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We present splitting methods for numerically solving a certain class of explicitly time-dependent linear
differential equations. Starting from an efficient method for the autonomous case and making use of
the formal solution obtained with the Magnus expansion, we show how to get the order conditions
for the non-autonomous case. We also build a family of sixth-order integrators whose performance is
clearly superior to previous splitting methods on several numerical examples.
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1. Introduction

Composition methods constitute a widespread procedure for numerically integrating
differential equations, especially in the context of geometric integration. In this work we con-
sider a particular case of partitioned linear systems that frequently appear when discretizing
many partial differential equations (PDEs). Specifically,

x ′ = M(t)y, y ′ = −N(t)x, (1)

with x(t0) = x0 ∈ R
d1 , y(t0) = y0 ∈ R

d2 , M: R → R
d1×d2 and N : R → R

d2×d1 . Systems of
the form

x̄ ′ = M̄(t)ȳ + f (t), ȳ ′ = −N̄(t)x̄ + g(t), (2)
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714 S. Blanes et al.

are also of type (1), since the solution (x̄(t), ȳ(t)) of (2) corresponds to the solution x(t) =
(x̄(t)T, 1)T, y(t) = (ȳ(t)T, 1)T of an enlarged system (1) with

M(t) =
(

M̄(t) f (t)

0T 0

)
, N(t) =

(
N̄(t) −g(t)

0T 0

)
(3)

and initial conditions x(t0) = (x̄(t0)
T, 1)T, y(t0) = (ȳ(t0)

T, 1)T. Similarly, the second-order
differential equation

x ′′ = D(t)x + g(t) (4)

with D: R → R
d×d , f : R → R

d , can be considered as a special case of (1) with

M(t) =
(

Id 0

0T 0

)
, N(t) =

(
−D(t) −g(t)

0T 0

)
. (5)

Equation (1) describes the evolution of many relevant physical systems. In particular, the
space discretization of the Schrödinger equation can be reformulated as an N -degrees of
freedom classical linear Hamiltonian system with Hamiltonian equations of the form (1) [1–3]
and also the time-dependent Maxwell equations can be expressed in this way [4]. On the other
hand, the numerical integration of some nonlinear PDEs (such as the nonlinear Schrödinger
equation) is frequently done by solving separately the linear component, which in many cases
can be written as (1) and constitutes the most problematic part of the procedure.

Denoting z = (x, y)T, one may write (1) as

z′ = �(t)z, where �(t) = A(t) + B(t), (6)

and

A(t) =
(

0 M(t)

0 0

)
, B(t) =

(
0 0

−N(t) 0

)
. (7)

This system can be numerically solved by using, for instance, Magnus integrators [5–7]. These
methods require computing the exponential of matrices of dimension (d1 + d2) × (d1 + d2).
If (d1 + d2) � 1 then the exponentiation can be prohibitively costly. For this reason, new
methods which only involve matrix-vector products of the form M(t)y and N(t)x are highly
desirable.

The purpose of the present work is to adapt to equation (1) the procedure presented in [8] in
a more general setting. The approach combines the Magnus expansion with efficient splitting
methods for autonomous problems. Here we summarize the main ideas involved and illustrate
the technique by constructing several integrators for equations (6)–(7) which outperform
previous algorithms.

The new methods have the form (for a time step of size h)

z(t + h) ≈ eAm(t,h)eBm(t,h) . . . eA1(t,h)eB1(t,h)z(t), (8)

where the matrices Ai(t, h) and Bi(t, h) are given by

Ai(t, h) = h

k∑
j=1

ρijA(t + cjh), Bi(t, h) = h

k∑
j=1

σijB(t + cjh), (9)
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Non-autonomous linear systems: splitting methods 715

with appropriately chosen real parameters ci, ρij , σij . Since in our case

eAi(t,h) =
(

I Mi(t, h)

0 I

)
, eBi(t,h) =

(
I 0

−Ni(t, h) I

)
,

then (8) can be written as z(t + h) ≈ K(t, h)z(t), where

K(t, h) = eAm(t,h)eBm(t,h) · · · eA1(t,h)eB1(t,h)

=
(

I Mm

0 I

) (
I 0

−Nm I

)
· · ·

(
I M1

0 I

) (
I 0

−N1 I

)
, (10)

and obviously

Mi = h

k∑
j=1

ρijM(t + cjh), Ni = h

k∑
j=1

σijN(t + cjh) (11)

for i = 1, . . . , m. Notice that when M(t) and N(t) are constant, then K(t, h) reduces to

K(h) = ehamAehbmB · · · eha1Aehb1B

=
(

I amhM

0 I

) (
I 0

−bmhN I

)
· · ·

(
I a1hM

0 I

) (
I 0

−b1hN I

)
, (12)

where

ai =
k∑

j=1

ρij , bi =
k∑

j=1

σij , i = 1, . . . , m. (13)

In the autonomous case there exists an extensive list of splitting methods for separable
systems in the literature (see [9–13] and references therein). In addition, for partitioned linear
systems extremely efficient methods can be constructed due to the special structure of the
system [1, 14, 15]. Our goal here is to start from a set of coefficients ai, bi (i = 1, . . . , m) which
provides an efficient method for the autonomous case, and then to find appropriate values for
ci, ρij , σij such that (13) holds and (10) leads to a good method for the non-autonomous
system (1).

For the convenience of the reader (and potential user of the new class of integration methods)
we collect in table B1 two algorithms implementing schemes (12) and (10) for the numerical
integration of equation (1) in the autonomous and the non-autonomous case, respectively.
In the last situation, the proposed algorithm requires the computation and storage of M(t +
cjh), N(t + cjh), j = 1, . . . , k, at each step. We assume that the linear combination (11) is
efficiently computed. This is the case, in particular, when M(t) = ∑l

i=1 fi(t)M
[i] with M [i]

constant matrices and fi(t) scalar functions, for a small value of l (and similarly for N(t)).

2. Order conditions

One possible approach for deriving the conditions to be satisfied by the coefficients ci , ρij , σij

of a method of order, say, p, is formally to build a solution of equation (6) with the Magnus
expansion.
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716 S. Blanes et al.

It is well known that z(t) can be formally written as

z(t + h) = e�(t,h)z(t), (14)

where �(t, h) = ∑∞
k=1 �k(t, h) and each �k(t, h) is a multiple integral of combinations of

nested commutators containing k matrices �(t) [5]. This constitutes the so-called Magnus
expansion of the solution. An important feature of this expansion is that, when the solution
of (6) evolves into a Lie group G, then e�(t,h) stays on G even if the series is truncated, provided
that �(t) belongs to the Lie algebra associated with G [16].

It is possible to get �k(t, h) explicitly by inserting into the recurrence defining the Magnus
expansion a Taylor series of the matrices A(t) and B(t). In fact, to take advantage of the
time-symmetry property of the solution, which implies that

�(t + h, −h) = −�(t, h), (15)

it is more convenient to expand around t + h/2. More specifically, if we denote

αi = 1

(i − 1)!
di−1A(s)

dsi−1

∣∣∣∣
s=t+(h/2)

, βi = 1

(i − 1)!
di−1B(s)

dsi−1

∣∣∣∣
s=t+(h/2)

so that

A

(
t + h

2
+ τ

)
= α1 + α2τ + α3τ

2 + · · ·

B

(
t + h

2
+ τ

)
= β1 + β2τ + β3τ

2 + · · · ,

(16)

then �(t, h) in (14) can be expanded as

�(t, h) =
∑
n≥1

hn

n∑
k=1

�k,n(t, h), (17)

where each �k,n(t, h) is a linear combination of terms of the form [μi1 , μi2 . . . , μik ] with μj =
αij or μj = βij for each j = 1, . . . , k, and i1 + · · · + ik = n. Furthermore, �n,k(t, h) = 0 for
even values of n, �k,k(t, h) = 0 for k > 1 and �1,1(t, h) = α1 + β1.

In particular, up to order h6 one has [7]

� = h�1,1 + h3(�1,3 + �2,3) + h5(�1,5 + �2,5 + �3,5 + �4,5) + O(h7), (18)

where (for simplicity, we omit the arguments (t, h))

�1,1 = α1 + β1, �1,3 = 1

12
(α3 + β3), �2,3 = 1

12
([α2, β1] + [β2, α1]),

�1,5 = 1

80
(α5 + β5), �2,5 = 1

240
([α2, β3] + [β2, α3]) + 1

80
([α4, β1] + [β4, α1]),

�3,5 = 1

360
(−[α1, β3, α1] + [α1, β1, α3] − [β1, α3, β1] + [β1, α1, β3])

+ 1

240
([α1, β2, α2] − [α2, β1, α2] + [β1, α2, β2] − [β2, α1, β2]),

�4,5 = 1

720
([α1, β1, α1, β2] − [β1, α1, β2, α1] + [β1, α1, β1, α2] − [α1, β1, α2, β1]).
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Non-autonomous linear systems: splitting methods 717

If, on the other hand, one applies the Baker–Campbell–Hausdorff (BCH) formula repeatedly
in (8), it is possible to write K(t, h) formally as the exponential of only one operator, K(t, h) =
exp(�̃(t, h)), depending on Ai(t, h), Bi(t, h) (i = 1, . . . , m) and nested commutators of these
matrices. The numerical scheme will be of order p if

�̃(t, h) − �(t, h) = O(hp+1) as h −→ 0.

One can then obtain explicitly the order conditions as follows. First, we expand Ai(t, h),
Bi(t, h) in terms of αj , βj ,

Ai(t, h) =
∑
n≥1

hna
(n)
i αn, Bi(t, h) =

∑
n≥1

hnb
(n)
i βn, (19)

where

a
(n)
i =

k∑
j=1

ρij

(
cj − 1

2

)n−1

, b
(n)
i =

k∑
j=1

σij

(
cj − 1

2

)n−1

, (20)

for each i = 1, . . . , m, n ≥ 1.
Then, we substitute the expressions (19) in the corresponding �̃(t, h), thus obtaining an

expansion of the form

�̃(t, h) =
∑
n≥1

hn

n∑
k=1

�̃k,n(t, h), (21)

where each �̃k,n(t, h) is a linear combination of terms [μi1 , μi2 . . . , μik ] with i1 + · · · + ik = n

and μj = αij or μj = βij for j = 1, . . . , k. Finally, we compare the truncated (up to n = p)
expansion (21) with the corresponding expression (17) for �(t, h), so that the numerical
scheme is of order p if

n∑
k=1

�̃k,n =
n∑

k=1

�k,n for n = 1, . . . , p. (22)

A usual assumption imposed on the scheme (8) that simplifies the analysis considerably (and
also leads to integrators with better preservation of qualitative properties) is the time-symmetry
of the composition (10). That is, K(t + h, −h) = K(t, h)−1, or equivalently, �̃(t + h, −h) =
−�̃(t, h), which implies that �̃k,n(t, h) = 0 for even values of n.

This symmetry is automatically satisfied (and thus all order conditions at even orders) if
either

Am+1−i (t + h, −h) = −Ai(t, h), Bm−i (t + h, −h) = −Bi(t, h), Bm(t, h) = 0, (23)

or

Bm+1−i (t + h, −h) = −Bi(t, h), Am−i (t + h, −h) = −Ai(t, h), Am(t, h) = 0, (24)

for i = 1, 2, . . . , m. In the first case, the scheme will be said to be of type ABA, whereas
in the second, of type BAB. For our problem, A and B play the same role and they can be
interchanged so, without loss of generality, we only consider ABA schemes. Since the first
(or last) exponential is cancelled and one exponential can be concatenated in two consecutive
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718 S. Blanes et al.

steps, these symmetric schemes are referred as (m − 1)-stage methods. The symmetry (23) is
achieved if

ck−j+1 = 1 − cj , ρm+1−i,k−j+1 = ρij, σm+1−i,k−j+1 = σij, (25)

for j = 1, . . . , k, i = 1, 2, . . . , m, which implies that

a
(n)
m+1−i = (−1)n+1 a

(n)
i , b

(n)
m−i = (−1)n+1 b

(n)
i , b(n)

m = 0, (26)

for n ≥ 1, i = 1, 2, . . . , m,
If in addition to the time-symmetry, we assume that the method is of order at least six for the

autonomous case (that is, K(h) in (12) is such that K(h) = eh(A+B)+O(h7)) then, by applying
the above procedure, we get �̃(t, h) as

�̃ = h�̃1,1 + h3(�̃1,3 + �̃2,3) + h5(�̃2,5 + �̃3,5 + �̃4,5) + O(h7), (27)

where

�̃1,1 = α1 + β1, �̃1,3 = λ3α3 + μ3β3,

�̃2,3 = λ21[α2, β1] + μ21[β2, α1], �̃1,5 = λ5α5 + μ5β5,

�̃2,5 = λ23[α2, β3] + μ23[β2, α3] + λ41[α4, β1] + μ41[β4, α1],
�̃3,5 = λ131[α1, β3, α1] + λ113[α1, β1, α3] + μ131[β1, α3, β1] + μ113[β1, α1, β3]

+ λ122[α1, β2, α2] + λ212[α2, β1, α2] + μ122[β1, α2, β2] + μ212[β2, α1, β2],
�̃4,5 = λ1112[α1, β1, α1, β2] + λ1121[β1, α1, β2, α1] + μ1112[β1, α1, β1, α2]

+ μ1121[α1, β1, α2, β1], (28)

and the coefficients λi1···il , μi1···il , are polynomials in a
(n)
i , b

(n)
i , i = 1, . . . , m, n = 1, . . . , 5.

Their explicit expressions are collected in Appendix A.
Since in the autonomous case αj = βj = 0, j > 1, we take a

(1)
i = ai , b

(1)
i = bi (the coef-

ficients of the splitting method we have previously chosen). The coefficients a
(n)
i , b

(n)
i ,

n = 2, . . . , 5, i = 1, . . . , m, must be chosen in such a way that the time-symmetry assumption
(26) holds and the following 22 additional order conditions are satisfied:

λ3 = μ3 = 1

12
, λ21 = μ21 = 1

12
, λ23 = μ23 = 1

240
, (29)

λ131 = μ131 = − 1

360
, λ113 = μ113 = 1

360
, λ122 = μ122 = 1

240
, (30)

λ212 = μ212 = − 1

240
, λ1112 = μ1112 = 1

720
, λ1121 = μ1121 = − 1

720
, (31)

λ5 = μ5 = 1

80
, λ41 = μ41 = 1

80
. (32)

Once a set of values for a
(n)
i , b

(n)
i , n = 2, . . . , 5, i = 1, . . . , m, satisfying the symmetry

condition (26) and the order conditions (29)–(32) is chosen, a sixth-order time-symmetric
scheme (8)–(9) with k = 5 will be obtained for each set of arbitrarily fixed values of the
nodes c1 < c2 < c3 = 1/2 < c4 = 1 − c2 < c5 = 1 − c1 by determining the coefficients ρij ,
σij uniquely from the linear equations (20).
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Non-autonomous linear systems: splitting methods 719

However, for k < 5 and an arbitrary set of nodes c1 < · · · < ck satisfying the symmetry
condition (25), no sixth-order scheme exists, unless the nodes c1 < · · · < ck correspond to a
quadrature rule of order six for the interval [0, 1], i.e. unless

0 =
∫ 1

0
t (t − c1) · · · (t − ck) dt. (33)

In that case, λ5 = μ5 = 1/80 automatically holds if the remaining order conditions in (29)–
(32) are imposed. For k = 3 one has that (33) holds if and only if

c1 = 1

2
−

√
15

10
, c2 = 1

2
, c3 = 1

2
+

√
15

10
, (34)

i.e. if they are the nodes of the Gaussian quadrature rule. Now the four conditions (32) are
automatically satisfied if the eighteen conditions (29)–(31) hold. Thus, a sixth-order time-
symmetric scheme (8)–(9) with Gaussian nodes (34) can be constructed by first obtaining
a solution of the conditions (29)–(31) for the unknowns a

(n)
i , b

(n)
i , n = 2, 3, i = 1, . . . , m

(satisfying the symmetry condition (26)), and then determining the coefficients ρij , σij from
(20), or equivalently, from

⎛
⎜⎝

ρi1 σi1

ρi2 σi2

ρi3 σi3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −
√

15

3

10

3

1 0 −20

3

0

√
15

3

10

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

a
(1)
i b

(1)
i

a
(2)
i b

(2)
i

a
(3)
i b

(3)
i

⎞
⎟⎠.

More generally, it can be seen [7, 8] that, if the nodes c1 < · · · < ck correspond to a sixth-
order symmetric quadrature rule with weights di , then, given a

(n)
i , b

(n)
i , n = 2, 3, i = 1, . . . , m,

satisfying the symmetry condition (26) and the 18-order conditions (29)–(31), the coefficients
ρij, σij of the scheme (8)–(9) can be explicitly determined as

ρij =
3∑

n=1

3∑
l=1

a
(n)
i rnldj

(
cj − 1

2

)l−1

, σij =
3∑

n=1

3∑
l=1

b
(n)
i rnldj

(
cj − 1

2

)l−1

, (35)

where

(rn,l) =
⎛
⎝ 9/4 0 −15

0 12 0
−15 0 180

⎞
⎠ . (36)

3. Construction of methods of order six

The first step in the construction of new sixth-order methods for equation (1) is to choose
symmetric splitting methods which perform efficiently in the autonomous case. This simplifies
the search for coefficients and usually leads to efficient methods also for the non-autonomous
problem. We must bear in mind, however, that the most efficient method for the autonomous
problem does not necessarily show the best performance on the non-autonomous case. For
equation (1) in the time-independent case, a good starting point is the family of splitting
methods proposed in [1]. These are m-stage schemes of order m for m = 4, 6, 8, 10, 12, and
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720 S. Blanes et al.

are denoted by 
m(h). They are not time-symmetric, so that to apply the above procedure, we
have to build symmetrized versions by composing half a step of the method with half a step of
its adjoint (the same composition, but in the reverse order), �2m−1(h) = 
m(h/2) ◦ 
∗

m(h/2).
This also allows saving one stage and, as a result, we have (2m − 1)-stage methods of order
m for the same values of m.

We have analysed the order conditions associated to the methods �2m−1(h) for m =
6, 8, 10, 12 and found several sets of solutions (except for m = 6, where no real coefficients
have been located). Among them, we have chosen those a

(n)
i , b(n)

i , n = 2, 3, i = 1, . . . , m with
the smallest absolute values.

Although the schemes �2m−1(h) perform quite satisfactorily in the autonomous case, it
is still possible to design other symmetric splitting methods which are even more efficient
in a wide range of time step values [17]. Here, for the sake of illustration, we consider an
11-stage sixth-order integrator of this new family and build the corresponding scheme for the
non-autonomous problem (1).

In the next section we show how the new methods behave in practice by applying them to
several numerical examples. In all cases the �2m−1(h) method with m = 8 and the new sixth-
order integrator show the best performance. For completeness, we collect the coefficients of
the method based on �15(h) in table B2, whereas those corresponding to the new scheme are
available from the authors upon request. Notice that the coefficients a

(1)
i , b

(1)
i for the scheme

�15(h) are taken from [1] for 
8(h) and are divided by two because �15(h) = 
8(h/2) ◦

∗

8(h/2).

4. Numerical examples

Here we compare the new especially adapted splitting methods for partitioned linear systems
with standard splitting methods for separable systems on some relatively simple problems.

It is known that the system (1) can be written as an autonomous nonlinear separable
system [3]

x̂ ′ = f [A](ŷ), ŷ ′ = f [B](x̂) (37)

with x̂ = (x, xt )
T ∈ R

d1+1, ŷ = (y, yt )
T ∈ R

d2+1 and f [A](ŷ) = (M(yt )y, 1)T, f [B](x̂) =
(−N(xt )x, 1)T. Equation (37) is separable in solvable parts, but since N(xt ) and M(yt) are
in general nonlinear functions of xt and yt , respectively, the schemes presented in [1] are
not appropriate. On the other hand, standard splitting methods can be used in a straightfor-
ward way. We consider the six-stage fourth-order method (BM4) and the 10-stage sixth-order
method (BM6) designed in [18] for general separable systems (the coefficients are also col-
lected in [8, 10–12]). We can also build a second-order symmetric method, say S2(h) =

[A](h/2) ◦ 
[B](h) ◦ 
[A](h/2), where 
[A](t), 
[B](t) denote the t-flow associated with
f [A] and f [B], respectively. Then, by composing S2 with different time steps, it is possible
to build methods of order m > 2, denoted here by S(2)

m . We can find in the literature schemes
with up to 35 stages to build methods up to order 10 [9, 11, 19, 20]. We choose the five-stage
fourth order, the nine-stage sixth-order, the 17-stage eighth-order and the 35-stage tenth-order
methods whose coefficients are collected in [9].

We denote by SGMm with m = 8, 10, 12 the symmetrized methods �2m−1(h) adapted to the
non-autonomous case, whereas the new symmetric 11-stage sixth-order integrator is referred
to as S6. In all the examples the sixth-order Gaussian quadrature rule has been chosen, since
it minimizes the number of evaluations of M(t) and N(t).

The computational cost of the methods is measured by the number of stages required.
It is important to mention, however, that this number is, for the new methods, several times



D
ow

nl
oa

de
d 

B
y:

 [C
as

as
, F

er
na

nd
o]

 A
t: 

07
:1

9 
17

 J
ul

y 
20

07
 

Non-autonomous linear systems: splitting methods 721

higher than the number of time-dependent function evaluations (using the sixth-order Gaussian
quadrature only three evaluations per step are required).

Perturbed harmonic oscillators. Time dependent linear harmonic oscillators constitute a very
simple example where the preceding integrators can be tested.

(i) First we consider the time-dependent Hamiltonian

H(q, p, t) = e−εt 1

2
p2 + eεt

(
1

2
q2 − δ cos(ωt)q

)
, (38)

q, p ∈ R, with associated equations of motion

q ′ = e−εtp, p′ = −eεt (q − δ cos(ωt)) , (39)

(or equivalently q ′′ + εq ′ + q = δ cos(ωt)). This system corresponds to a modification of the
well-known Duffing oscillator.We take as initial conditions q(0) = 1.75, p(0) = 0, integrate up
to t = 40 π/ω and measure the average error in phase space (at t = 2π/ω, 4π/ω, . . . , 40π/ω)
in terms of the number of force evaluations for different time steps (in logarithmic scale).

In figure B1(a) (seeAppendix B) we show the results achieved by standard splitting methods
for the autonomous case (ε = δ = 0) in order to choose the most efficient integrators in this
case. The curves correspond to the schemes BM4, BM6 (dashed lines) and S(2)

m , m = 4, 6, 8, 10
(solid lines). The order of the method can be easily identified with the slope of the respective
curve. For comparison with the schemes proposed in this paper we choose those showing the
best efficiency: BM4, BM6 and S(2)

10 (dashed lines from now on). In figure B1(b) we collect, in
addition, the results achieved with SGM8 (lines with circles), SGM10 (lines with ×), SGM12

(lines with +) and S6 (thick solid lines) also in the autonomous case. Figures B1(c) and B1(d),
finally, show the results for δ = ω = 1/2 with ε = 2 × 10−5 and ε = 2 × 10−2. In the last
case, the curves obtained SGM10 and SGM12 are not included, because now these methods
are less efficient than SGM8.

(ii) As a second perturbed harmonic oscillator we choose the Mathieu equation, q ′′ + (ω2 +
ε cos(t))q = 0, with q ∈ R. We take the same initial conditions and period of integration as
before and compare the relative error for ε = 1/4 with ω = 2 and ω = 5. In the last case,
the system corresponds to a highly oscillatory system with a relatively small time-dependent
perturbation, which frequently occurs after semidiscretizing many PDEs. The results obtained
are shown in figure B2, where the same coding as before has been used for the curves.

The Schrödinger equation. To illustrate the interest of the new integrators proposed here, we
consider now (as a less trivial example) the Walker–Preston model of a diatomic molecule in a
strong laser field [21]. This system is described by the one-dimensional Schrödinger equation
(in units where � = 1)

i
∂

∂t
ψ(x, t) =

(
− 1

2μ

∂2

∂x2
+ V (x) + f (t)x

)
ψ(x, t), (40)

with ψ(x, 0) = ψ0(x). Here V (x) = D
(
1 − e−αx

)2
is the Morse potential and f (t)x =

A cos(ωt)x accounts for the laser field. This problem is used as a test bench for the numer-
ical methods presented in [2,3] and we take the same values for the parameters as those
authors: μ = 1745 au, D = 0.2251 au and α = 1.1741 au (corresponding to the HF molecule),
A = 0.011025 au and laser frequency w = 0.01787. We assume that the system is defined in
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722 S. Blanes et al.

the interval x ∈ [−0.8, 4.32], which is split into N = 64 parts of length �x = 0.08, and
impose periodic boundary conditions.

After space discretization, equation (40) leads to the complex linear equation

u′ = H(t)u, (41)

with u ∈ C
N and uk(t) = ψ(xk, t)(�x)1/2. Here xk = x0 + (k − 1)�x and H(t) = T + V̂ (t)

is an Hermitian matrix (real and symmetric). If we split u = x + iy, the N -dimensional linear
complex system (41) can be written as

x ′ = H(t)y, y ′ = −H(t)x, (42)

which corresponds to (1) with M(t) = N(t) = H(t) and appropriate dimensions. As ini-
tial conditions we take the ground state of the Morse potential, φ(x) = σ exp

[−(γ −
1/2)α x

]
exp

(−γ e−αx
)
, with γ = 2D/w0, w0 = α

√
2D/μ and σ is a normalizing constant.

To check accuracy, we consider the instantaneous mean energy of the diatomic molecule,
E(t) = uT(t)H(t)u(t), for the time range t ∈ [0, 100τ ] with τ = 2π/ω. As usual, the exact
solution is accurately approximated using a sufficiently small time step. We measure the
averaged relative error in E(t) evaluated at t = τ, 2τ, . . . , 100τ . The algorithm requires the
repeated computation of products Hx and Hy. Here V̂ (t) is a diagonal matrix with elements
V̂jj = V (xj ) + f (t)xj , and T x, T y can be efficiently computed using FFTs [1,14]. Notice
also that in (11) we now have

Mi = h

k∑
j=1

ρijH(t + cjh) = ha
(1)
i T + ha

(1)
i V + hX

k∑
j=1

ρijf (t + cjh) (43)

when H(t) plays the role of M(t) and

Ni = h

k∑
j=1

σijH(t + cjh) = hb
(1)
i T + hb

(1)
i V + hX

k∑
j=1

σijf (t + cjh) (44)

when H(t) plays the role of N(t). Here X is a diagonal matrix with diagonal elements Xjj = xj .
Observe that the products Hix and Hiy only require one FFT and its inverse and thus an
m-stage method requires 4m FFTs per step. In [3] a fourth-order method for the system (42) is
considered (the system was previously converted into an autonomous system as shown in (37)),
showing a clear improvement with respect to the second-order Magnus integrator (combined
with a third-order splitting scheme) given in [2]. The results achieved by the fourth-order
BM4 are very similar to those obtained by the scheme considered in [3] (with slightly better
stability limit). Figure B3 shows the efficiency plots for the methods. The largest time step
(i.e. the smaller number of FFTs) corresponds to the stability limit of the method (an overflow
appears if the time step is slightly increased). The superiority of the new splitting methods
(and especially, of the scheme S6) is manifest both with respect to efficiency and the stability
limit.

5. Conclusions and outlook

There exists in the literature a large number of excellent splitting methods for numerically
integrating partitioned linear systems. Nevertheless, most of these methods cannot be used
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Non-autonomous linear systems: splitting methods 723

when there is an explicit time dependency in the equations, since the usual strategy of treating
the time variable as an additional coordinate often modifies the special structure of the system.

In this paper we have presented a procedure for adapting efficient splitting schemes when
the system is explicitly time-dependent by considering the formal solution obtained with the
Magnus expansion. In particular, from the symmetrized version of the methods designed in [1]
we have built a new family of sixth-order integrators for the problem defined by equation (1).
The new schemes are shown to be more efficient than previous families of algorithms in all
cases analysed here. In any case, we should remark that their accuracy decreases in comparison
with the original schemes applied to autonomous problems. This motivates the search of new
and more powerful integration methods for time independent partitioned linear systems, a
problem currently under investigation. In fact, the scheme S6 presented in this paper may be
considered as a first step in that approach, whose ultimate goal is to construct splitting methods
showing a high efficiency both in autonomous and non-autonomous linear equations of the
form (1). This family of algorithms could be extremely useful in the numerical integration of
this kind of problem.
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Appendix A: Explicit polynomial expressions

In this appendix, for the convenience of the reader, we collect the explicit expressions of the
polynomials λi1···il , μi1···il appearing in (28).

Introducing

s
(n)
j =

j∑
l=1

a
(n)
l , u

(n)
j =

m∑
l=j

b
(n)
l , n = 1, . . . , 5,

the consistency conditions are simply s(1)
m = u

(1)
m+1 = 1. Taking into account these equalities,

one has

λ3 = s(3)
m , λ5 = s(5)

m , λ21 =
m∑

j=1

a
(2)
j u

(1)
j ,

λ23 =
m∑

j=1

a
(2)
j u

(3)
j , λ41 =

m∑
j=1

a
(4)
j u

(1)
j ,

λ131 = − 1

12

m∑
j=1

b
(3)
j

[(
−1 + 2s

(1)
j

)2 + 2s
(1)
j

(
s
(1)
j − 1

)]
,

λ113 = 1

2

m∑
j=1

b
(1)
j s

(3)
j

(
1 − 2s

(1)
j

)
, λ122 = 1

2

m∑
j=1

b
(2)
j s

(2)
j

(
1 − 2s

(1)
j

)
,

λ212 = −1

2

m∑
j=1

b
(1)
j

(
s
(2)
j

)2
,

λ1112 = −1

6

m∑
l=1

(
a

(1)
l

)2
u

(2)
l − 1

6

m−1∑
l=1

a
(1)
l

m∑
j=l+1

a
(1)
j

(
−1 − 3u

(1)
l + 3u

(1)
j

) (
u

(2)
l + u

(2)
j

)
,

λ1121 = − 1

12

m∑
l=2

(
a

(1)
l

)2
u

(2)
l − 1

6

m−1∑
l=1

a
(1)
l

m∑
j=l+1

a
(1)
j

(
2u

(1)
l u

(2)
l

− u
(2)
l u

(1)
j − 3u

(1)
l u

(2)
j − u

(2)
l + 2u

(2)
j

)
,

and the expressions for μi1···il are obtained from the corresponding λi1···il by interchanging the
roles of a

(n)
i and b

(n)
i .
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Non-autonomous linear systems: splitting methods 725

Appendix B: Tables and figures

Table B1. Algorithms for the numerical integration of (1) using J steps of length h = t/J :
(Algorithm 1) with scheme (12) for the autonomous case, and (Algorithm 2) with scheme (10)

for the non-autonomous case.

Algorithm 1–Autonomous Algorithm 2–Non-autonomous

x0 = x(0); y0 = y(0)

do n = 1, J

do i = 1, m

yi = yi−1 − bihNxi−1
xi = xi−1 + aihMyi

enddo
x0 = xm; y0 = ym

If (output) then
xout(tn) = x0; yout(tn) = y0
endif

enddo

x0 = x(0); y0 = y(0); tn = t0
do n = 1, J

do i = 1, k

Mi = M(tn + cih); Ni = N(tn + cih)

enddo
do i = 1, m

M̂ = ρi1M1 + · · · + ρikMk

N̂ = σi1N1 + · · · + σikNk

yi = yi−1 − hN̂xi−1

xi = xi−1 + hM̂yi

enddo
x0 = xm; y0 = ym; tn = tn + h

If (output) then
xout(tn) = x0; yout(tn) = y0
endif

enddo

Figure B1. Average error versus number of force evaluations in the numerical integration of (39) with initial
conditions q(0) = 1.75, p(0) = 0. For the autonomous case (ε = δ = 0) we consider: (a) standard methods for the
separable system (37), BM4 and BM6 (dashed lines) and S(2)

4 , S(2)
6 , S(2)

8 , S(2)
10 (solid lines), and (b) BM4, BM6, S(2)

10
(dashed lines) versus SGM8 (lines with circles), SGM10 (lines with ×), SGM12 (lines with +) and S6 (thick solid
lines). For the non-autonomous case we take δ = ω = 1/2 with: (c) ε = 2 × 10−5; and (d) ε = 2 × 10−2.
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Figure B2. Same as figure B1 but for the Mathieu equation q ′′ + (ω2 + ε cos(t))q = 0 with ε = 1/4 and (a) ω = 2,
(b) ω = 5.

Table B2. Coefficients a
(j)

i , b
(j)

i for the method SGM8.

a
(1)
1 = 0.0406820423192522/2 a

(2)
1 = −0.009222020674782949 a

(3)
1 = 0.042062087251634246

b
(1)
1 = a

(1)
8 b

(2)
1 = −0.027214664019007236 b

(3)
1 = 0.01203916935966199523

a
(1)
2 = 0.1895126902355599/2 a

(2)
2 = −0.043751041846595763 a

(3)
2 = −0.043165966713163549

b
(1)
2 = a

(1)
7 b

(2)
2 = −0.046523437710806227 b

(3)
2 = 0.018721555200024248

a
(1)
3 = 0.3242803211745088/2 a

(2)
3 = −0.048031113572426925 a

(3)
3 = 0.046527834673773506

b
(1)
3 = a

(1)
6 b

(2)
3 = 0.027749195139632094 b

(3)
3 = −0.007127646651729842

a
(1)
4 = −0.0394120731572997/2 a

(2)
4 = 0.006708367822842748 a

(3)
4 = −0.003757288545577531

b
(1)
4 = a

(1)
5 b

(2)
4 = −0.057311963541271888 b

(3)
4 = 0.018033588758710264

a
(1)
5 = 0.2560570296317553/2 a

(2)
5 = −0.03179575697272915 a

(3)
5 = 0

b
(1)
5 = a

(1)
4 b

(2)
5 = −0.001087310633678879 b

(3)
5 = 0

a
(1)
6 = −0.1376837011836700/2 a

(2)
6 = 0.017021775197289018 a

(3)
6 = 0

b
(1)
6 = a

(1)
3 b

(2)
6 = −0.015640480519270482 b

(3)
6 = 0

a
(1)
7 = 0.2474725260224518/2 a

(2)
7 = −0.014452573126795444 a

(3)
7 = 0

b
(1)
7 = a

(1)
2 b

(2)
7 = 0 b

(3)
7 = 0

a
(1)
8 = 1/2 − (a

(1)
1 + · · · + a

(1)
7 ) a

(2)
8 = −0.001311755029957398 a

(3)
8 = 0

b
(1)
8 = 2a

(1)
1 b

(2)
8 = 0 b

(3)
8 = 0

a
(1)
8+i = a

(1)
9−i a

(2)
8+i = −a

(2)
9−i a

(3)
8+i = a

(3)
9−i

b
(1)
8+i = b

(1)
8−i b

(2)
8+i = −b

(2)
8−i b

(3)
8+i = b

(3)
8−i

i = 1, . . . , 8
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Figure B3. Average relative error in E(t) versus the number of FFTs for the one-dimensional Schrödinger
equation (40) written in the form (42) after space discretization.


