applying splitting methods of order 3 or higher
with real coefficients, then at least one aj and one bk have to be negative [15, 28, 30] (a
simple proof can be found in [6]). Whereas this is usually not a problem if the splitting
method is applied to the Schrödinger equation in real time (1.2), the presence of negative
ai coefficients makes the ITP algorithm badly conditioned. This feature can be traced
back to the fact that (1.4) is a parabolic equation involving unbounded negative definite
operators, and therefore the solution evolves in a semigroup. On the other hand, when
the methods are applied to the usual Schrödinger equation in real time, the presence of
only positive coefficients leads to methods with very good stability properties.

One possible way to overcome this order barrier consists in including the gradient of
the potential, ∇V(x), in the composition. In fact, several fourth-order forward methods
involving the gradient of the potential exist in the literature and some of them have been
successfully used in this context [12, 17, 23]. Not all of them, however, can be used for
parabolic equations or have good stability properties and/or efficiency.

In this work we propose new splitting methods involving ∇V(x) in their formulation
and only positive coefficients. They are primarily aimed to be applied in the ITP algo-
rithm, but are also valid for the numerical integration in time of the initial value problem
originated when discretizing more general linear parabolic problems in space. The pa-
per is structured as follows. In Section 2 we review the most efficient 4th-order splitting
methods with modified potentials and positive coefficients we have found in the litera-
ture. In particular, the authors of [24] present a large collection of schemes involving up
to five stages. Whereas their main objective was just getting efficient schemes, irrespec-
tive of the sign of the coefficients, it turns out that most of the integrators do contain only
positive coefficients. Here we collect and test the most efficient among them.

Typically, when one increases the number of exponentials in a splitting method it is
possible to reduce the leading error terms in such as way that this reduction makes up
for the extra cost involved. In this case, however, due to the existing order barrier for
methods with positive coefficients, the overall improvement in accuracy hardly compen-
sates the extra cost when additional stages are included. To deal with this problem, we
present in Section 3 a novel procedure leading to more efficient schemes. It is based on
a conveniently modified processing of a basic method involving a reduced number of
stages. The new splitting methods are tested in Section 4 on several numerical examples
in comparison with the most efficient integrators from the literature. Finally, Section 5
contains some concluding remarks.
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2 A review of operator splitting methods

2.1 Standard splitting methods

The general splitting method (1.9)

S [p](h)=
s+1

∏
j=1

e−hbjV e−hajT, (2.1)

will be written here in a more abbreviated form just by enumerating the sequence of its
coefficients,

[bs+1as+1 ···b2a2b1a1]. (2.2)

Moreover, we will only consider time-symmetric methods, corresponding to left-right
palindromic compositions. In other words, we have in (2.2) either

bs+1=0 and as+2−j = aj, bs+1−j =bj (2.3)

or
a1=0 and bs+2−j =bj, as+2−j = aj+1, (2.4)

j=1,2,··· ,s. In the first case the compact form of the method reads

[a1b1a2b2 ···b2a2b1a1], (2.5)

whereas a method verifying (2.4) will be denoted for simplicity by†

[b1a1b2a2 ···a2b2a1b1]. (2.6)

Thus, in particular, the Strang splitting (1.8) reads [ 1
2 1 1

2 ].
In both cases, s is referred to as the number of stages of the integrator‡. Notice that,

due to the different character of the operators T and V, the role of e−hT and e−hV is not
interchangeable in (2.1), and thus these two different orderings have to be analyzed. We
will refer to (2.5) and (2.6) as methods of type ABA and BAB, respectively.

2.2 Modified splitting methods

An essential observation with respect to the operators T̂ and V̂ in (1.1) is that they verify
the relation

[V̂,[T̂,V̂]]ψ= |∇V̂|2ψ (2.7)

†Strictly speaking, the sequence is [b1a2b2a3 ···a3b2a2b10], but we remove the zero coefficient and shift the
index of the ai coefficients for clarity.
‡The last map can be concatenated with the first one in the following step and so it is not counted for the
cost of the method.
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for any ψ, where [T̂,V̂] = T̂V̂−V̂T̂. Since the double commutator [V̂,[T̂,V̂]] is only a
function of V̂, it is usually referred to as a modified potential. Furthermore, [V̂,[V̂,[T̂,V̂]]]=
0. Similar relations hold for the matrices T and V resulting from the (sufficiently accurate)
space discretization of T̂ and V̂, respectively, with [V,[T,V]] diagonal if the derivatives
of the potential are computed first and then evaluated on the corresponding space grid.
In consequence, we can replace the terms exp(−hbjV) in the scheme (2.1) by the more
general operator exp(−hbjV−h3cj[V,[T,V]]), involving two parameters. More formally,
we can take compositions of the form

Smod(h)u0=
s+1

∏
j=1

e−hbjV−h3cj[V,[T,V]]e−hajTu0. (2.8)

Such integrators are called modified operator splitting methods, and will be denoted as

ABA: [as+1(bs,cs)···(b2,c2)a2(b1,c1)a1],
BAB: [(bs+1,cs+1)as ···(b2,c2)a1(b1,c1)].

Methods of this class have been used in different situations, starting from the pioneering
work of Ruth [26]. Early references also include [25, 31–33, 35]. It is indeed possible to
get fourth-order methods with positive coefficients [12,17,24], and in fact one of the most
popular schemes corresponds to the composition [12, 17]

S [4](h)≡e−
h
6 V e−

h
2 T e−

2h
3 V− h3

72 [V,[T,V]]e−
h
2 T e−

h
6 V . (2.9)

Although methods up to order eight have been designed [24], they involve some negative
coefficients ai when the order is higher than 4. It has been argued that the maximal order
one can achieve with all aj real and positive is indeed 4 [4, 13]. On the other hand, there
are some 6th-order methods with all bi coefficients positive. In any case, these methods
cannot be applied in the context of parabolic equations involving the Laplacian.

When analyzing operator splitting methods, and in particular their truncation errors
and efficiencies, it is a common practice to express compositions (2.1) and (2.8) as S(h)=
exp(−F(h)) by means of the Baker–Campbell–Hausdorff formula [34]. Specifically,

F(h)=h( f1,1T+ f1,2V)+h3( f3,1E3,1+ f3,2E3,2
)
+h5

4

∑
j=1

f5,jE5,j+O(h7) (2.10)

when the compositions are palindromic. Here the fk,j are polynomial functions depend-
ing on the coefficients of the scheme and Ek,j denote the elements of a basis of the ho-
mogeneous subspace Lk(T,V) of grade k of the Lie algebra L(T,V) generated by the
operators T and V with the commutator as the Lie bracket. The specific basis for k≤ 5
used in this work is given in Table 1.

A method is of order four if f1,1 = f1,2 =1 (for consistency) and f3,1 = f3,2 =0, whereas
the quantity

(
∑4

j=1 f 2
5,j
)1/2 is usually taken as a measure of its error. This is multiplied by
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Table 1: Elements Ek,j of the basis of the homogeneous subspace Lk(T,V) for k≤5.

k=1 E1,1=T E1,2=V
k=2 E2,1=[T,V]

k=3 E3,1=[T,[T,V]] E3,2=[V,[T,V]]

k=4 E4,1=[T,E3,1] E4,2=[T,E3,2]

k=5
E5,1=[T,E4,1] E5,2=[V,E4,1] E5,3=−[T,E4,2]

E5,4=[V,E4,2]

the number of stages s to take also into account the computational cost, so that one can
compare the efficiency of methods with different stages by taking

E f = s4 ·
(

4

∑
j=1

f 2
5,j

)1/2

(2.11)

as an estimate of the effective error of a 4th-order scheme.
As stated before, there are in the literature a number of 4th-order integrators with

positive coefficients within the family (2.8). Among them, we have identified those with
the smallest truncation error terms. They are collected according to the number stages
they involve, whereas the corresponding values of | f5,j| and their effective errors E f are
gathered in Table 2.

s=1. The simplest scheme is of course obtained by incorporating the double commutator
[V,[T,V]] into the Strang splitting method (1.8), namely

SR1(h)=e−
h
2 V− h3

48 E3,2 e−hT e−
h
2 V− h3

48 E3,2 (2.12)

for a BAB method and
SR2(h)=e−

h
2 T e−hV− h3

24 E3,2 e−
h
2 T (2.13)

for an ABA scheme. Methods (2.12) and (2.13) do not contain enough parameters to
achieve order four, but in both cases the parameter multiplying the double commutator
is chosen so as to satisfy the condition f3,1= f3,2. This, as we will see, leads to schemes of
effective order four, in the sense that, by applying an appropriate near-identity transfor-
mation, one gets a method of order 4 [25, 33, 35].

s=2. Scheme (2.9) belongs indeed to this class. In our compact notation, it reads

[b1 a2(b2,c2)a2 b1]≡
[

1
6

1
2

(
2
3

,
1

72

)
1
2

1
6

]
. (2.14)

A similar ABA composition exists,

[a1(b1,c1)a2(b1,c1)a1] (2.15)
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Table 2: Main truncation error terms and e�ective error for standard splitting operator methods of order 4
with positive coe�cients and s stages.

Type s | f5,1| | f5,2| | f5,3| | f5,4| E f

2 2.31·10−4 1.57·10−4 4.58·10−4 4.71·10−4 1.14·10−2

ABA 3 8.82·10−6 7.05·10−6 3.59·10−6 3.17·10−6 9.94·10−4

4 2.07·10−6 1.96·10−6 8.87·10−7 8.61·10−7 7.97·10−4

2 3.47·10−4 4.63·10−4 3.47·10−4 2.31·10−4 1.14·10−2

BAB 3 1.09·10−5 1.13·10−5 4.29·10−6 3.71·10−6 1.35·10−3

4 2.46·10−6 2.67·10−6 4.08·10−7 3.84·10−7 9.42·10−4

with

a1=
1
2
− 1

2
√

3
, b1=

1
2

, c1=− 1
24

+

√
3

48
, a2=

1√
3

,

but it exhibits a slightly worse performance in practice, and c1<0.
More efficient schemes can be achieved by introducing additional stages. Thus, in

reference [24] different compositions with 3, 4 and 5 stages of types (2.3) and (2.4) are
presented, many of them having all coefficients aj > 0. Among them, we collect those
recommended in [24] as the most efficient.

s=3. Specifically, the coefficients of the ABA and BAB methods are, respectively

[a1(b1,c1)a2(b2,c2)a2(b1,c1)a1] [(b1,c1)a1 (b2,c2)a2(b2,c2)a1(b1,c1)]
================= ===================
a1=0.1159953608486416 b1=0.08002565306418866
b1=0.2825633404177051 c1=0.0002725753410753895
c1=0.001226088989536361 a1=0.2728983001988755
a2=

1
2 −a1 b2=

1
2 −b1

b2=1−2b1 c2=0.002960781208329478
c2=0.003035236056708454 a2=1−2a1

(2.16)

s=4. The coefficients of the most efficient ABA and BAB methods are

[a1(b1,c1)a2(b2,c2)a3(b2,c2)a2(b1,c1)a1] [(b1,c1)a1 b2 a2(b3,c3)a2 b2 a1(b1,c1)]
===================== ===================
a1=0.09325912861071900 b1=0.05851872613455621
b1=0.2247800288685984 c1=0.4339598806816256·10−3

c1=0.0005562281089130940 a1=0.1921125277429464
a2=0.2791634819768266 b2=0.2852162240687091
b2=

1
2 −b1 a2=

1
2 −a1

c2=0.0008405927247441154 b3=1−2(b1+b2)
a3=1−2(a1+a2) c3=0.2427475259663050·10−2

(2.17)
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Several methods with 5 stages have also been reported but either they have larger
effective error or at least one of the aj coefficients is negative.

For special classes of problems, such as near-integrable systems, there are particularly
efficient schemes within this class when the perturbation is small. Some examples can be
found in [5, 21, 29], but they will not be considered in this work.

3 Modified processed splitting methods

3.1 Methods with processing

Given a method S(h), one may consider a near-to-identity transformation, P(h) = I+
O(hq) with q≥1, so that the composition

Ŝ(h)=P(h)−1 ·S(h)·P(h) (3.1)

is more accurate than S(h), for instance by increasing its order, whereas still possessing
the same stability as S(h). This is the case, in particular, of method (2.13): by taking
P(h)=e

1
24 h2[T,V] one ends up with a 4th-order integrator. In this setting, S(h) is called the

kernel of the processed method Ŝ(h), and P(h) is the processor or corrector [8–10]. Notice
that N consecutive steps of the processed integrator correspond to the transformation

Ŝ(h)N =

N times︷ ︸︸ ︷
Ŝ(h) ··· Ŝ(h)=

N times︷ ︸︸ ︷
(P(h)−1 ·S(h)·P(h) ···P(h)−1 ·S(h)·P(h)

=P(h)−1 ·S(h)N ·P(h). (3.2)

Thus, to perform N steps of the processed method, one successively (i) applies once the
map P(h) (preprocessing), (ii) takes N steps of the kernel S(h) and finally (iii) applies the
map P(h)−1 (postprocessing). Since P(h) and its inverse are applied only once, the com-
putational complexity of Ŝ(h) corresponds essentially to that of S(h) if N is sufficiently
large. The kernel S(h) is said to be of effective order p if a processor can be constructed
leading to a method of genuine order p.

When the kernel is time-symmetric, the processor leading to a minimum main order
truncation error must be such that P(−h) = P(h). With this requirement, the whole
method is also time-symmetric, i.e. Ŝ(h)−1= Ŝ(−h) [7].

Of course, this “ideal” processor (e.g. P(h)=e
1
24 h2[T,V] in the previous case) is, in gen-

eral, computationally involved and it will only be approximated in practical applications.
This is done once again with a product of the form [7]

Π(h)=
ℓ

∏
j=1

e−hβ jV e−hαjT (3.3)

for certain coefficients αj, β j, j=1,··· ,ℓ, chosen so that

Π(h)=P(h)+O(hr)
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with r≥ p, the order of the method itself. In this way, the overall method

Π(h)−1 ·S(h)·Π(h) (3.4)

has the same structure as the kernel, since

Π(h)−1=ehα1T ehβ1V ···ehαℓT ehβℓV .

Notice, however, that the resulting scheme (3.4) is no longer time-symmetric (since the
composition is not palindromic. Notice also that Π(−h) ̸=Π(h) while the ideal one satis-
fies that P(−h)=P(h)) and in addition involves negative coefficients: they must verify

α1+···+αℓ=0, β1+···+βℓ=0

for consistency (as well as the fact that the coefficients ±αi,±βi appear either in the pre-
processor or in the post-processor).

The first drawback can be overcome by using in (3.4) the adjoint of Π(h) instead of its
inverse. Let us recall that the adjoint Π(h)∗ is defined as the map such that Π(−h)∗ =
Π(h)−1 [27]. It is then clear that

Π(h)∗=e−hα1T e−hβ1V ···e−hαℓT e−hβℓV ,

so that
Π(h)∗=Π(−h)−1=P(−h)−1+O(hr)=P(h)−1+O(hr)

if the processor satisfies P(−h)=P(h). In this way we propose to apply, instead of (3.4),
the scheme

S̃N(h)=Π(h)∗ ·S(h)N ·Π(h). (3.5)

Since
(S̃N(h))−1=Π(h)−1 ·(S(h)N)−1 ·(Π(h)∗)−1

and
S̃N(−h)=Π(−h)∗ ·S(−h)N ·Π(−h)=Π(h)−1 ·S(−h)N ·(Π(h)∗)−1,

then the modified processed integrator (3.5) is also time-symmetric if S(h) is time-symmetric.
On the other hand, the second difficulty can be dealt with the idea of starter. It pro-

ceeds essentially as follows. Suppose that our kernel S(h) is time-symmetric and one is
interested in applying N≥2 steps of the processed scheme. If we set

Π̂(h)≡S(h)·Π(h),

then Eq. (3.5) can be rewritten as

S̃N(h)= Π̂(h)∗ ·S(h)N−2 ·Π̂(h),
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and finally the map Π̂(h) is approximated as

Π̂(h)≃e−hβnV e−hαnT ···e−hβ1V e−hα1T, (3.6)

for another set of coefficients αi, βi. Now consistency requires instead

α1+···+αn =1, β1+···+βn =1,

and these relations may in principle be satisfied with αi,βi ≥ 0, i = 1,··· ,n, for specific
kernels.

It is also clear that we can replace exp(−hβ jV) in the previous procedure by the more
general operator exp(−hβ j−h3cjE3,2) when necessary.

Since Π̂(h) can also be seen as a one step method, then the order barrier also applies
to this family of methods and only methods up to order four with ai >0 can be obtained.

3.2 Order conditions

To construct specific methods within this class we have to find and solve the correspond-
ing order conditions. This can be done as in standard compositions, i.e., by expressing
both the kernel and the processor as the exponential of just one operator. Thus, for the
kernel, one has S(h)=exp(−K(h)), with

K(h)=h(T+V)+h3(k3,1E3,1+k3,2E3,2
)
+h5

4

∑
j=1

k5,jE5,j+O(h7) (3.7)

and the order conditions to achieve a method of effective order 6 are [8]

N3,1= k3,1−k3,2=0,

N5,1= k5,2−k5,1−
1
2

k2
3,1=0, (3.8)

N5,2= k53+k5,4−k3,1k3,2=0.

With respect to the processor Π(h), it can be expressed as Π(h)=exp(−P(h)), with

P(h)=h2 p2,1E2,1+h4(p4,1E4,1+p4,2E4,2
)
+O(h6).

Notice that, for the ideal processor, p2k+1,j = 0 for k ≥ 0. In consequence, the processed
method reads

Π(h)−1 ·S(h)·Π(h)=exp(−F(h)),

where now

F(h)=h(T+V)+h3( f3,1E3,1+ f3,2E3,2
)
+h5

4

∑
j=1

f5,jE5,j+O(h7) (3.9)
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and
f3,1= k3,1+p2,1, f3,2= k3,2+p2,1, f5,1= k5,1+p4,1,

f5,2= k5,2+k3,1 p2,1+
1
2

p2
2,1+p4,1, f5,3= k5,3+k3,1 p2,1+

1
2

p2
2,1−p4,2,

f5,4= k5,4+k3,2 p2,1+
1
2

p2
2,1 p4,2.

Accordingly, if N3,1 =0 and p2,1 =−k3,1 (in addition to the conditions p1,j = p3,j =0), then
the processed method is of order four. This is precisely what happens with the methods
with one stage (2.12) and (2.13).

Unfortunately, conditions N5,1 = 0 and N5,2 = 0 cannot be simultaneously verified by
kernels with positive coefficients: one can still find coefficients cj such that N5,2 =0 with
positive coefficients, whereas the processor can be used to vanish f5,3 and f5,4 simultane-
ously. However, the constraint aj >0 in the kernel implies that N5,1 ̸=0 and then

f5,1=0, f5,2=0

cannot be simultaneously satisfied with the processor.
In view of the situation, our proposal here is to choose coefficients for the kernel

verifying N3,1 = N5,2 = 0 and take p4,1 such that one of the following requirements is
satisfied:

(a) f5,1=−N5,1, f5,2=0;

(b) f5,1=0, f5,2=N5,1;

(c) f5,1=
1
2 N5,1, f5,2=− 1

2 N5,1,

with N5,1 as small as possible. In this way the effective error achieves the minimum value
in all cases. Alternatives (a) and (b) can be relevant depending on the type of potential
and wave function one is considering. For instance, without loss of generality, suppose

one is dealing with a one-dimensional problem and denote V(k)≡ dkV̂(x)
dxk , and ψ(k)≡ ∂kψ(x,t)

∂xk ,
k≥1. Then, a straightforward computation shows that

Ê5,1ψ=V(8)ψ+8V(7)ψ(1)+24V(6)ψ(2)+32V(5)ψ(3)+8V(4)ψ(4),

Ê5,2ψ=
(
−6V(5)V(1)−12V(4)V(2)+8(V(3))2)ψ+24

(
V(3)V(2)−V(4)V(1))ψ(1)

+24V(3)V(1)ψ(2),

where Ê5,j denotes the corresponding element of Table 1 obtained with the operators T̂
and V̂. Now, if V̂(x) is at most cubic, then Ê5,1ψ=0. In fact, the contribution of this term
to the error is almost negligible for smooth potentials or wave functions describing the
system near the ground state, or evolving near the minimum of the potential. Then, the
choice (a) would lead to a 6th-order method with positive coefficients for cubic potentials.
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With respect to the starter, one has

Π̂(h)=exp(−K(h))·exp(−P(h))=exp

(
−∑

k,j
hk tk,j Ek,j

)
,

and the previous conditions for the processor to achieve order four lead to

t1,1=1, t1,2=1,
t2,1= k3,1, (3.10)

t3,1=
1
2

k3,1, t3,2=
1
2

k3,1,

whereas additional restrictions are necessary for t4,j and t5,j according to the options (a),
(b) or (c) above. Thus, in case (a) it is required that

t4,1=
1
12

k3,1−
1
2

k2
3,1+k5,2, t4,2=

1
6
(k3,1+3k2

3,1−6k5,3),

t5,1= k5,1+
1
4
(k2

3,1−2k5,2), t5,2=
1
6
(−k2

3,1+3k5,2),

t5,3=
1
6
(−k2

3,1+3k5,3), t5,4=
1
6
(2k2

3,1−3k5,3).

(3.11)

We will take then a composition involving at least 11 parameters to solve all the condi-
tions. In summary, the procedure to construct operator splitting methods with starter is
the following:

1. Obtain the coefficients aj, bj, cj of time-symmetric kernels (with aj > 0, bj > 0) by
solving N3,1=N5,2=0 and minimizing N5,1.

2. Determine the values of the relevant terms ki,j for this kernel and from them, the
terms ti,j of the starter.

3. Obtain the coefficients αj, β j, γj of the composition (3.6) defining the starter (again
with αj >0, β j >0) according with the chosen alternative (a), (b) or (c).

3.3 Specific methods

We have obtained kernels of type (2.3) and (2.4) involving up to s=4 stages by applying
the previous methodology. In Table 3 we collect the corresponding values of |N5,1| and,
to take into account the computational cost, also the value of s4 1√

2
|N5,1| in each case. This

last quantity is closely related with the overall effective error of the processed method.
We see that, although the value of |N5,1| can be reduced by increasing the number of

stages, this reduction is hardly compensated by the higher computational cost required.
For this reason, we restrict ourselves to kernels with only one and two stages.
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Table 3: Error terms for the kernel of processed splitting operator methods. When s=1, N5,2 =−N5,1.

Type s |N5,1| s4
√

2
|N5,1|

1 6.94·10−4 4.91·10−4

ABA 2 6.06·10−4 6.85·10−3

3 8.57·10−6 4.90·10−4

4 3.17·10−6 5.73·10−4

1 6.94·10−4 4.91·10−4

BAB 2 4.44·10−5 5.02·10−4

3 8.59·10−6 4.91·10−4

4 2.71·10−6 4.90·10−4

s= 1. In the particular case of kernel (2.13), one has N3,1 = 0, but neither N5,1 nor N5,2
vanish, so that we apply a different strategy to construct a cheaper starter leading to a
method of order 4. It turns out that this can be achieved with

Π̂(h)=
[
(β3,γ3)α3(β2,γ2)α2(β1,γ1)α1

]
. (3.12)

In fact, only 2 modified potentials are required and still one has a 1-parameter family of
solutions. Among them we choose

α1=0.015910816538916105477, α2=0.52240758893355298829,
β1=0.16194613148158516891, β2=0.82805386851841483109,
γ1=0.0061470397523367318641, γ2=0.018617166558200649744,
α3=0.46168159452753090624, β3=

1
100 ,

γ3=0.

The overall scheme reads

S̃N(h)=
[
α1(β1,γ1)α2(β2,γ2)α3(β3,γ3)

]
·
[

1
2
(1,

1
24

)
1
2

]N−2

·
[
(β3,γ3)α3(β2,γ2)α2(β1,γ1)α1

]
. (3.13)

We should remark that the modified processor has not been chosen to optimize the trun-
cation error, since N5,2 ̸=0 anyway. Moreover, the method has to be used with N≥2 and
the total number of stages is N+4. In consequence, for small values of N, this extra cost
can be significant with respect to the cost of the kernel.

s=2. The kernels read respectively

ABA: SABA(h)=
[
a1(b1,c1)a2(b1,c1)a1

]
(3.14)

and
BAB: SBAB(h)=

[
(b1,c1)a2(b2,c2)a2(b1,c1)

]
. (3.15)
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Once the kernel has been chosen, the starter can be determined according with the
previous alternatives (a), (b) and (c), so that one ends up with

Π̂(h)=
[
(β4,γ4)α4(β3,γ3)α3(β2,γ2)α2(β1,γ1)α1

]
. (3.16)

Notice that, in all cases, we have one free parameter. Nevertheless, it is not always pos-
sible to get solutions with all αj > 0, β j > 0, in particular for kernel (3.14). In fact, in that
case there are no solutions with all αj>0 for alternative (a), whereas for (b) and (c) one of
the β j has to be necessarily negative.

For kernel (3.15) we have, by contrast, 1-parameter families of solutions involving
only positive coefficients. Particular choices are collected in Table 4. We recall that in this
case the overall method for N integration steps reads

S̃N(h)=
[
α1(β1,γ1)α2(β2,γ2)α3(β3,γ3)α4(β4,γ4)

]
·(SBAB(h))N−2

·
[
(β4,γ4)α4(β3,γ3)α3(β2,γ2)α2(β1,γ1)α1

]
.

4 Numerical comparisons

In this section we compare the new 4th-order modified processed splitting methods with
respect to the most efficient schemes also involving modified potentials and positive co-
efficients we have found in the literature.

4.1 Imaginary time propagation in 1-d

As a first illustration we apply the previous methods to the numerical integration of
the one-dimensional Schrödinger equation in imaginary time for three different poten-
tials: the harmonic oscillator, a double well such that the minima of the potential can
be approximated by cubic functions, and finally a potential where higher derivatives are
relevant near the minimum.

As stated in the introduction, in this diffusive problem the solution converges to the
ground state which is mainly concentrated around the minimum of the potential. We
measure the error in the normalized solution at the final time as

Er ≡
∥∥∥∥ u(τf )

∥u(τf )∥
−

uapp(τf )

∥uapp(τf )∥

∥∥∥∥
and depict this error as a function of the computational cost measured as the number of
fast Fourier transforms (FFTs) and inverses of FFTs computed.

First we analyze the performance of the best 4th-order methods from the literature
with modified potentials. Next, we analyze the performance of the 1-stage and the new
2-stage kernels with processors that are obtained applying different optimization crite-
ria. Finally, we collect the best processed and non-processed methods to illustrate their
relative performance taking the Strang method as a reference. Specifically, we test the
following integrators:
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Table 4: Coe�cients of processed splitting methods with kernel of type BAB with 2 stages and all positive
coe�cients. The di�erent processors are chosen according with criteria (a), (b) and (c).

Type Kernel Starter
α1=0.085901112008607587690928693459 (a)
β1=0.212698346714285489082694412338
γ1=1/20000
α2=0.344269607777567701053555680439
β2=0.477571645650134700450689457043
γ2=0.0063563342058890792786107143464
α3=0.49916059713055403489220577869
β3=0.107615382576486586889760168322
γ3=0.00152095461887095859855736273454
α4=0.070668683083270676363309847409
β4=0.20211462505909322357685596230
γ4=0.000439633064716702370928763003143
α1=0.081400719358833550685242298084 (b)
β1=0.213974166240535023746064422594

b1=
27

100 γ1=0
c1=

1597
1440000 α2=0.359973312089188663628848658435

BAB a2=
1
2 β2=0.489218997657784225611758847163

b2=
23
50 γ2=0.0063839418286807493996690114472

c2=
6047

720000 α3=0.533271252488022531567730572505
β3=0.170371266269132266613375096529
γ3=0.0102467951708793774222822918119
α4=0.0253547160639552541181784709748
β4=0.12643556983254848402880163371
γ4=−0.0077029603723780256365999686550
α1=0.085835304465630711824262626400 (c)
β1=0.217482775489438674951915790962
γ1=1/10000
α2=0.353863857161384364666360893974
β2=0.482376576131251183368714037601
γ2=0.0062211703953627366195938119902
α3=0.531192662483216027224466133435
β3=0.174369958075879961757677904504
γ3=0.0072626937935484396739173709272
α4=0.0291081758897688962849103461909
β4=0.12577069030343017992169226693
γ4=−0.00483527451093132570395371566179
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• S[2,a]
1 : the Strang splitting of type ABA, used here as a reference method;

• Sm[4,a]
2 , Sm[4,b]

2 : the 2-stage ABA and BAB methods (2.15) and (2.14), with positive
coefficients and modified potentials;

• Sm[4,a]
3 , Sm[4,b]

3 : the most efficient 3-stage methods of type ABA and BAB proposed
in [24] and collected in (2.16);

• Sm[4,a]
4 , Sm[4,b]

4 : the most efficient 4-stage methods of type ABA and BAB proposed
in [24] and collected in (2.17);

• SP[4]
1 : the modified processed scheme with a 1-stage kernel of type ABA with sym-

metric processor and positive coefficients (3.13);

• SP[4]
2,α: the 2-stage BAB methods with symmetric processor built according to crite-

rion (a), (b) or (c) (α= a,b,c) and positive coefficients, as collected in Table 4.

Notice that the previous notation indicates the order of the scheme (superscript), the
number of stages (subscript), the particular composition type (a: ABA, b: BAB), the pres-
ence of modified potentials without processor (m) and the presence of modified potentials
with processor (P).

Harmonic oscillator potential. We first take

V̂(x)=
1
2

x2

and the initial wave function ψ0(x)=σ|cos(x)|e−(x−2)2
, where σ is the normalizing con-

stant. Since the solution decays rapidly, we can safely truncate the infinite spatial domain
to the periodic interval [−L,L], provided L is sufficiently large. Specifically, we take L=10
and set up a uniform grid x1,··· ,xN in the interval, with N=128, and integrate until the
final time τf = 2. Notice that for this problem the error terms E5,1 = E5,2 = 0, so that the
error is dominated by f5,3 and f5,4.

Fig. 1 contains three diagrams collecting, in a log-log scale, the error Er vs. the number
of FFTs for the different integrators. Specifically, the top left diagram shows the results
achieved by the 4th-order conventional methods of type ABA and BAB with 2, 3 and 4
stages, modified potentials and positive coefficients. We observe an improvement in the
accuracy with the number of stages per step (number of free parameters in the scheme)
at the cost of an slightly worst performance at low accuracies. Among them, we choose
the 4-stage BAB scheme as the most efficient one. The top right panel collects the re-
sults obtained by the new processed methods. Since all methods using the 2-stage kernel
have been designed so that f5,3 = f5,4 = 0, then they achieve in practice order 6. For this
problem, all three methods with the 2-stage kernel show a very similar performance. At
low accuracies (low number of FFTs) the cost of the pre- and post-processor is not neg-
ligible. Finally, in the bottom diagram we compare the most efficient schemes from the
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Figure 1: Harmonic oscillator potential. Top left: the 4th-order non-processed methods for the 2, 3 and 4-
stage ABA and BAB methods with modi�ed potentials; Top right: the 4th-order 1-stage and 2-stage processed
methods; Bottom �gure: the best methods among the previous ones jointly with the Strang method (used as
a reference method).

previous graphs together with the results obtained by the Strang method. We observe
an improvement of the new processed 2-stage kernel scheme with respect to the most
efficient conventional integrators involving modified potentials at high accuracies. As
mentioned, the performance at low accuracies is reduced due to the cost of the processor
(this cost would not be considered in problems where e.g. one is only interested in the
trace of the transition matrix).

Double well potential. The same set of experiments is carried out for the quartic oscil-
lator

V̂(x)=10− 1
2

x2+
1

160
x4=

1
160

(x2−40)2

with initial condition ψ0(x)=σ|cos(x)|e−(x−6)2
. Here again σ is the normalizing constant

and the initial wave function is allocated near one of the minima of the potential. In this
case we take as the spatial interval the periodic domain [−13,13] and N=128 grid points
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Figure 2: Same as Fig. 1 but for the double well potential.

for the Fourier semidiscretization. The final integration time is τf = 2. The results are
collected in Fig. 2, where the same pattern in the top left diagram can be observed. In the
top right diagram we see, as expected, a small improvement by the scheme SP[4]

2,a which
would correspond to a sixth-order method for a cubic potential (this is essentially the
case near the minimum of the potential). In the bottom diagram we compare the most
efficient schemes from the previous graphs, where the superiority of the new method is
visible for high accuracy. As in the previous case, at low accuracies the relative cost of
the pre- and post-processors is significant.

Pöschl–Teller potential. As a third illustration in the context of the ITP algorithm we
take the potential

V̂(x)=
λ(λ+1)

2
(1−sech(x)2)

with λ= 5 and initial condition ψ0(x) = σ|cos(x)|e−x2
. Our spatial interval is [−10,10],

the uniform grid has N=128 points and the final time is τf =2. Fig. 3 shows the results
from the methods which where previously chosen as the most efficient ones. In this case,
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Figure 3: Same as Fig. 1 but for the Pöschl�Teller potential.

all choices of the processor for the 2-stage kernel lead essentially to the same results, but
now the 1-stage kernel shows the best performance.

It is important to remark the superiority of all the methods with modified potentials
with respect to the frequently used second order Strang method and that this superiority
increases with the desired accuracy. The 4-stage BAB method Sm[4,b]

4 shows, in general,
a better performance than the frequently used 2-stage BAB method Sm[4,b]

2 and the new
processed methods are even superior when high accuracy is desired (and also at low
accuracies if the cost of the pre- and post-processor can be neglected).

4.2 1-d, 2-d and 3d linear evolution problems

As further test problems, we consider linear parabolic equations of the form

∂

∂t
u(x,t)= 1

2 ∆u(x,t)+V̂(x)u(x,t), t∈ [0,τf ], u(x,0)=u0(x)

in one, two and three dimensions, to study how the relative performance of the methods
change with the dimension. On the one hand, we prescribe periodic problem data for
d=1,2,3

u0(x)=u0(x1,··· ,xd)= c
d

∏
j=1

sin2( xj+a
a π

)
,

V̂(x)= c
d

∏
j=1

(
1−cos2( xj+a

2a π
))

,

x∈ [−L,L]d, L=10, c=10, d=1,2,3, τf =10.
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On the other hand, we study the time evolution of a localized initial state under a stan-
dard quadratic potential

u0(x)=e−5∥x∥2
, V(x)=−∥x∥2 , x∈ [−10,10]d, d=1,2,3, τf =1.

We take a uniform grid xj,1,··· ,xj,N , j=1,··· ,d, with N=512 for d=1 leading to a system of
dimension M=512, N=128 for d=2 leading to a system of dimension M=1282=16384,
and finally with N=64 for d=3, so M=643=262144.

The time integration is performed with the methods which were previously selected
as the most efficient, and also include for comparison the classical second-order Strang
splitting. In Fig. 4, and for simplicity, we denote them as follows:

• S[2,a]
1 , referred to as Order 2 (Strang);

• Sm[4,b]
2 , called here Order 4 (Chin);

• Sm[4,b]
4 , referred to as Order 4 (Omelyan);

• SP[4]
1 , denoted by Order 4 (Rowland); and

• SP[4]
2a , called Order 4 (Novel).

With regard to the spatial discretization, we apply as before the Fourier pseudo-spectral
method on an equidistant mesh and measure the computational effort by the total num-
ber of fast Fourier transforms and inverse fast Fourier transforms. In order to determine
the global errors at the final time, a numerical reference solution is computed by divid-
ing the smallest time stepsize in half. The obtained results, given in Fig. 4, are consistent
with our former observations and confirm the high accuracy of the novel scheme SP[4]

2a at
a reasonable computational cost in different settings.

5 Conclusions

We have presented a novel class of splitting methods for numerically solving linear
parabolic problems that appear in many physical problems, such as the imaginary time
propagation of the Schrödinger equation. Splitting methods are especially useful in this
context, due to their simple structure and good performance. For periodic problems or
when the solution vanishes far from the region of interest, the order reduction of the
methods usually does not occur and higher order schemes can be of interest. Splitting
methods of order greater than two necessarily have negative coefficients and thus can not
be used to propagate the unbounded operator associated to the Laplacian. This problem
can be partially solved by incorporating into the scheme some appropriated modified po-
tentials, thus leading to fourth-order integrators with positive coefficients. In fact, order
four constitutes the upper limit for this family of methods.
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Figure 4: Time integration of a linear evolution equation of parabolic type involving a periodic potential (left)
or a standard quadratic potential (right). The Fourier pseudo-spectral space discretization in dimension d is
based on a total number of M equidistant grid points. For the classical Strang splitting method and di�erent
fourth-order schemes, we depict the global errors at �nal time τf versus the computational cost, measured by

the number of FFTs and their inverse.
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We have carried out a search in the literature of methods of order four that incor-
porate modified potentials in their formulation and have positive coefficients. We have
observed the limitations to improve their performance by applying the standard strat-
egy of augmenting the number of stages to reduce the error, and we have proposed a
generalization of the processing technique to achieve higher accuracy and better stability
with a reduced computational cost. Methods with processors, in general, have negative
coefficients in the pre- and post-processors due to consistency and also because one has
to compute a scheme to start and its inverse to conclude the integration. Both drawbacks
are resolved by considering symmetric processors with a starter, so that new families of
fourth-order integrators with modified potentials and positive coefficients can be gener-
ated. An error analysis is carried indicating that the new methods possess smaller errors.
We thus end up with new schemes with a similar complexity as previous splitting meth-
ods with modified potentials, but with a superior efficiency, as shown by the numerical
examples collected here.

The new proposed methods can also be safely applied in any situation where the
schemes of [12] and [24] are used, and in particular to the numerical integration of the
Schrödinger equation in real time. Since they have small and positive coefficients, one can
expect to be highly efficient in situations where low to medium accuracies are required
(usually, higher order methods are preferable when very high accuracy is desired).

The generalization of the proposed methods to nonlinear both parabolic and
Schrödinger equations is one of our objective in current research investigation. In [18]
it is proven that methods with modified potentials retain their classical order of accuracy
provided the solution is sufficiently regular. In the case of low regularity problems an
order reduction is expected and different techniques should be used (see e.g. [20]).

Acknowledgments

Part of this work was developed during a research stay at the Wolfgang Pauli In-
stitute Vienna; the authors are grateful to the director Norbert Mauser and the staff
members for their support and hospitality. This work has been supported by Min-
isterio de Ciencia e Innovación (Spain) through projects PID2019-104927GB-C21 and
PID2019-104927GB-C22, MCIN/AEI/10.13039/501100011033, ERDF (“A way of making
Europe”). SB and FC also acknowledge the support of the Conselleria d’Innovació,
Universitats, Ciència i Societat Digital from the Generalitat Valenciana (Spain) through
project CIAICO/2021/180. The authors would like to thank to Ander Murua for exten-
sive feedback and discussions on processed methods with starter.

References

[1] E. Abreu, J. Douglas, F. Furtado, and F. Pereira, Operator splitting for three-phase flow in
heterogeneous porous media, Commun. Comput. Phys., 6 (2009), pp. 72–84.



960 S. Blanes et al. / Commun. Comput. Phys., 33 (2023), pp. 937-961

[2] M. Aichinger and E. Krotscheck, A fast configuration space method for solving local Kohn–
Sham equations, Comput. Mater. Sci., 34 (2005), 188–212.

[3] J. Auer, E. Krotscheck, and S. Chin, A fourth-order real-space algorithm for solving local
Schrödinger equations, J. Chem. Phys., 115 (2001), 6841–6846.

[4] W. Auzinger, H. Hofstätter, and O. Koch, Non-existence of generalized splitting methods
with positive coefficients of order higher than four, Appl. Math. Letters, 97 (2019), 48–52.

[5] P. Bader, S. Blanes, and F. Casas, Solving the Schrödinger eigenvalue problem by the imag-
inary time propagation technique using splitting methods with complex coefficients, J.
Chem. Phys., (2013), 124117.

[6] S. Blanes and F. Casas, On the necessity of negative coefficients for operator splitting
schemes of order higher than two, Appl. Numer. Math., 54 (2005), 23–37.

[7] S. Blanes, F. Casas, and A. Murua, On the numerical integration of ordinary differential
equations by processed methods, SIAM J. Numer. Anal., 42 (2004), 531–552.

[8] S. Blanes, F. Casas, and J. Ros, Symplectic integrators with processing: A general study,
SIAM J. Sci. Comput., 21 (1999), 711–727.

[9] J. Butcher, The effective order of Runge–Kutta methods, in Proceedings of the Conference on
the Numerical Solution of Differential Equations, J. L. Morris, ed., vol. 109 of Lecture Notes
in Mathematics, Springer, 1969, 133–139.

[10] J. Butcher and J. Sanz-Serna, The number of conditions for a Runge–Kutta method to have
effective order p, Appl. Numer. Math., 22 (1996), 103–111.

[11] M. Caliari and S. Zuccher, A fast time splitting finite difference approach to Gross–Pitaevskii
equations, Commun. Comput. Phys., 29 (2021), 1336–1364.

[12] S. Chin, Symplectic integrators from composite operator factorizations, Phys. Lett. A, 226
(1997), 344–348.

[13] S. Chin, Structure of positive decomposition of exponential operators, Phys. Rev. E, 71 (2005),
016703.

[14] X. Dong, Z. Xu, and X. Zhao, On time-splitting pseudospectral discretization for nonlinear
Klein-Gordon equation in nonrelativistic limit regime, Commun. Comput. Phys., 16 (2014),
440–466.

[15] D. Goldman and T. Kaper, nth-order operator splitting schemes and nonreversible systems,
SIAM J. Numer. Anal., 33 (1996), 349–367.

[16] S. Jang, S. Jang, and G. Voth, Applications of higher order composite factorization schemes
in imaginary time path integral simulations, J. Chem. Phys., 115 (2001), 7832–7842.

[17] P.-V. Koseleff, Calcul formel pour les méthodes de Lie en mécanique hamiltonienne, PhD
thesis, École Polytechnique, 1993.

[18] E. Kieri, Stiff convergence of force-gradient operator splitting methods, Appl. Numer. Math.,
94 (2015), 33–45.

[19] L. Lehtovaara, J. Toivanen, and J. Eloranta, Solution of time-independent Schrödinger equa-
tion by the imaginary time propagation method, J. Comput. Phys., 221 (2007), 148–157.

[20] B. Li and Y. Wu, A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear
Schrödinger equation, Numer. Math., 149 (2021), 151–183.

[21] R. I. McLachlan, Composition methods in the presence of small parameters, BIT, 35 (1995),
258–268.

[22] A. Messiah, Quantum Mechanics, Dover, 1999.
[23] I. Omelyan, I. Mryglod, and R. Folk, On the construction of high order force gradient algo-

rithms for integration of motion in classical and quantum systems, Phys. Rev. E, 66 (2002),
026701.



S. Blanes et al. / Commun. Comput. Phys., 33 (2023), pp. 937-961 961

[24] I. Omelyan, I. Mryglod, and R. Folk, Symplectic analytically integrable decomposition al-
gorithms: Classification, derivation, and application to molecular dynamics, quantum and
celestial mechanics simulations, Comput. Phys. Comm., 151 (2003), 272–314.

[25] G. Rowlands, A numerical algorithm for Hamiltonian systems, J. Comput. Phys., 97 (1991),
235–239.

[26] R. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci., 30 (1983), 2669–2671.
[27] J. Sanz-Serna and M. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, 1994.
[28] Q. Sheng, Solving linear partial differential equations by exponential splitting, IMA J. Nu-

mer. Anal., 9 (1989), 199–212.
[29] K. Skoufaris, J. Laskar, Y. Papaphilippou, and C. Skokos, Application of hig order symplectic

integration methods with forward integration steps in beam dynamics, Phys. Rev. Accel.
Beams, 25 (2022), 034001.

[30] M. Suzuki, General theory of fractal path integrals with applications to many-body theories
and statistical physics, J. Math. Phys., 32 (1991), 400–407.

[31] M. Suzuki, Hybrid exponential product formulas for unbounded operators with possible
applications to Monte Carlo simulations, Phys. Lett. A, 201 (1995), 425–428.

[32] M. Suzuki, New scheme of hybrid exponential product with applications to quantum
Monte-Carlo simulations, in Computer Simulation Studies in Condensed Matter Physics
IX, D. P. Landau, K. K. Mon, and H.-B. Schütte, eds., Springer-Verlag, 1995, 1–6.

[33] M. Takahashi and M. Imada, Montecarlo calculation of quantum system II. Higher order
correction, J. Phys. Soc. Japan, 53 (1984), 3765–3769.

[34] V. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, 1984.
[35] J. Wisdom, M. Holman, and J. Touma, Symplectic correctors, in Integration Algorithms and

Classical Mechanics, J. Marsden, G. Patrick, and W. Shadwick, eds., vol. 10 of Fields Institute
Communications, American Mathematical Society, 1996, 217–244.


	Introduction
	A review of operator splitting methods
	Standard splitting methods
	Modified splitting methods

	Modified processed splitting methods
	Methods with processing
	Order conditions
	Specific methods

	Numerical comparisons
	Imaginary time propagation in 1-d
	1-d, 2-d and 3d linear evolution problems

	Conclusions

