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a b s t r a c t

Two families of symplectic methods specially designed for second-order time-dependent
linear systems are presented. Both are obtained from the Magnus expansion of the
corresponding first-order equation, but otherwise they differ in significant aspects. The first
family is addressed to problems with low to moderate dimension, whereas the second is
more appropriate when the dimension is large, in particular when the system corresponds
to a linear wave equation previously discretised in space. Several numerical experiments
illustrate the main features of the new schemes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The problem we address in this paper is the numerical integration of the second order time-dependent linear equation

x′′(t) + M(t)x(t) = 0, x(0) = x0, x′(0) = x′

0, (1)

where t ∈ R, x(t) ∈ Cr and primes denote time-derivatives. It has many practical applications, for example, in periodically
variable systems such as quadrupole mass filter and quadrupole devices, [1,2], microelectromechanical systems [3], in
Bose–Einstein condensates, spatially linear electric fields, dynamic buckling of structures, electrons in crystal lattices, waves
in periodic media, etc. (see [4–7] and references therein). In these cases thematrixM(t) is usually time periodic with period
T ((1) is then an example of a matrix Hill equation) and of moderately large size r . Parametric resonances can occur so that
it is very important to know the stability regions in terms of the parameters of the system.

Another important example of this type is the linear time-dependent wave equation

∂2
t u(x, t) = f (x, t)∂2

x u(x, t) + g(x, t)u(x, t), x ∈ R, t ≥ 0, (2)

equipped with initial conditions u(x, 0) = u0(x), and ut(x, 0) = u′

0(x). Once discretised in space in a bounded region,
Eq. (2) also leads to Eq. (1).
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When the dimension r of Eq. (1) is relatively small, the numerical computation of its fundamental matrix solution for
one period (usually repeatedly many times for different values of the parameters of the system) is feasible and allows one to
analyse the stability of the configuration. In this case numerical schemes that involve matrix–matrix products can be used.
However, when Eq. (1) results from a semidiscretized PDE like Eq. (2) then r ≫ 1, and so only numerical schemes involving
matrix–vector products are suitable.

Taking these considerations into account, in this work we present two classes of numerical schemes: one that involves
matrix–matrix products showing a high performance for the computation of the fundamentalmatrix solution for one period,
and another class involving matrix–vector products, addressed for the numerical treatment of PDEs.

Eq. (1) can be written as a first order system by introducing new variables q = x, p = x′ as

z ′(t) = A(t)z(t), with A(t) =


0 I

−M(t) 0


, (3)

and z = (q, p)T , z0 = (q0, p0)T ∈ C2r . The solution of Eq. (3) evolves through a linear transformation (evolution operator
or fundamental matrix solution) given by z(t) = Φ(t, 0)z(0). In the usual case in which M(t) is a real and symmetric
r × r matrix valued function (MT

= M) then Φ(t, 0) is a symplectic transformation. The eigenvalues of Φ(t, 0) occur in
reciprocal pairs, say {λ, λ∗, 1/λ, 1/λ∗

}, where λ∗ denotes the complex conjugate of λ. As a result, for stable systems, all of
the eigenvalues must lie on the unit circle (see for example [8]). This is a very important property that is not preserved in
general by standard numerical integrators. Thus, one can be forced to use very small time steps to avoid the undesirable
numerical instabilities or asymptotic stabilities arising from this fact, with the resulting degradation in the efficiency of the
algorithms.

The solution of the non-autonomous equation (3) cannot be written in general in closed form. Nevertheless, we can
always formally write it as a single exponential by using the Magnus expansion [9,10],

q(tn + h)
p(tn + h)


= eΩ(tn,h)


q(tn)
p(tn)


,

where Ω(tn, τ ) satisfies a (highly nonlinear) differential equation. Although different approximations can be found in the
literature (see e.g. [9] and references therein), they involve the computation of nested commutators of A(t), evaluated at
different times, and so for many problems may be computationally expensive.1

For this reason, here we consider two different strategies starting from the formal solution provided by the Magnus
expansion. The first leads us to optimised methods specifically addressed to problems defined by (1) when matrix–matrix
products are feasible; these we call Magnus-decomposition methods. The second strategy allows us to build optimised
methods when only matrix–vector products are suitable. These are referred to asMagnus-splitting methods.

In Magnus-decomposition methods, in particular, we approximate expΩ(tn, h) by a composition of simpler symplectic
maps that for the problem at hand are considerably faster to compute. As an illustration, a 4th-order method within
this family contains only one costly matrix exponential and this exponential is cheaply approximated by a symplectic
approximation of order q leading to an scheme given by the composition:

Υ
[4,q]
1 =


I 0

D[4,q]
3 I


0 D[4,q]

2
I 0


I 0

D[4,q]
1 I


, (4)

where D[4,q]
i , i = 1, 2, 3, are certain matrices to be defined later on.

On the other hand, inMagnus-splittingmethods, we consider different decompositions that are suitable for low-oscillatory
and high-dimensional problems, where only matrix–vector products are reasonable in the numerical scheme. Methods of
order p within this family are of the form

Ψ [p]
m =


I ham+1I
0 I


I 0

hCm I


I hamI
0 I


· · ·


I 0

hC1 I


I a1I
0 I


, (5)

where the coefficients ai, bi are obtained numerically by solving a set of non-linear polynomial equations and the matrices
Ci are linear combinations ofM(t) evaluated at certain quadrature points. The product Ψ

[p]
m z0 is done with onlym products

of matrices Ci on a vector of dimension r .
Since all the schemes presented in this work are based on the Magnus expansion, they become explicit symplectic

integrators when M is real and symmetric and can be considered as geometric integrators [12–15], showing a favourable
behaviour on long-time simulations.

1 Wemust remarkhowever that in some cases, like for the linear Schrödinger equationwith time-dependent potential, the evaluation of the commutators
can be efficiently carried using appropriate approach [11].
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2. Magnus-based methods

2.1. Magnus expansion

As stated before, the Magnus expansion [10] expresses the solution of Eq. (3) on the time interval [tn, tn + h] in the form
of a single exponential of an infinite series

Φ(tn, h) = expΩ(tn, h), Ω(tn, h) =

∞
k=1

Ωk(tn, h), (6)

whose first terms are given by

Ω1(tn, h) =

 tn+h

tn
A(t1) dτ1, Ω2(tn, h) =

1
2

 tn+h

tn

 τ1

tn
[A(τ1), A(τ2)] dτ2 dτ1, (7)

where [α, β] = αβ − βα is the matrix commutator. When matrix A(t) is given by (3), the exponent Ω and any truncation
of the series at order p, Ω [p], belong to the symplectic Lie algebra, and thus symplecticity is automatically preserved.

Approximations of Ω in terms of A(t) evaluated at the nodes of some quadrature rule can be obtained as follows. First
we consider the polynomialA(t) of degree s− 1 in t that interpolates A(t) on [tn, tn + h] at the points tn + cjh, j = 1, . . . , s,
where ci are the nodes of the Gauss–Legendre quadrature rule of order 2s. The perturbed problem reads

dz(t)
dt

=A(t)z(t), z(tn) = z(tn), t ∈ [tn, tn + h], (8)

where z(tn) is the exact solution of (3) at tn. From a direct application of the Alekseev–Gröbner lemma [16] (see also [17–19]),
we have thatz(tn + h) − z(tn + h) = O(h2s+1).

Letting t = tn +
h
2 + σ , we write the interpolation polynomial as

A(t) =

s
i=1

Li

 t − tn
h


Ai =

1
h

s
i=1

σ

h

i−1
αi, σ ∈


−

h
2
,
h
2


, (9)

with Ai = A(tn + cih) =A(tn + cih) and the usual Lagrange polynomials Li(t). Notice that for our problem (3) we have

αi+1 = hi+1 1
i!

diA(t1/2 + σ)

dσ i


σ=0

, i = 0, . . . , s − 1, (10)

where

α1 =


0 I

−µ1 0


, αj =


0 0

−µj 0


, j > 1,

and

µi+1 = hi+1 1
i!

diM(t1/2 + σ)

dσ i


σ=0

, i = 0, . . . , s − 1. (11)

In particular, for sixth-order methods (s = 3) we have

α1 = hA2, α2 =

√
15h
3

(A3 − A1), α3 =
10h
3

(A3 − 2A2 + A1), (12)

where Ai = A(tn + cih), c1 =
5−

√
15

10 , c2 =
1
2 , c3 =

5+
√
15

10 . One can readily check that α1 = O(h), α2 = O(h2), α3 = O(h3).
The integrals in the Magnus expansion forA(t) can be computed from (8) analytically. This results in an approximation

of z(t) expressed in terms of α1, α2, α3 up to order 2s. Specifically, a sixth-order approximation Ω [6]
= Ω + O(h7) results

from

Ω [6]
= α1 +

1
12

α3 −
1
12

[12] +
1

240
[23] +

1
360

[113] −
1

240
[212] +

1
720

[1112], (13)

where [ij . . . kl] represents the nested commutator [αi, [αj, [. . . , [αk, αl] . . .]]].
At this point, we can proceed in different ways and we present two different strategies to build new methods. In both

cases, the respective methods (4) and (5) will be compositions of exponentials of elements of the Lie algebra generated by
α1, α2, α3 whose coefficients will be determined in such a way that the compositions coincide with (13) up to the desired
order (six in this case).
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2.2. Magnus-decomposition integrators

Firstly, we examine the structure of the Lie algebra generated by the αi. We immediately notice that, [ij] = 0 for i, j > 1.
Furthermore,

[212] =


0 0

2µ2
2 0


.

We distinguish the following types of exponentials that may appear as elements of the Lie algebra generated by αi, i =

1, 2, 3:

E1 = exp

D B
C −DT


, E2 = exp


0 I
C 0


, E3 = exp


0 0
C 0


. (14)

Clearly, we want to avoid the computation of the full matrix exponential E1 and instead focus on types E2, E3. The latter is
nilpotent and its exponential comes virtually for free.

In [4], were obtained methods of order 4, 6 and 8 for the Hill equation, denoted by Υ
[p]
k (a pth-order method containing

k exponentials of type E2 above). In particular

Υ
[4]
1 =


I 0

hC [4]
2 I


exp


h


0 I
D[4]
1 0

 
I 0

hC [4]
1 I


(15)

Υ
[6]
2 =


I 0

hC [6]
2 I


exp


h
2


0 I

D[6]
2 0


exp


h
2


0 I

D[6]
1 0

 
I 0

hC [6]
1 I


, (16)

where C [p]
i are linear combinations of M(t) evaluated at a set of quadrature points of order p or higher and D[p]

i are linear
combinations of M(t) that additionally contain one product of such linear combinations. Due to the exponentials, these
schemes are specially appropriate when the solution is oscillatory or stiff.

Since the averaged matrices D[p]
i can be considered as constant matrices in each time subinterval, the following result is

useful when computing the corresponding exponentials for a real-valued matrix C = −M [20, sec. 11.3.3]:

Φ(h) = exp

h

0 I
C 0


=


cosh h

√
C

√
C

−1
sinh h

√
C

√
C sinh h

√
C cosh h

√
C


. (17)

Although there exist efficientmethods to computematrix trigonometric functions [21,22] aswell asmatrix exponentials,
such as Padé approximants, Krylov/Lanczosmethods, Chebyshevmethod and others, for this particular case amore efficient
procedure is obtained by decomposing the exponential into a product of simplematrices.When C is symmetric, the resulting
approximations preserve the symplectic structure by construction. Specifically, if hρ(

√
C) < π , whereρ(

√
C) is the spectral

radius of
√
C , then [23]

Φ(h) =


I 0
R I


I Q
0 I


I 0
R I


, (18)

where

Q (C) =
sinh h

√
C

√
C

= hI +
Ch3

6
+

C2h5

120
+

C3h7

5040
+

C4h9

362880
+

C5h11

39916800
+

C6h13

6227020800
+ O


h15

R(C) =
√
C tanh


h
√
C

2


=

Ch
2

−
C2h3

24
+

C3h5

240
−

17C4h7

40320
+

31C5h9

725760
−

691C6h11

159667200
+ O


h13 . (19)

The truncated series expansions of Q and R up to order q + 2 and q in h, denoted by Q [q+2] and R[q], respectively, can be
simultaneously computedwith only k =

 q−1
2


products (e.g.,Q [6], P [4] can be computedwith only one product).We denote

by Φ[q] a qth-order approximation to Φ(h) obtained by replacing Q and R by Q [q+2] and R[q]. Notice that if C is a symmetric
matrix thenQ [q+2], R[q] are also symmetricmatrices and, by construction,Φ[q] is a symplecticmatrix ∀q. Taking into account
all these considerations, we substitute Eqs. (18) and (19) into Υ

[p]
k given by (15) and (16) and combine commuting matrices

to get finally Υ
[4,q]
1 , Υ

[6,q]
2 given in Table 1. The algorithm proceeds by multiplying Υ

[p,q]
k by the result from the previous

computational step. As the last matrix in a step commutes with the first one in the following step, some products can be
saved, hence for an even q ≥ 6 the computational cost of Υ

[4,q]
1 and Υ

[6,q]
2 are (1 + q/2)C and (7 + q)C, respectively. The

schemes and the relevant parameters are collected in Table 1.

2.3. Magnus-splitting integrators

For deriving the second class of schemes considered in this work, we first split the matrix A(t) of Eq. (3) as

A(t) = B(t) + D with B(t) =


0 0

−M(t) 0


, D =


0 I
0 0


, (20)
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Table 1
One- and two-exponential 4th- and 6th-order symplectic methods, respectively, using the sixth-order
Gauss–Legendre quadrature rule.

c1 =
1
2 −

√
15
10 , c2 =

1
2 , c3 =

1
2 +

√
15
10 .

M1 = M(tn + c1h), M2 = M(tn + c2h), M3 = M(tn + c3h),
K = M1 − M3, L = −M1 + 2M2 − M3, F = h2K 2.

Q [p,q+2]
i and R[p,q]

i are obtained by applying the expansions Eq. (19) to D[p]
i .

C [4]
1 =

√
15
36 K +

5
36 L D[4]

1 = −M2

C [4]
2 = −

√
15
36 K +

5
36 L

Υ
[4,q]
1 =


I 0

hC [4]
2 + R[4,q]

1 I


I Q [4,q+2]

1
0 I


I 0

hC [4]
1 + R[4,q]

1 I


.

C [6]
1 = −

√
15

180 K +
1
18 L +

1
12960 F D[6]

1 = −M2 −
4

3
√
15
K +

1
6 L

C [6]
2 = +

√
15

180 K +
1
18 L +

1
12960 F D[6]

2 = −M2 +
4

3
√
15
K +

1
6 L

Υ
[6,q]
2 =


I 0

hC [6]
2 + R[6,q]

2 I


I Q [6,q+2]

2
0 I


I 0

R[6,q]
2 + R[6,q]

1 I


I Q [6,q+2]

1
0 I


I 0

hC [6]
1 + R[6,q]

1 I


.

and denote

δ1 = hD, βi =
hi

(i − 1)!
di−1B(s)
dsi−1


s=t+ h

2

, i ≥ 1

whereB(s) is the interpolating polynomial of B(s) in the interval [tn, tn + h], and α1 = δ1 + β1αi = βi, i > 1. It is easy
to check that [βi, βj] = 0 and [δ1, δ1, δ1, βi] = [βi, βj, βk, δ1] = 0 for any value of i, j, k. As a consequence, the formal
solution equation (13) simplifies to

Ω [6]
= δ1 + β1 +

1
12

β3 +
1
12

[β2, δ1] +
1

360


−[δ1, β3, δ1] + [β1, δ1, β3]


−

1
240

[β2, δ1, β2] +
1

720


[δ1, β1, δ1, β2] − [β1, δ1, β2, δ1]


.

It is then clear that a composition of type (5) can be recovered by considering the following product of exponentials:

Ψ [6]
m =

m+1
i=1

exp


3

j=1

yi,jβj


exp (aiδ1) (21)

ym+1,j = 0, j = 1, 2, 3. Specifically, taking into account (20), we have

Ψ [6]
m =

m+1
i=1

 I 0
3

j=1

bi,jhMj I

 I aihI
0 I


(22)

where Mj = M(tn + cjh), j = 1, 2, 3 and bm+1,j = 0, so that, in practice, (22) corresponds to a m-stage composition.
All methods are symplectic when applied to Hamiltonian systems and, moreover, the coefficients are chosen so that time
symmetric is preserved.

To obtain particular methods we extend the analysis carried out in [24,25], where several 6th-order schemes were
derived for the more general problem

q′
= M(t)p, p′

= N(t)q. (23)

Although all of them can be applied to the present problem (3) simply by lettingM(t) = I , newmethods have also been ob-
tained by taking into consideration the simpler structure that this systempossesses. Specifically,we have taken ai, yi,1 in (21)
as the coefficients of an optimised 11-stage 6th-order method designed in [25] for (23) when M and N are constant. In this
way the commutators involving only δ1 and β1 (e.g. [δ1, β1, δ1], [β1, δ1, β1], etc.) vanish up to order six, whereas the higher-
order contributions areminimised by consideringmore stages than strictly necessary to solve the order conditions; this extra
cost is compensated by a much improved accuracy and stability in an autonomous case. Next, we look for new coefficients
yi,2, yi,3, which now have to satisfy a much reduced set of order conditions. The 11-stage composition has five coefficients
yi,2 and six coefficients yi,3 to solve seven equations. Taking into account the structure of the equations, this leaves one of the
yi,2 and three of the yi,3 as free parameters, that are chosen in order to minimise the objective function


i(|yi,2|

2
+ |yi,3|2).

Once the coefficients yi,j are chosen, the matrices βi, i = 1, 2, 3 are replaced by the corresponding linear combinations
of M(tn + cih), i = 1, 2, 3 evaluated at the quadrature rule of order 6, so that one ends up with a composition of the
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form (22). Specifically, the following 11-stage 6th-order method is obtained:

Ψ
[6]
11 =


I ha12I
0 I


I 0

hC11 I


I ha11I
0 I


· · ·


I 0

hC1 I


I ha1I
0 I


, (24)

where
Ci = −(bi,1M1 + bi,2M2 + bi,3M3), i = 1, . . . , 11,

Mj = M(tn + cjh) and ci are the nodes of the 6th-order Gauss–Legendre quadrature rule, i.e.,

c1 =
5 −

√
15

10
, c2 =

1
2
, c3 =

5 +
√
15

10
.

The corresponding coefficients ai, bi,j are:

a1 = 0.04648745479086313 a2 = −0.06069167116564293 a3 = 0.21846652646340681
a4 = 0.16805357948309270 a5 = 0.31439236417035348 a6 = −0.18670825374207319


bi,j


=


0.152309756970167 0.078927889445323 −0.046907162912825
0.006406269275594 −0.091413523927685 0.043950351354379
0.086778862327312 0.051027214890409 −0.004050397550970
0.066634120201024 0.148499347182669 −0.011368920251338

−0.020231991304321 0.030206484536889 −0.021734660147529
0.025991549816284 0.009949620189233 0.025991549816284

 (25)

verifying the time-symmetry condition a13−i = ai, i = 1, . . . , 6, and
b6+i,j = b6−i,4−j, i = 1, . . . , 5, j = 1, 2, 3.

3. Numerical experiment

In the following sectionwe study and demonstrate the performance of the newmethods with respect to well established
explicit and implicit standard Runge–Kutta (RK) and explicit symplectic Runge–Kutta–Nyström (RKN) methods from
the literature. Six types of methods are considered:

• Υ
[p]
k from [26,4]: symplectic pth-order methods requiring computing of kmatrix exponentials.

• Υ
[p,q]
k : new sets of methods obtained from Υ

[p]
k by decomposing matrix exponentials and taking Taylor series expansion

up to O (hq).
• Ψ

[6]
11 : the new 11-stage 6th-order Magnus-splitting method (Eqs. (24) and (25)).

• Ψ [6]
11 : an 11-stage 6th-order Magnus-splitting method for non-autonomous systems from [24,25].

• RK[p]
k : an explicit k-stage pth-order method that uses the Radau quadrature rule of order six for the time-dependent part.

• RKGL[p]
s : implicit k-stage pth-order symplectic Gauss–Legendre methods.

• RKNb[p]
k : k-stage pth-order explicit symplecticmethods from [27]. RKNb[6]

11 has been selected instead of themore effective
RKNa[6]

14 (ibid.) because the former has the same number of stages as Ψ
[6]
11 .

The cost of each method is estimated for two different problem types. The first one is when a numerical method acts
on the fundamental matrix Φ . Let r × r = dimM(t). Then, the cost is expressed in the number of matrix–matrix products
C, required to propagate for one time step h. Evaluations ofM(t), scalar–matrix multiplications and linear combinations of
matrices are not included to the cost.

The second case is when the same method is used to integrate a system whose state is represented by a vector
(v, w)T , dim v = dimw = r . Similarly, the cost is expressed in the number of matrix–vector products V . The methods’
costs are summarised in Table 2. The parameter ϱ[p] in the implicit methods refers to the number of iterations per step for
a pth-order method. Typically, ϱ[p]

= 4 . . . 7 to attain convergence and preservation of symplecticity to high accuracy. For
the numerical experiments in this paper, we assume them to be ϱ[4]

= 4 for the 4th-order method and ϱ[6]
= 6 for the

6th-order one.
However, some of these methods are not optimised for problems where matrix–matrix are exceedingly costly, and they

are not used in these problems. Moreover, the schemes Υ
[p]
k acting on a vector could be carried out using propagators like

Krylov methods to compute the action of the exponential of a matrix on a vector, but this is not considered in this work.
The reference solutions are obtained numerically using sufficiently small time steps.

3.1. Mathieu equation

The first performance test is executed employing the Mathieu equation

x′′(t) + (ω2
+ ε cos 2t)x(t) = 0, (26)

written as a first-order system (3).
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Table 2
Cost of the methods in terms of matrix–matrix products, C, and matrix–vector products, V .

Method C V Method C V

Υ
[4]
1 17 1

3 – Υ
[6]
2 32 2

3 –

Υ
[4,6]
1 4 – Υ

[6,8]
2 15 –

Υ
[4,8]
1 5 – Υ

[6,12]
2 19 –

RK[4]
4 8 4 Ψ

[6]
11 , Ψ [6]

11 22 11

RKGL[4]
2 4 × ϱ[4] 2 × ϱ[4] RK[6]

7 14 7

RKNb[4]
6 12 6 RKGL[6]

3 6 × ϱ[6] 3 × ϱ[6]

RKNb[6]
11 22 11

Table 3
The orders of decomposition of the two best performingmethods. The better one comes first.

ω 1/125 1/25 1/5 1 5 25 125

ε = 1
p of Υ [4,p]

1 6, 10 6, 10 6, 10 6, 10 12, 10 8, 12 8, 12

q of Υ [6,q]
2 10, 8 10, 8 10, 8 10, 8 12, 8 12, 8 12, 8

ε = 1/10
p of Υ [4,p]

1 10, 6 10, 6 10, 6 10, 12 12, 8 8, 12 8, 12

q of Υ [6,q]
2 8, 10 8, 10 8, 10 8, 10 12, 8 12, 8 12, 8

(a) 4th-order methods. (b) 6th-order methods.

Fig. 1. Error growth depending on ω in the Mathieu equation (26) on a logarithmic scale.

At first, we compare family-wise the performance of the new methods Υ
[p,q]
k . Then, we integrate for t ∈ [0, π] with

the identity matrix as the initial condition and then measure the L1-norm of the error of the fundamental matrix at the final
time. This procedure is repeated for different time steps and different choices of k, p, q. In Table 3 we show the values of q
that provided the best performances for the choices ε = {0.1, 1} and ω = 5j, j = −3, . . . , 3. We observe that the choices
q = 6, 8 are generally better in the 4th-order family, and q = 8, 12 are better among the 6th-ordermethods. These selected
schemes will be considered in the following numerical examples.

We select now ε ∈ {0.1, 1} and ω ∈ {1/5, 5} for plotting the L1-norm of the error of the fundamental matrix at
the final time versus the computation cost in units of C for all methods previously considered. Figs. 2 and 3 showmethods’
performance. We observe that the standard explicit and implicit RK methods perform considerably worse while the new
methods show the best performances for oscillatory cases.

To illustrate how the accuracy depends on the frequency ω, we take ε = 1, the time step h = π/20 and measure the
L1-norm of the error in the fundamental matrix solution for ω ∈ [0, 10]. The results are shown in Fig. 1. We observe that
the new methods show smaller error growth as frequency of the problem increases (oscillatory problems).

3.2. Hill equation

The second benchmark to consider is the matrix Hill equation:

x′′(t) + (A + B1 cos 2t + B2 cos 4t)x(t) = 0 (27)
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(a) ω = 1/5, ε = 1/10. (b) ω = 1/5, ε = 1.

(c) ω = 5, ε = 1/10. (d) ω = 5, ε = 1.

Fig. 2. The performance of the 4th-order methods for the Mathieu equation (26) on a log – log scale; cost = C × steps.

(a) ω = 1/5, ε = 1/10. (b) ω = 1/5, ε = 1.

(c) ω = 5, ε = 1/10. (d) ω = 5, ε = 1.

Fig. 3. The performance of the 6th-order methods for the Mathieu equation (26) on a log – log scale; cost = C × steps.

where A, B1, B2 ∈ Rr×r . We assume A = r2I + D, where D is a Pascal matrix:

D1i = Di1 = 1, Dij = Di−1,j + Di,j−1, 1 < i, j ≤ r.

We set B1 = εI, B2 =
1
10εI, ε = r and ε =

1
10 r and compute solutions for r = 5 and r = 7 on the interval t ∈ [0, π], and

then we measure the L1-norm of the error in the fundamental matrix solution at the final time.
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(a) r = 5, ε = 5/10. (b) r = 5, ε = 5.

(c) r = 7, ε = 7/10. (d) r = 7, ε = 7.

Fig. 4. The performance of the 4th-order methods for the Hill equation (27) on a log – log scale; cost = C × steps.

In [4], itwas determined that formatrixHill-type problemsΥ
[p]
k performnoworse thanRKNb[6]

11 . Figs. 4 and5demonstrate
that, thanks to lower computational cost, the newΥ

[4,q]
1 , Υ

[6,q]
2 andΨ

[6]
11 methods consistently produce better results in both

oscillatory (larger r) and nearly autonomous (small ε) cases.

3.3. Time-dependent wave equation

To analyse the performance of the methods that only involve matrix–vector products we consider the following trapped
wave equation

∂2
t u = ∂2

x u −

x2 + g(x, t)


u, x ∈ R, t ≥ 0, (28)

equipped with initial conditions u(x, 0) = σe−x2/2, and ut(x, 0) = 0. The solution for g(x, t) = 0 can be easily be obtained
by separation of variables and it is given by u0(x, t) = σ cos(t)e−x2/2.

When an external interaction appears, g(x, t) ≠ 0, the equation has no analytical solution in general and one has
to consider, for example, a numerical scheme. We assume the solution is confined to a region x ∈ [x0, xN ] and hence
the solution and all spatial derivatives vanish at these boundaries. This allows us to treat the problem as periodic and
spectral methods can be used. We divide the spatial region into N intervals of length ∆x = (xN − x0)/N and, after spatial
discretisation, we obtain an equation similar to Eq. (1) thatwewrite as the first order system equation (3)where z = (v, w)T

and vi(t) ≈ u(xi, t), wi(t) ≈ ut(xi, t).
For the numerical experiments we take N = 128, x0 = −10, xN = 10 and the external interaction

g(x, t) = ε cos(δ t)x2.

We take δ ∈ {0.2, 1}, ε ∈ {0.1, 0.2, 0.4, 0.5}, and integrate for the period t ∈ [0, 20π/δ]. The reference solution is
obtained numerically with a sufficiently small time step and we measure the L1-norm of the solution versus the number
of matrix–vector products for each method. The results are shown in Fig. 6 where Ψ

[6]
11 , with only three evaluations of the

time-dependent functions per step, shows the best performance for smooth time-dependencies and it is nearly the best one
when such time-dependency increases.

4. Conclusions

Starting from the well know Magnus expansion for linear time-dependent differential equations, in this work we have
presented two families of time-integrators especially designed for the second order linear system (1). Both share with
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(a) r = 5, ε = 5/10. (b) r = 5, ε = 5.

(c) r = 7, ε = 7/10. (d) r = 7, ε = 7.

Fig. 5. The performance of the 6th-order methods for the Mathieu equation (27) on a log – log scale; cost = C × steps.

(a) δ = 0.2, ε = 0.2. (b) δ = 0.2, ε = 0.4.

(c) δ = 1, ε = 0.1. (d) δ = 1, ε = 0.5.

Fig. 6. The performance of the 6th-order methods for the wave equation (28) on a log – log scale; cost = C × steps.

the exact solution relevant qualitative properties (in particular, its symplectic character) and thus provide an accurate
description of the system over long time intervals, due to their favourable error propagation, but they differ in significant
aspects.WhereasMagnus-decompositionmethods are addressed to problemswith small tomoderate dimensionswhere the
numerical computation ofmatrix–matrix products (and thus the fundamentalmatrix) is feasible, Magnus-splittingmethods
are advantageous when the dimension of the system is exceedingly high, as is the case when (1) results from a linear
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time-dependent wave equation previously discretised in space. The numerical experiments reported here clearly illustrate
this difference: whereas the first family performs more efficiently on the scalar Mathieu equation and a low-dimensional
and oscillatory matrix Hill equation, it is the second class of integrators which shows a better behaviour on a discretised
trapped wave equation, where algorithms based only in matrix–vector products are advisable.

Magnus-decomposition methods can be considered as an adaptation of the schemes presented in [4] involving
appropriate truncated expansions of the otherwise computationally costly matrix exponentials initially present in them
and useful combinations of matrices. Magnus-splitting methods, on the other hand, belong to the class of integrators
analysed in [24,25]: taking as a starting point an efficient splittingmethod for the autonomous case, the scheme is formed by
averaging the matrixM(t) at each step (with different weights). The new coefficients are obtained by solving the additional
order conditions arising from the time-dependency. Compared with the general case, the number of order conditions is
considerably reduced, which allows to get new schemes within this family in a rather straightforward way.
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