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Abstract
New numerical integrators specifically designed for solving the two-body gravitational
problem with a time-varying mass are presented. They can be seen as a generalization of
commutator-free quasi-Magnus exponential integrators and are based on the compositions
of symplectic flows. As a consequence, in their implementation they use the mapping that
solves the autonomous problem with averaged masses at intermediate stages. Methods up to
order eight are constructed and shown to be more efficient than other symplectic schemes on
numerical examples.

Keywords Kepler problem · Time-dependent mass · Symplectic integrators · Hamiltonian
systems

1 Introduction

The problem of determining the motion of two bodies under their mutual gravitational attrac-
tion (the so-called Kepler problem) is one of the most studied dynamical systems in classical
mechanics. It not only constitutes a paradigmatic example of an integrable system (Arnold
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1989), but in addition it is also used as one of the first test bench for illustrating the main
features of whatever numerical integration methods for differential equations are proposed,
ranging from classical embedded Runge–Kutta schemes with adaptive step size, to multistep
methods (Hairer et al. 1993). Moreover, given all its geometric properties, it has received
great attention for checking the recent class of structure-preserving numerical methods, such
as energy-preserving and symplectic integrators (Hairer et al. 2006; Sanz-Serna and Calvo
1994).

Even in the long-time integration of planetary systems involving several bodies, theKepler
problem plays a fundamental role. This is so because, using an appropriate set of coordinates
(e.g., heliocentric or Jacobi coordinates Laskar 1991), the equations of motion can be shown
to derive from a Hamiltonian function of the form

H(q, p) = HK (q, p) + εHI (q, p), (1)

where HK corresponds to the Keplerian motion of each planet, HI is a (small) perturbation
given by the interaction between the planets, and ε denotes a small parameter. An early
reference in this respect is Wisdom and Holman (1991), where a symmetric second-order
symplectic scheme was successfully used to study the chaotic behavior of the solar system.
Since then, many other highly efficient symplectic integrators have been designed taking
into account this near-integrable structure of the problem (see, e.g., Blanes et al. 2000; Farrés
et al. 2013; Laskar and Robutel 2001; McLachlan 1995, and references therein).

All these schemes require, at each intermediate stage, solving one or several times a
transcendental equation to determine with great accuracy the position in phase space of each
body subjected to the Hamiltonian HK . This is done in practice by numerical iteration as
follows. If we write the Hamiltonian function describing the Kepler problem as

H(q, p) = 1

2
pT p − μ

1

r
, (2)

where μ = G M , in which G is the gravitational constant and M is the reduced mass,
q, p ∈ R

3, and r = ‖q‖ = √
qT q; the map advancing the solution in time from t0 to t can

be expressed as

(q(t), p(t)) ≡ �(q0, p0; t, μ) = ( f q0 + g p0, f p q0 + gp p0) (3)

in terms of functions f , f p, g, gp that are determined through (see, e.g., Blanes and Casas
2016; Danby 1988)

r0 = r(t0) = ‖q0‖, u = qT
0 p0, E = 1

2
pT
0 p0 − μ

1

r0
, a = − μ

2E
, w =

√
μ

a3 ,

σ = 1 − r0
a

, ψ = u

wa2 , wt = x − σ sin x + ψ(1 − cos x),

f = 1 + (cos x − 1)a

r0
, g = t + sin x − x

w
,

f p = − aw sin x

r0(1 − σ cos x + ψ sin x)
, gp = 1 + cos x − 1

1 − σ cos x + ψ sin x
, (4)

where x is evaluated by numerical iteration. As a matter of fact, this can be done very
efficiently with only 2–5 iterations, depending on the time step and the values of q0, p0 to
reach round-off accuracy.

There are other astronomical problems that can be also modeled as (5), but, as they fre-
quently involve some loss of mass, the corresponding Hamiltonian system depends explicitly
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on time. Examples are the evolution of planetary systems with time-dependent stellar loss
of mass (Adams et al. 2013), evolution of exoplanets around binary star systems (Rahoma
2016) with stellar mass loss (Veras et al. 2013), and the two-body problem with varying mass
(El-Saftawy and El-Salam 2017; Rahoma et al. 2009), among others (Li 2013). The Hamilton
systems to be solved are still near integrable, but non-autonomous

H̃(t, q, p) = HK (t, q, p) + εHI (t, q, p), (5)

where now HK corresponds to the Keplerian motion of each planet (with time-dependent
mass). If one takes t as a new coordinate, say qt = t , and its associated momentum, pt , the
equations obtained from the autonomous Hamiltonian

K (qt , q, pt , p) ≡ (HK (qt , q, p) + pt ) + εHI (qt , q, p) (6)

have the same solution for q, p as the original non-autonomous problem. In those situations,
one has to solve in an accurate and efficient way the dynamics of theHamiltonian HK (t, q, p)

or, equivalently, each of the independent Hamiltonians, i.e.,

H(t, q, p) ≡ T + V (t) = 1

2
pT p − μ(t)

1

r
, (7)

where now μ(t) is a time-dependent function, and the perturbed part εHI (t, q, p) has to be
solved with the time frozen since this part does not depend on pt . Then, splitting symplectic
integrators for near-integrable problems can be used. The natural question arising here is
whether the procedure (3, 4) can be conveniently adapted to deal with this problem. In this
work, we show that this is actually the case and present several numerical algorithms with
different orders of accuracy that use the map � in (3) with properly averaged values of the
time-dependent mass μ(t) that are more efficient than other numerical integrators in short-
and long-time integrations. The new algorithms can be seen as a specially tuned class of
schemes called commutator-free quasi-Magnus (CFQM) exponential integrators, originally
intended for linear non-autonomous problems (Alvermann and Fehske 2011; Blanes et al.
2017, 2018). They are based on compositions of the symplectic flows corresponding to certain
linear combinations of the time-dependent Hamiltonian (7) evaluated at appropriately chosen
times. For illustration, the map

(q0, p0) = (q(t0), p(t0)) �−→ (q1, p1)

given by the composition

(q1/2, p1/2) = �

(
q0, p0; h

2
, μ̂1

)
, μ̂1 = a1μ(c1h) + a2μ(c2h),

(q1, p1) = �

(
q1/2, p1/2; h

2
, μ̂2

)
, μ̂2 = a2μ(c1h) + a1μ(c2h),

(8)

where c1 = 1
2 −

√
3
6 , c2 = 1

2 +
√
3
6 , a1 = 1

2 +
√
3
3 , a2 = 1

2 −
√
3
3 , provides a fourth-order

approximation to the exact solution of (7) at time t1 = t0 + h, in the sense that

(q1, p1) = (q(t1), p(t1)) + O(h5).

In the following, we show how scheme (8) is obtained and also construct similar approxima-
tions of higher orders. Then, we illustrate the advantages of the new procedures in comparison
with other numerical algorithms on some examples.
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2 Construction of the schemes

2.1 Hamiltonian vector fields and Poisson brackets

The derivation process of the new schemes can be carried out in a suitable way by introducing
the formalism of Lie derivatives and Lie transformations (Abraham and Marsden 1978;
Arnold 1989). Thus, starting from the equations of motion for the autonomous case (2)

q̇ = p, ṗ = −μ
q

r3
, (9)

and the corresponding Hamiltonian vector X H = (∇p H ,−∇q H)T , one introduces the Lie
derivative L X H , whose action on a differentiable function G(q, p) is

L X H G = (J∇x H)T ∇x G = −(∇x H)T J∇x G = −{H , G} = {G, H}. (10)

Here, x = (q, p)T , J is the basic canonical symplectic matrix

J =
(

0 I
−I 0

)
,

and {H , G} denotes the Poisson bracket of the two scalar functions H(q, p) and G(q, p),

{G, H} =
∑

i

(
∂G

∂qi

∂ H

∂ pi
− ∂G

∂ pi

∂ H

∂qi

)
,

so that, in terms of the Poisson bracket, Eq. (9) can be written simply as

ẋi = {xi , H}. (11)

In case G is a vector function, L X H in (10) acts on any of its components.
If ϕt denotes the flow corresponding to (9), for each infinitely differentiable map G, the

Taylor series of G(ϕt (x0)) at t = t0 is given by

G(ϕt (x0)) =
∑

k≥0

(t − t0)k

k!
(
Lk

X H
G

)
(x0) ≡ exp((t − t0)L X H )[G](x0), (12)

where exp(t L X H ) is the so-called Lie transformation. If we introduce the operator �t acting
on differentiable functions as G(ϕt (x)) = �t [G](x), then we can write

G(ϕt (x)) = �t [G](x) = exp((t − t0)L X H )[G](x),

so that the solution of (9) is obtained by replacingG(x) in (12) by the identitymap Id(x) = x :

ϕt (x0) =
∑

k≥0

(t − t0)k

k! (Lk
X H

Id)(x0) = exp((t − t0)L X H )[Id](x0).

Lie transformations obey the following important property for any pair of arbitrary vector
fields. Given the flows ϕ

[1]
t1 and ϕ

[2]
t2 corresponding to the differential equations ẋ = f [1](x)

and ẋ = f [2](x), respectively, then
(
ϕ

[2]
t2 ◦ ϕ

[1]
t1

)
(x0) = exp(t1L f [1]) exp(t2L f [2])[Id](x0).

Notice where the indices 1 and 2 appear depending on whether one is dealing with maps or
with exponentials of operators. This relation generalizes by induction to any number of flows
(Hairer et al. 2006).
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In the non-autonomous problem, one can still formally write the operator �t associated
with the exact flow as the Lie transformation corresponding to an unknown function	(t, t0),

ϕt (x0) = �t [Id](x0) = exp(L X	(t,t0)
)[Id](x0), (13)

which can be approximated for sufficiently small time intervals [t0, t] by truncating the
corresponding Magnus expansion (Blanes 2018; Oteo and Ros 1991). This is done by the
infinite series

	(t, t0) =
∞∑

m=1

	m(t, t0), (14)

which involves multiple integrals of nested Poisson brackets:

	1(t, t0) =
∫ t

t0
H(s, q0, p0)ds,

	2(t, t0) = −1

2

∫ t

t0
ds1

∫ s1

t0
ds2 {H(s1, q0, p0), H(s2, q0, p0)}.

Recursive procedures to generate the terms in the Magnus series are found, e.g., in Blanes
et al. (2009).

2.2 Derivation of the newmethods

The methods we propose for approximating the operator �t up to order r in the general
non-autonomous case (7) have the form x1 = 


[r ]
J [Id]x0 for the step x0 �−→ x1, with



[r ]
J = exp(B̂1(h)) exp(B̂2(h)) · · · exp(B̂J (h)) (15)

and

B̂ j (h) ≡ L X B j
, B j = h

s∑

k=1

a jk Hk(h), j = 1, . . . , J ,

Hk(h) = H(t0 + ckh), ck ∈ [0, 1], k = 1, . . . s,

x1 = x(t1) + O(hr+1).

(16)

Alternatively, in terms of maps, the approximation reads

x1 =
(
ϕ

[J ]
h ◦ ϕ

[J−1]
h ◦ · · · ◦ ϕ

[2]
h ◦ ϕ

[1]
h

)
(x0), (17)

where ϕ
[ j]
h denotes the flow corresponding to the Lie transformation exp(B̂ j (h)).

Eventually, in the setting of the non-autonomous Kepler problem, the particularly simple
algebraic structure of the problem will allow us to include additional Poisson brackets in the
linear combinations B j to reduce the number of flows. In this way, the computational cost
is reduced and the overall efficiency is improved. Note that, by construction, these schemes
preserve the symplectic character of the exact flow.

The requirement that scheme (15) provides an approximation to the exact solution up
to a given order r implies that the coefficients a jk , ck have to satisfy a certain number of
conditions. These can be derived by reproducing the exact solution provided by the Magnus
expansion (13) with (15) up to order r .

For simplicity in the presentation, we take t0 = 0 and the Gauss–Legendre quadrature
rule, ci , i = 1, . . . , s, of order 2s, although the schemes can be easily adapted to any
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other quadrature rule. Then, Theorem 2.1 in Blanes (2018) applied to a non-autonomous
Hamiltonian system (11) leads to the following

Theorem 1 If ci , i = 1, . . . , s, are the s nodes of the Gauss–Legendre quadrature rule of
order 2s, Li (t) denotes the Lagrange polynomial

Li (t) =
s∏

j=1, j �=i

t − c j

ci − c j
, t ∈ [0, 1],

and x(h) is the exact solution of (11) at t = t0 + h, then the solution of the differential
equation

ẏi = {yi , H̃ (2s)(t, y, h)}, y(0) = x0, (18)

with

H̃ (2s)(t, y, h) =
s∑

i=1

Li

(
t

h

)
H(ci h, y), (19)

verifies ‖x(h) − y(h)‖ = O(h2s+1).

Since H̃ (2s)(t, y, h) is a polynomial in t of degree s − 1, we can compute analytically all the
terms in the Magnus expansion corresponding to the initial value problem (18) and get an
approximation to the exact solution x(h) of (11) up to a given order r by computing the first
terms of the series (14).

Specifically, for the non-autonomous Kepler problem one has

H̃ (2s)(t, y, h) = 1

2
pT p − μ(2s)(t, h)

1

r
,

where μ(2s)(t, h) is the interpolating polynomial of μ(t) in the interval t ∈ [0, h]. If a Taylor
expansion of H̃ (2s) around h

2 is considered, then

H̃ (2s)(t, y, h) = H̃ (2s)
(

h

2
+ τ, y, h

)
= 1

h

s∑

i=1

(τ

h

)i−1
αi , τ ∈

[
−h

2
,

h

2

]
,

αi = hi 1

(i − 1)!
∂ i−1

∂τ i−1

∣∣∣∣
τ=0

H̃ (2s)
(

h

2
+ τ, y, h

)
.

Here, αi (y), i = 1, . . . , s, are linear combinations of Hj = H(c j h, y), j = 1, . . . , s,
and αi (y) = O(hi ), αi (y)α j (y) = O(hi+ j ), etc. Now, the corresponding truncation of the
Magnus series (14) up to order h2s , 	̃[2s] = 	 + O(h2s+1), with 2s = 2, 4, 6, 8, gives

	̃[2] = α1,

	̃[4] = α1 + 1

12
{12},

	̃[6] = α1 + 1

12
α3 + 1

12
{12} − 1

240
{23} + 1

360
{113} − 1

240
{212} − 1

720
{1112},

	̃[8] = α1 + 1

12
α3 + 1

12
{12} − 1

240
{23} + 1

360
{113} − 1

240
{212} − 1

720
{1112}

+ 1

80
{14} + 1

1344
{34} − 1

2240
{124} + 1

6720
{223} + 1

6048
{313} − 1

840
{412}

− 1

6720
{1114} + 1

7560
{1123} − 1

4032
{1312} − 11

60480
{2113} + 1

6720
{2212}

− 1

15120
{11113} − 1

30240
{11212} + 1

7560
{21112} + 1

30240
{111112}, (20)
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where {i j . . . k
} represents the nested Poisson bracket {αi , {α j , {. . . , {αk, α
} . . .}}}.
Since 	̃[2] = α1 = h H( h

2 ), then



[2]
1 = exp(B̂(h)), with B = h H(h/2),

agrees with the operator �h up to orderO(h2). In terms of the map �, the scheme is nothing
but the well-known second-order midpoint rule

x1 = ϕ
[2]
h (x0) = �(x0; h, μ(h/2)). (21)

We next apply the same strategy to construct higher-order approximations.

Order four. The quadrature rule with s = 2 has nodes and weights

c1 = 1

2
−

√
3

6
, c2 = 1

2
+

√
3

6
, w1 = w2 = 1

2
,

respectively, and the interpolating polynomial reads

H̃ (4)(
h

2
+ τ, y, h) = 1

2
(H1 + H2) + τ

√
3

h
(H2 − H1) = 1

h
α1 + τ

h2 α2,

with Hi ≡ H(ci h, y). Now the Lie transformation associated with 	̃[4] (and therefore the
exact flow) can be correctly reproduced up to order O(h4) by



[4]
2 = exp

(
1

2
α̂1 − 1

6
α̂2

)
exp

(
1

2
α̂1 + 1

6
α̂2

)
.

Here and in the sequel, for simplicity, we denote by α̂i the Lie derivative associated with the
vector field corresponding to αi , i.e., α̂i = L Xαi

. Finally, expressing α1, α2 in terms of the
evaluations H1, H2 results in



[4]
2 = exp(B̂1(h)) exp(B̂2(h)) = exp(ha11 Ĥ1 + ha12 Ĥ2) exp(ha21 Ĥ1 + ha22 Ĥ2),

a = (ai j ) =
⎛

⎝
1
4 +

√
3
6

1
4 −

√
3
6

1
4 −

√
3
6

1
4 +

√
3
6

⎞

⎠ ,

(22)
or in a more compact way



[4]
2 = exp

(
h

2
(T̂ + V̄1)

)
exp

(
h

2
(T̂ + V̄2)

)
,

where

V̄1 ≡ 2(a11V̂1 + a12V̂2), V̄2 ≡ 2(a21V̂1 + a22V̂2).

The map corresponding to this operator is precisely the scheme given in (8).

Order six. In this case, one has to use the nodes and weights of the sixth-order Gauss–
Legendre quadrature,

c1 = 1

2
−

√
15

10
, c2 = 1

2
, c3 = 1

2
+

√
15

10
,

w1 = 5

18
, w2 = 4

9
, w3 = w1.
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Then,

α1 = h H2 = h(T + V2),

α2 =
√
15h

3
(H3 − H1) =

√
15h

3
(V3 − V1),

α3 = 10h

3
(H3 − 2H2 + H1) = 10h

3
(V3 − 2V2 + V1),

or, equivalently,

α1 = h

(
T − μ̃1

1

r

)
, αi = −hμ̃i

1

r
, i > 1,

with

μ̃1 = μ2, μ̃2 =
√
15

3
(μ3 − μ1), μ̃3 = 10

3
(μ3 − 2μ2 + μ1),

and μi = μ(ci h).
Notice that, since only α1 depends on momenta (through T ), {α2, α3} = 0, and thus, the

number of conditions required to approximate exp(L X
	̃[6] ) is six instead of seven. Moreover,

a simple calculation shows that

h3V (m)
i j ≡ {

αi , {α1, α j }
} = −h3μ̃i μ̃ j

1

r4
, i, j > 1. (23)

As already illustrated by the previous fourth-order approximation, a linear combination of αi ,
i = 1, 2, . . ., gives rise to a Hamiltonian function which corresponds to a scaled autonomous
Kepler problem with a modified (but constant) mass μ̃, i.e.,

F =
∑

i

xi αi = x1h

(
1

2
pT p − μ̃

1

r

)
,

with x1 �= 0, whose exact flow can be determined with the map � given in (3). On the other
hand, and according to (23), the flow of

G =
∑

i>1

xiαi + b
{
αi , {α1, α j }

} = −hμ̃
1

r
− h3bμ̃i μ̃ j

1

r4

can also be trivially obtained, since it only depends on coordinates. In consequence, we
propose the following composition



[6]
2 = exp

(−x1α̂2 + x2α̂3 + x3
[
α̂2, α̂1, α̂2

])
exp

(
x4α̂1 − x5α̂2 + x6α̂3

)

× exp
(
x4α̂1 + x5α̂2 + x6α̂3

)
exp

(
x1α̂2 + x2α̂3 + x3

[
α̂2, α̂1, α̂2

])
(24)

to approximate exp(L X
	̃[6] ) up to order six. Here,

[
α̂2, α̂1, α̂2

] ≡ [
α̂2, [α̂1, α̂2]

]
is the Lie

bracket corresponding to the Hamiltonian vector field of the function {α1, α2, α1}.
It turns out that there is only one solution for the coefficients xi , namely

x1 = 1

60
, x2 = 1

60
, x3 = 1

43200
, x4 = 1

2
, x5 = 2

15
, x6 = 1

40
.

In consequence, the scheme can be expressed in a compact way as



[6]
2 = exp

(
h(V̄1 + h2V̂ (m)

22 )
)
exp

(
a2h(T̂ + 1

a2
V̄2)

)
exp

(
a3h(T̂ + 1

a3
V̄3)

)

× exp
(
h(V̄4 + h2V̂ (m)

22 )
)
, (25)
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with

V̂ (m)
22 = −x3

5

3
(μ3 − μ1)

2 1

r4
,

V̄i =
3∑

j=1

ai j V̂ j , (a)i j =

⎛

⎜⎜⎜
⎝

10+√
15

180 − 1
9

10−√
15

180
15+8

√
15

190
1
3

15−8
√
15

180
a23 a22 a21
a13 a12 a11

⎞

⎟⎟⎟
⎠

, (26)

and

a2 =
3∑

j=1

a2 j = 1

2
, a3 =

3∑

j=1

a3 j = 1

2
.

The step (qn, pn) �→ (qn+1, pn+1) with this scheme can be obtained with Algorithm 1. It
requires basically the same computational effort as the fourth-order method (8) and (22),
since the evaluation of r in the last map, r = ‖Q2‖, can be reused in the first map in the next
step as well as in the next map �. Accordingly, the computational cost of evaluating the first
and fourth flows in (25) can be neglected.

Algorithm 1: Sixth-order method 

[6]
2 for the time step tn �→ tn+1 = tn + h

1 c1 = 1
2 −

√
15
10 ; c2 = 1

2 ; c3 = 1
2 +

√
15
10 ;

2 μi = μ(tn + ci h), i = 1, 2, 3;
3 (a)i j from (26);

4 a2 = ∑3
i=1 a2i ; a3 = ∑3

i=1 a3i ;

5 Mi = ∑3
j=1 ai j μ j , i = 1, 2, 3, 4;

6 Q0 = qn , P̂0 = pn ;
7 r = ‖Q0‖;
8 P0 = P̂0 − hM1

Q0
r3

− h3 1
6480 (μ3 − μ1)

2 Q0
r6

;

9 (Q1, P1) = �(Q0, P0, a2h, M2/a2);
10 (Q2, P2) = �(Q1, P1, a3h, M3/a3);
11 r = ‖Q2‖;
12 P̂2 = P2 − hM4

Q2
r3

− h3 1
6480 (μ3 − μ1)

2 Q2
r6

;

13 qn+1 = Q2, pn+1 = P̂2.

Order eight. The same strategy can be applied to construct eighth-order methods. Thus,
for the Gauss–Legendre quadrature with nodes and weights

c1 = 1

2
− v1, c2 = 1

2
− v2, c3 = 1

2
+ v2, c4 = 1

2
+ v1,

w1 = 1

4

(

1 − 1

3

√
5

6

)

, w2 = 1

4

(

1 + 1

3

√
5

6

)

, w3 = w2, w4 = w1,

where

v1 = 1

2

√
3 + 2

√
6/5

7
, v2 = 1

2

√
3 − 2

√
6/5

7
,
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one can express the functions αi in terms of T and the potential V evaluated at the nodes.
Then, one arrives at

α1 = h

(
T − μ̃1

1

r

)
; αi = −hμ̃i

1

r
, i = 2, 3, 4,

in terms of the scalars

μ̃i =
4∑

j=1

Di, j μ(tn + c j h), i = 1, . . . , 4,

and

D =

⎛

⎜⎜
⎝

3
4 (3 − 20v21)w1

3
4 (3 − 20v22)w2 D1,2 D1,1

−15v1(5 − 28v21)w1 −15v2(5 − 28v22)w2 −D2,2 −D2,1

15(12v21 − 1)w1 15(12v22 − 1)w2 D3,2 D3,1

140v1(3 − 20v21)w1 140v2(3 − 20v22)w2 −D4,2 −D4,1

⎞

⎟⎟
⎠ . (27)

In approximating exp(L X
	̃[8] ), we have to take into account that, in addition to {α2, α3},

the following Poisson brackets

{34}, {124}, {223}, {1123}, {2212}

also vanish and that the exact flow determined by Hamiltonian functions V (m)
i j , i, j > 1, in

(23) can also be incorporated into the scheme.
We have analyzed several time-symmetric compositionswith enough parameters to satisfy

the 16 conditions required to achieve order eight with a reduced number of exponentials
associated with the Kepler map, since this is the most expensive part. It turns out that at least
five maps for the scaled autonomous Kepler problem are then necessary.

The following composition is first considered



[8]
5a = exp(x12α̂2 + x13α̂3 + x14α̂4 + y1[212] + y2[313] − y3[213])

× exp(x21α̂1 + x22α̂2 + x23α̂3 + x24α̂4)

× exp(x31α̂1 + x32α̂2 + x33α̂3 + x34α̂4)

× exp(x41α̂1 + x42α̂2 + x43α̂3 + x44α̂4)

× exp(x51α̂1 + x52α̂2 + x53α̂3 + x54α̂4)

× exp(x61α̂1 + x62α̂2 + x63α̂3 + x64α̂4)

× exp(x72α̂2 + x73α̂3 + x74α̂4 + y1[212] + y2[313] + y3[213]), (28)

with

x8−i, j = (−1) j+1xi, j , i = 1, 2, . . . , 7, j = 1, 2, 3, 4,

so that x42 = x44 = 0. Here, for simplicity, we denote [212] ≡ [α̂2, [α̂1, α̂2]], etc. This
time-symmetric composition has 16 parameters, and thus, we only obtain isolated solutions.
Among the existing four real-valued solutions, we have found that the best performance
corresponds to
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x12 = −0.00555568980262764452,

x13 = 0.00555568980262764452,

x14 = −1/240,

x21 = 0.68950541744223940910,

x22 = −0.25026363219104445815,

x23 = 0.08554863426356533930,

x24 = −0.02681405328515645869,

x31 = −0.37954073447150980080,

x32 = −0.13614187654421823422,

x33 = −0.15090176939685028822,

x34 = −0.01455946006743838627,

x41 = 0.38007063405854078339,

x43 = 0.20292822399464794213,

y1 = 1.10312311627353636882 × 10−6,

y2 = 1.10312311627353636882 × 10−6,

y3 = 2.20624623254707273764 × 10−6.

(29)

Algorithm 2 shows how to advance one step using this scheme.

Algorithm 2: Eighth-order method 

[8]
5a for one step tn �→ tn+1 = tn + h

1 ci , μi = μ(tn + ci h), i = 1, 2, 3, 4;

2 (a)i j = ∑4
k=1 xik Dk j , i = 1, 2, . . . , 7, j = 1, 2, 3, 4;

3 ai = ∑4
j=1 ai j , i = 2, 3, 4, 5, 6;

4 Mi = ∑4
j=1 ai j μ j , i = 1, 2, . . . , 7;

5 μ̃i = ∑4
j=1 Di j μ j , i = 1, 2, 3;

6 Q0 = qn , P̂0 = pn ;
7 r = ‖Q0‖;
8 P0 = P̂0 − hM1

Q0
r3

− h3
(

y1μ̃
2
2 + y2μ̃

2
3 − y3μ̃2μ̃3

)
Q0
r6

;

9 for i = 1 : 5
10 (Qi , Pi ) = �(Qi−1, Pi−1, ai+1h, Mi+1/ai+1);
11 end
12 r = ‖Q5‖;
13 P̂5 = P5 − hM7

Q5
r3

− h3
(

y1μ̃
2
2 + y2μ̃

2
3 + y3μ̃2μ̃3

)
Q5
r6

;

14 qn+1 = Q5, pn+1 = P̂5.

We have analyzed other compositions with additional exponentials and free parameters
that do not increase the overall computational cost. Thus, in particular, the following scheme
only contains five exponentials involving α̂1 (corresponding to five Kepler maps):



[8]
5b = exp(x11α̂1 + x12α̂2 + x13α̂3 + x14α̂4)

× exp(x22α̂2 + x23α̂3 + x24α̂4 + y1[212] + y2[313] − y3[213])
× exp(x31α̂1 + x32α̂2 + x33α̂3 + x34α̂4)

× exp(x42α̂2 + x43α̂3 + x44α̂4)

× exp(x51α̂1 + x52α̂2 + x53α̂3 + x54α̂4)

× exp(x62α̂2 + x63α̂3 + x64α̂4)

× exp(x71α̂1 + x72α̂2 + x73α̂3 + x74α̂4)

× exp(x82α̂2 + x83α̂3 + x84α̂4 + y1[212] + y2[313] + y3[213])
× exp(x91α̂1 + x92α̂2 + x93α̂3 + x94α̂4), (30)
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with

x10−i, j = (−1) j+1xi, j , i = 1, 2, . . . , 9, j = 1, 2, 3, 4,

so that x52 = x54 = 0. This time-symmetric composition has 19 variables, and thus, one can
choose three of them as free parameters (in particular, x42, x43, and x44). We have observed in
practice that the performance of the resulting methods obtained according to different criteria
depends on the particular problem to be solved. For example, if we take x42 = x43 = x44 = 0,
there are four real solutions, and the best results correspond to

x11 = 0.67021911442375565293,

x12 = −0.30489450012840577813,

x13 = 0.13733972152246686489,

x14 = −0.06188986232513868655,

x22 = 0.01866599192742999253,

x23 = 0.00635461723145621044,

x24 = 0.00277508795607386825,

x31 = −0.51091155800763200004,

x32 = 0.13826011537357010705,

x33 = −0.11767798784238284723,

x34 = 0.05194266855738371205,

x51 = 0.68138488716775269420,

x53 = 0.03130063151025287711,

y1 = −0.00041667449766856421,

y2 = −0.00004829181912427352,

y3 = 0.00028370385598442495.

(31)

Alternatively, if in the composition (28) we take x31 = x51 = 0, the cost of the scheme
is reduced from 5 to 3 maps, but we end up with only 15 parameters to solve the 16 order
conditions. The composition is given by



[6opt]
3 = exp(x12α̂2 + x13α̂3 + x14α̂4 + y1[212] + y2[313] − y3[213])

× exp(x21α̂1 + x22α̂2 + x23α̂3 + x24̂̂α4)

× exp(x32α̂2 + x33α̂3 + x34α̂4)

× exp(x41α̂1 + x43α̂3)

× exp(x52α̂2 + x53α̂3 + x54α̂4)

× exp(x61α̂1 + x62α̂2 + x63α̂3 + x64α̂4)

× exp(x72α̂2 + x73α̂3 + x74α̂4 + y1[212] + y2[313] + y3[213]). (32)

With this, obviously, not all eighth-order conditions can be satisfied. We have considered
two possibilities: Either we discard the equation corresponding to [111112] or [21112]. The
second choice provided a more efficient scheme where the best set of coefficients verifying
all order conditions except the one coming from [21112] is

x12 = −0.00875272911675017931,

x13 = 0.00532392866235813492,

x14 = −0.00445041428955796499,

x21 = 0.76802328276815076614,

x22 = −0.23974038157306672058,

x23 = 0.09600754885409189252,

x24 = −0.02619347453596043617,

x32 = 0.03538203344774120138,

x33 = 0.00703376000453473661,

x34 = 0.00368122771707276869,

x41 = −0.53604656553630153228,

x43 = −0.13339714170863619479,

y1 = 0.00002265286150964850,

y2 = 0.00008645533641299756,

y3 = −0.00005034876640314789.

(33)
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This scheme can be considered as an optimized sixth-order method that uses an eighth-order
quadrature rule and satisfies many order conditions at order eight.

3 Numerical illustrations

3.1 Other symplectic integrators to compare

It is worth comparing the mentioned time-symmetric symplectic integration algorithms
specifically designed for the non-autonomous Kepler problem with other well established
symplectic schemes such as splitting and composition methods. It is not our purpose here to
provide a full treatment of this class of methods, but just to indicate how they can be applied
to the particular problemwe are considering here. For further details, we refer, e.g., to Blanes
(2018), Blanes and Casas (2016), Hairer et al. (2006), and McLachlan and Quispel (2002).

As indicated in “Introduction,” if one takes t as a new coordinate, say qt = t , and its
associated momentum, pt , the equations obtained from the autonomous Hamiltonian

K (qt , q, pt , p) ≡ K1 + K2 =
(
1

2
pT p − μ(qt )

1

r

)
+ pt (34)

have the same solution for q, p as the original non-autonomous problem. Since the Hamil-
tonian K1 = 1

2 pT p − μ(qt )
1
r can be considered as one describing an autonomous Kepler

problem (qt does not change), and the dynamics of K2 = pt is trivial (it only advances qt ,
i.e., time), we can use splitting methods defined by a set of coefficients {ai , bi }m

i=1 for the
numerical integration of (34). This results in the following algorithm for advancing from
(qn, pn) to (qn+1, pn+1):

Q0 = qn, P0 = pn

(Q1, P1) = �(Q0, P0, b1h, μ1)
...

(Qm, Pm) = �(Qm−1, Pm−1, bmh, μm)

qn+1 = Qm, pn+1 = Pm,

(35)

where μi = μ(tn + di h) and di = ∑i
j=1 a j .

On the other hand, we can use the second-order midpoint rule (21) as a basic integrator
of m-stage symmetric composition methods of order r (Blanes and Casas 2016; Hairer et al.
2006; McLachlan and Quispel 2002),

SS[r ]
m ≡ ϕ

[2]
αm h ◦ · · · ◦ ϕ

[2]
α2h ◦ ϕ

[2]
α1h, (36)

with αm+1−i = αi . It turns out that the same algorithm (35) can be applied to implement
scheme (36) with

α0 = 0; bi = αi , ai = 1

2
(αi−1 + αi ), i = 1, . . . , m.

Methods of orders r = 4, 6, 8, and 10 involving up to m = 35 basic integrators ϕ
[2]
αi h have

been obtained in the literature (see Hairer et al. 2006 and references therein).
Splitting and composition methods of order higher than two necessarily involve some

negative coefficients and therefore a backward integration in time at some inner stages. If,
in the specific problem, we are considering μ(t) is a decreasing function, this represents a
non-physical effect of an increment of the mass.
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Commutator-free exponential integrators, originally proposed for the numerical integra-
tion of linear problems (Alvermann and Fehske 2011; Blanes et al. 2017, 2018), can also
be adapted to the nonlinear setting, eventually resulting in schemes of the form (15). Time-
symmetric methods of order four with J = 2, 3, of order six with J = 5, 6, and of order
eight with J = 11 can be found in Alvermann and Fehske (2011). We should notice that,
whereas scheme (22) belongs to this class, this is not the case of the new integrators of orders
six and eight, which have been specifically designed taking into account the special structure
of the non-autonomous Kepler problem.

3.2 A pair of numerical examples

Next we compare the performance of the methods proposed in this work with some of the
schemes mentioned before. Specifically, we consider m-stage symmetric compositions of
order r of the form

SS[r ]
m ≡ ϕ

[2]
α1h ◦ ϕ

[2]
α2h ◦ · · · ◦ ϕ

[2]
αk h ◦ ϕ

[2]
αk+1h ◦ ϕ

[2]
αk h ◦ · · · ◦ ϕ

[2]
α2h ◦ ϕ

[2]
α1h,

with the midpoint rule (21) as basic integrator ϕ
[2]
h and m = 2k + 1. In particular, we take

– SS[4]
5 : The 5-stage fourth-order Suzuki composition,

– SS[6]
9 : The 9-stage sixth-order composition,

– SS[8]
17 : The 17-stage eighth-order composition,

whose coefficients can be found, e.g., in Hairer et al. (2006).
Within the class of commutator-free (quasi-)Magnus exponential integrators, we select,

in addition to CF[4]
2 given by (8), the following schemes presented in Alvermann and Fehske

(2011):

– CF[4opt]
3 : The 3-stage optimized fourth-order composition,

– CF[6]
5 : The 5-stage optimized sixth-order composition,

– CF[8]
11 : The 11-stage eighth-order composition.

In all cases, the computational cost is counted as the number of evaluations of the map �.
Finally, for the sake of completeness, we also compare with a pair of ODE solvers provided
by MATLAB, namely

– RK[4(5)]: Ode45 Runge–Kutta solver, based on the embedded Dormand–Prince 4(5) pair.
– AB[13]: Variable-step and variable-order ode113 Adams–Bashforth–Moulton solver,

designed to be more efficient than ode45 at problems with stringent error tolerances.

In this last case, it is less obvious how to estimate the computational cost in comparison with
the previous algorithms. We have counted the number of times the solver calls to the vector
field. However, to take into account the relative cost with respect to the cost of the map �,
one should know the computational cost for estimating the local and global errors and to
change either the time step or the order of the method as well as the cost of evaluating the
mass μ(t). (For some problems, this could be the most costly part, depending on the model
used.) For these reasons, we have decided to count two evaluations of the vector field (and
the cost to change the order and/or time step) as the cost to evaluate one map �. Obviously,
different choices for the relative cost would result in a (small) shift of the corresponding
curves, although the overall conclusions remain valid.
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Example 1 We illustrate the performance of the new schemes on the classical Eddington–
Jeans law for the secular evolution of mass in binary systems (Hadjidemetriou 1967),

μ̇ = −γμδ, μ(0) = μ0,

or equivalently

μ(t) =
(
μ1−δ
0 + γ (δ − 1)t

) 1
1−δ

.

Note that, for non-integer values of δ, the computational cost of evaluating μ(t) cannot be
neglected. We consider the 2-dimensional case with δ = 1.4, μ0 = 1, γ = 10−2, initial
conditions

q0 = (1 − e, 0), p0 = (0,
√

(1 + e)/(1 − e),

with e = 0.2 and e = 0.8 and final time t f = 20. We compute the solution at the final time,
(q(t f ), p(t f )), numerically to high precision and plot the two-norm error of (q, p) at the
final time versus the computational cost (measured as the number of times the Kepler map φ

is called) for different choices of the time step.

Figure 1 shows the results obtained for methods of each order: fourth-order in the top,
sixth-order in the second, and eighth-order in the third row. The graphs for the smaller value
of the eccentricity are given in the left column. The best method of each order, along with
the classic reference methods, ode45 and ode113 of MATLAB, are summarized in the last
row.

From the graphswe conclude that the symplecticmethods have better general performance
than the classical adaptive methods. Moreover, the adaptation of methods by the inclusion of
cheap Poisson brackets leads to a notable performance gain compared to the general-purpose
CF methods.

Among the new schemes and for this type of problems, 
[6]
2 is the method of choice for

low and medium accuracies, while 

[8]
5b should be chosen for high accuracies.

Example 2 As a second illustration, we consider the two-dimensional case with a decreasing
function given by

μ(t) = 1 + exp

(
−1

5
(t + 1

4
sin2(4t))

)
, (37)

and the same initial conditions as in the previous example for the time interval, t ∈ [0, 20].
Figure 2 supports the results of Example 1. In this case, with a faster decaying mass,

the symplectic methods perform better than the classical methods. The main change we see
is that in this example the difference between the sixth-order methods, 
[6]

2 and 

[6opt]
3 , is

more notable, depending on the value of e. In addition, the second eighth-order methods are
marginally better in this problem.

4 Conclusions

In this work, we have considered the numerical integration of the two-body gravitational
problem with a time-varying mass. The exact flow corresponds to a symplectic transfor-
mation, and different symplectic integrators from the literature can be adapted to solve the
non-autonomous systems. However, none of these symplectic methods were designed to
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Fig. 1 Efficiency plots for Example 1 (the smaller value of e on the left). First line—fourth-order methods,
second line—sixth-order methods, third line—eighth-order methods. The bottom line summarizes the best
methods of each order and the classical reference methods
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Fig. 2 The same as Fig. 1 for Example 2
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solve Hamiltonian systems with this particular structure. This is a relevant problem, and
new specifically designed symplectic integrators have been built. These new schemes can be
seen as a generalization of the commutator-free quasi-Magnus exponential integrators and
are based on compositions of symplectic flows corresponding to linear combinations of the
Hamiltonian function and certain Poisson brackets. The implementation makes use of the
mapping that solves the autonomous problem for averagedmasses at each intermediate stage.
In the autonomous case, the schemes provide the exact solution, so they also show a high
performance in the adiabatic limit.

We have built time-symmetric methods of order four, six and eight that can be used with
any quadrature rule of the order of the method or higher. Some of the proposed methods are
optimized using a quadrature rule of higher order than the order of the method as well as by
adding free parameters into the scheme in order to satisfy certain order conditions at higher
orders.

Since the proposed methods provide the exact solution in the limit when the mass is
constant, it is clear that the performance of the algorithm will improve if a time step control
is used. For instance, one could take into account the timederivative of themass in applications
that involve very slowly varying mass.

The new methods have shown to be more efficient than other symplectic schemes to all
desired accuracies on several numerical examples.
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