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In this paper, we are concerned with the construction and analysis of a new class
of methods obtained as double jump compositions with complex coefficients and
projection on the real axis. It is shown in particular that the new integrators are
symmetric and symplectic up to high orders if one uses a symmetric and symplectic
basic method. In terms of efficiency, the aforementioned technique requires fewer stages
than standard compositions of the same orders and is thus expected to lead to faster
methods.
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1. Introduction

Given a differential equation

ẋ ≡
dx
dt

= f (x), x(0) = x0, (1)

composition methods constitute a powerful technique to raise the order of a given integrator ψτ applied to (1) with
time-step τ , as high as might be required, by considering expressions of the form

φτ = ψγ1τ ◦ ψγ2τ ◦ · · · ◦ ψγsτ , (2)

where the coefficients γ1, γ2, . . . , γs are appropriately chosen so as to satisfy some universal algebraic conditions [1–3]. It
is known in particular that if ψτ is of order k, i.e. satisfies

ϕτ (x0) − ψτ (x0) = O(τ k+1),

where ϕτ denotes the exact flow of (1), then φτ will be at least of order k + 1 (i.e., local error k + 2) if the following two
conditions are satisfied

(i)
s∑

i=1

γi = 1 and (ii)
s∑

i=1

γ k+1
i = 0. (3)
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Given that these two equations have no real solution for odd k and arbitrary s, a series of authors (e.g. [4,5]) suggested to
start from a second-order method and to consider symmetric compositions only, i.e., schemes with coefficients satisfying
the additional condition

γs+1−i = γi, i = 1, . . . , s.

This has led to so-called triple-jump compositions (s = 3, γ3 = γ1) obtained by iterating the process described above to
construct a sequence of symmetric methods with even orders (see, e.g., [1, pp. 44]).

In spite of its simplicity, the triple-jump rationale leads to inefficiencies for high orders as compared to methods
obtained by solving directly the order conditions [1]. On top of this, it also suffers from the occurrence of negative time-
steps, although this fact is not specific to triple-jump methods and concerns all composition or splitting methods of orders
higher than two. This, of course, is a severe limiting factor for equations where the vector field (usually an operator) is not
reversible, the prototypical example of which being the heat equation. To circumvent this difficulty, several authors have
suggested to use complex time-steps (or complex coefficients) in the context of parabolic equations [6,7]. One indeed
easily sees that, already for s = 2, solutions of equations (i)–(ii) exist in C.

Generally speaking, suppose that ψτ is an integrator of order k, denoted S[k]
τ in the sequel for clarity, and consider the

composition (2) with s = 2,

S[k+1]
τ = S[k]

γ1τ
◦ S[k]

γ2τ
. (4)

Then, if the coefficients verify conditions (i)–(ii), that is to say if

γ1 = γ̄2 ≡ γ =
1
2

+
i
2

sin( 2ℓ+1
k+1 π )

1 + cos( 2ℓ+1
k+1 π )

for
{

−
k
2 ≤ ℓ ≤

k
2 − 1 if k is even

−
k+1
2 ≤ ℓ ≤

k−1
2 if k is odd

, (5)

then (4) results in a method of order k + 1, which can subsequently be used to generate recursively higher order
composition schemes by applying the same procedure. The choice ℓ = 0,

γ = γ [k]
:=

1
2

+
i
2

sin
(
π

k+1

)
1 + cos

(
π

k+1

) =
1
2

+
i
2
tan

(
π

2(k + 1)

)
=

1

2 cos
(

π
2(k+1)

) e
π

2(k+1) (6)

gives the solutions with the smallest phase. If we start with a symmetric method of order 2, S[2]
τ , and apply composition

(4) with corresponding coefficients (6), we can construct the following sequence of methods:

S[2]
τ −→ S[3]

τ −→ S[4]
τ −→ S[5]

τ −→ S[6]
τ ,

all of which have coefficients with positive real part [7]. The final method of order 6 involves 16 evaluations of the basic
scheme S[2]

τ . By contrast, there are composition methods of order 6 (both with real and complex coefficients) involving
just 7 evaluations of S[2]

τ [5,8]. It is thus apparent that this direct approach does not lead to cost-efficient high-order
schemes.

One should remark that the composition (4) does not provide a time-symmetric method, i.e., S[k+1]
−τ ◦ S[k+1]

τ is not the
identity map, even if S[k]

τ happens to be symmetric. As we have mentioned before, symmetry allows to raise the order by
two at each iteration by considering the triple-jump composition

S[2k+2]
τ = S[2k]

γ1τ
◦ S[2k]

γ2τ
◦ S[2k]

γ1τ
(7)

starting from a symmetric method. Apart from the real solution, the complex one with the smallest phase is

γ1 =
eiπ/(k+1)

21/(k+1) − 2 eiπ/(k+1) , γ2 = 1 − 2γ1, (8)

and symmetric methods up to order 8 with coefficients having positive real part are possible if one starts with a symmetric
second-order scheme.1 These order barriers have been rigorously proved in [8].

The simple third-order scheme (4) corresponding to k = 2 has been in fact rediscovered several times in the literature
[6,7,9–11]. In particular, it was shown in [10] that the method, when applied to the two-body Kepler problem, behaves
indeed as a fourth-order integrator, the reason being attributed to the fact that the main error term in the asymptotic
expansion is purely imaginary. In this note we elaborate further the analysis and provide a comprehensive study of the
general composition (4), paying special attention to the qualitative properties the method shares with the continuous
system (1). In addition, we show how it is possible to combine compositions and a trivial linear combination to raise the
order, while still preserving the qualitative properties of the basic integrator up to an order higher than of the method
itself.

1 It is actually possible to reach order 14 if, in the construction, one uses formula (7) alternatively with coefficients γ1, γ2 and coefficients
γ̄1, γ̄2 [6].
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2. Composition and pseudo-symmetry or pseudo-symplecticity

In what follows, we will assume for convenience that all values of x in (1) lie in a compact set K where the function
f is smooth. Before starting the analysis, it is worth recalling the notions of adjoint method and symplectic flow.

The adjoint method ψ∗
τ of a given method is the inverse map of the original integrator with reversed time step −τ ,

i.e., ψ∗
τ := ψ−1

−τ . A symmetric method satisfies ψ∗
τ = ψτ [1,12].

The vector field f in (1) is Hamiltonian if there exists a function H(x) such that f = J∇xH(x), where x = (q, p)T and J is
the basic canonical matrix. Then, the exact flow of (1) is a symplectic transformation, ϕ′

t (x)
T Jϕ′

t (x) = J for t ≥ 0 [13,14].
It then makes sense introducing the following definitions, taken from [15] and [16]:

Definition 1. Let ψτ be a smooth and consistent integrator:

1. it is pseudo-symmetric of pseudo-symmetry order q if for all sufficiently small τ , the following relation holds true:

ψ∗

τ = ψτ + O(τ q+1), (9)

where the constant in the O-term depends on bounds of derivatives of ψ on K .
2. it is pseudo-symplectic of pseudo-symplecticity order r if for all sufficiently small τ , the following relation holds true

when ψτ is applied to a Hamiltonian system:

(ψ ′

τ )
T J ψ ′

τ = J + O(τ r+1), (10)

where the constant in the O-term depends on bounds of derivatives of ψ on K .

Remark 1. A symmetric method is pseudo-symmetric of any order q ∈ N, whereas a method of order k is pseudo-
symmetric of order q ≥ k. A similar statement holds for symplectic methods.

As a first illustration of Definition 1, let us consider again a symmetric 2nd-order method S[2]
τ and form the composition

ψ [3]
τ = S[2]

γ τ ◦ S[2]
γ̄ τ

with γ =
1
2 + i

√
3
6 . Then, if the vector field f under consideration is real-valued, its real part

ℜ(ψ [3]
τ ) =

1
2

(
ψ [3]
τ + ψ

[3]
τ

)
=

1
2

(
S[2]
γ τ ◦ S[2]

γ̄ τ + S[2]
γ̄ τ ◦ S[2]

γ τ

)
.

is a method of order 4 and pseudo-symmetric of pseudo-symmetry order 7. This result is a consequence of the fact that

(ψ [3]
τ )∗ = ψ

[3]
τ

and the following general statement, which lies at the core of the construction procedure described in this paper.

Proposition 1. Let ψτ be any consistent smooth method for Eq. (1) and consider the new method

Rτ =
1
2

(
ψτ + ψ∗

τ

)
.

Assume also that ψτ is pseudo-symmetric of order q. Then Rτ is of pseudo-symmetry order 2q + 1. If ψτ is furthermore of
pseudo-symplecticity order r, then Rτ is of pseudo-symplecticity order min(2q + 1, r).

Proof. By assumption, there exists a smooth function (τ , x) ↦→ δτ (x), defined for all x in a compact set K and for all
sufficiently small real τ , such that

ψ∗

τ = ψτ + τ q+1δτ or ψ−1
−τ = ψτ + τ q+1δτ or ψ−1

τ = ψ−τ + (−τ )q+1δ−τ , (11)

so that

Rτ = ψτ +
1
2
τ q+1δτ .

Composing the third relation of (11) from the left by ψτ , we obtain

id = ψτ ◦ ψ−τ + (−τ )q+1ψ ′

τ ◦ ψ−τ · δ−τ + O(τ 2(q+1)), (12)

where the O-term depends on bounds of the derivatives of ψτ and δτ on K . Similarly, composing the second relation of
(11) from the right by ψ−τ , we get

id = ψτ ◦ ψ−τ + τ q+1δτ ◦ ψ−τ . (13)

As a consequence, we have

τ q+1δτ ◦ ψ−τ = (−τ )q+1ψ ′

τ ◦ ψ−τ · δ−τ + O(τ 2(q+1)).
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We are then in position to write

Rτ ◦ R−τ =

(
ψτ +

1
2
τ q+1δτ

)
◦

(
ψ−τ +

1
2
(−τ )q+1δ−τ

)
= ψτ ◦ ψ−τ +

1
2
(−τ )q+1ψ ′

τ ◦ ψ−τ · δ−τ +
1
2
τ q+1δτ ◦ ψ−τ + O(τ 2(q+1))

= id + O(τ 2(q+1)),

which proves the first statement. Now, if ψτ is in addition of pseudo-symplecticity order r , then its adjoint ψ∗
τ is also of

pseudo-symplecticity order r , so that relation (11) leads to

J + O(τ r+1) = (∂xψ∗

τ )
T J∂xψ∗

τ = (ψ ′

τ + τ q+1δ′

τ )
T J(ψ ′

τ + τ q+1δ′

τ )

= J + O(τ r+1) + τ q+1 (
(δ′

τ )
T J ψ ′

τ + (ψ ′

τ )
T J δ′

τ

)
+ O(τ 2(q+1)),

which implies that

τ q+1 (
(δ′

τ )
T J ψ ′

τ + (ψ ′

τ )
T J δ′

τ

)
= O(τmin(2(q+1),r+1)).

As an immediate consequence, we have that

(R′

τ )
T JR′

τ = J + O(τmin(2(q+1),r+1))

which proves the second statement. □

This result can be rendered more specific as follows:

Proposition 2. Let S[2n]
τ be a smooth method of order 2n ≥ 2 and pseudo-symmetry order q ≥ 2n + 1. Let us consider the

composition method

ψ [2n+1]
τ = S[2n]

γ1τ
◦ S[2n]

γ2τ
, (14)

where the coefficients γ1 and γ2 satisfy both relations γ1 + γ2 = 1 and γ 2n+1
1 + γ 2n+1

2 = 0. Then the method

R̂τ =
1
2

(
ψ [2n+1]
τ + ψ

[2n+1]
τ

)
(15)

is of order{
2n + 1 if q = 2n + 1,
2n + 2 if q ≥ 2n + 2 (16)

when the vector field f in (1) is real, and of pseudo-symmetry order{
2n + 1 if q = 2n + 1,
min(q, 4n + 3) if q ≥ 2n + 2. (17)

If in addition, f is a (real) Hamiltonian vector field and S[2n]
τ is of pseudo-symplecticity order r, then R̂τ is of pseudo-symplecticity

order {
min(r, 2n + 1) if q = 2n + 1,
min(q, r, 4n + 3) if q ≥ 2n + 2. (18)

Remark 2. Note that in Proposition 2, one has necessarily q ≥ 2n + 1. This can be seen straightforwardly by a direct
computation of S[2n]

−τ ◦ S[2n]
τ (x) with S[2n]

τ (x) = ϕτ (x) + τ 2n+1C(x) + O(τ 2n+2).

Proof. Noticing that γ1 and γ2 are complex conjugate and (1) is real, and taking into account that S[2n]
τ is of pseudo-

symmetry order q, we have

ψ
[2n+1]
τ = S[2n]

γ2τ
◦ S[2n]

γ1τ
=

(
(S[2n]
γ2τ

)∗ + O(τ q+1)
)

◦
(
(S[2n]
γ1τ

)∗ + O(τ q+1)
)

= (S[2n]
γ2τ

)∗ ◦ (S[2n]
γ1τ

)∗ + O(τ q+1) = (ψ [2n+1]
τ )∗ + O(τ q+1). (19)

Moreover, by construction, ψ [2n+1]
τ is at least of order 2n + 1, so that

ψ [2n+1]
τ + O(τ 2n+2) = ψ

[2n+1]
τ = (ψ [2n+1]

τ )∗ + O(τ 2n+2), (20)

and altogether

R̂τ = Rτ + O(τmax(2n+2,q+1)). (21)
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Now, since the pseudo-symmetry order of ψ [2n+1]
τ is at least 2n + 1, the method

Rτ =
1
2

(
ψ [2n+1]
τ + (ψ [2n+1]

τ )∗
)

is, according to Proposition 1, of pseudo-symmetry order 4n + 3 and of pseudo-symplecticity order min(4n + 3, q). The
first (16), second (17) and third (18) statements on orders then follow from (21). □

In the Appendix we provide an alternative proof of Proposition 2 based on the Lie formalism, which allows us, in
addition, to generalise the previous result on pseudo-symplecticity to other geometric properties the continuous system
may possess (such as in volume preserving flows, isospectral flows, differential equations evolving on Lie groups, etc.).

Notice that, according with Proposition 2, if we start from n = 1, that is to say from a basic symmetric (q = +∞) and
symplectic (r = +∞) method of order 2, we get a method of order 4 that is pseudo-symmetric and pseudo-symplectic
of order 7 just by considering the simple composition (14) and taking the real part of the output at each time step. If
this technique is applied to a symmetric and symplectic method of order 4, i.e. with n = 2, then R̂τ is of order 6 and
pseudo-symmetric and pseudo-symplectic of order 11.

Let us consider, in particular, the 4th-order symmetric scheme (7) with k = 2 as basic scheme. Then, the resulting
6th-order integrator R̂τ only requires the evaluation of 6 second-order methods S[2]

τ , whereas the corresponding 6th-
order scheme obtained by the triple-jump technique involves 9 evaluations. This number is reduced to 7 by considering
general compositions of S[2]

τ [8]. If we take this 6th-order composition of 7 schemes as the basic method S[6]
τ , the resulting

integrator of order 8, R̂τ , involves the evaluation of 14 S[2]
τ , whereas 15 evaluations are required by pure composition

methods. Notice that R̂τ is pseudo-symmetric and pseudo-symplectic of order 15, so that for values of τ sufficiently small,
it preserves effectively the symmetry up to round-off error while the drift in energy for Hamiltonian systems is hardly
noticeable.

3. Families of pseudo-symplectic methods

There is another possibility to increase the order, though, and it consists in applying the technique of Proposition 2
recursively. Thus, if denote by R̂(1)

τ ≡ R̂τ the method of Eq. (15), we propose to apply the following recurrence:

For i = 2, 3, . . .

Φ(i)
τ = R̂(i−1)

γ [2i]τ
◦ R̂(i−1)

γ̄ [2i]τ

R̂(i)
τ =

1
2

(
Φ(i)
τ +Φ

(i)
τ

) (22)

where γ [2i] is given by (6). Then, according with Proposition 2, it is possible to raise the order up to the pseudo-symmetry
order of the underlying basic method S[2n]

τ . Thus, in particular, the maximum order one can achieve by applying this
technique to the basic symmetric method S[2]

τ is 7, whereas if we start with a basic symmetric method of order 4, S[4]
τ ,

the maximum order is 11. It is 15 from a symmetric method S[6]
τ of order 6 and so on and so forth.

To give an assessment of the computational cost of the methods obtained by applying this type of composition, we
notice that the computation of Φ (i)

τ and Φ
(i)
τ required to form R̂(i)

τ by (22) at the intermediate stages can be done in parallel,
whereas at the final stage it only requires taking the real part. Thus, the method of order 6 constructed recursively from
S[2]
τ only requires the effective computation of 4 basic methods S[2]

τ .
Starting from a symmetric second-order method S[2]

τ , say Strang splitting for instance, it is important to monitor the
sign of the real part of all coefficients involved in the previous iteration. It is immediate to see that in the recursive
construction

S[2]
τ → R̂(1)

τ → R̂(2)
τ → R̂(3)

τ

envisaged in the recurrence (22), the basic method S[2]
τ is used with the following coefficients

i = 1 : γ [2], γ̄ [2]

i = 2 : γ [4]γ [2], γ̄ [4]γ [2], γ [4]γ̄ [2], γ̄ [4]γ̄ [2]

i = 3 : γ [6]γ [4]γ [2], γ [6]γ̄ [4]γ [2], γ [6]γ [4]γ̄ [2], γ [6]γ̄ [4]γ̄ [2], γ̄ [6]γ [4]γ [2], γ̄ [6]γ̄ [4]γ [2], γ̄ [6]γ [4]γ̄ [2], γ̄ [6]γ̄ [4]γ̄ [2]

Given the expression of γ [k] (see (6)), these coefficients have arguments of the form

π

2

i∑
j=1

±
1

2j + 1
=
π

2

(
±

1
3

±
1
5

± · · · ±
1

2i + 1

)
, i = 1, 2, 3,

so that their maximum argument is

π

2

3∑
j=1

1
2j + 1

.
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For all the coefficients to have positive real parts, a necessary and sufficient condition is thus that
3∑

j=1

1
2j + 1

≤ 1.

It clearly holds for methods R̂(1)
τ , R̂(2)

τ and R̂(3)
τ , of respective orders 4, 6 and 7, since 1/3 + 1/5 + 1/7 = 71/105. Similarly,

starting form a symmetric method of order 4 having real or complex coefficients with maximum argument θ4, the
condition becomes

2θ4
π

+

4∑
j=1

1
2j + 3

=
2θ4
π

+
1888
3465

≤ 1.

For instance, suppose that f in (1) can be split as f (x) = fa(x)+ fb(x), so that the exact τ -flows ϕ[a]
τ and ϕ[b]

τ corresponding
to fa and fb, respectively, can be computed exactly. Then, the following composition

S[4]
τ = ϕ

[b]
b1τ

◦ ϕ[a]
a1τ ◦ ϕ

[b]
b2τ

◦ ϕ[a]
a2τ ◦ ϕ

[b]
b3τ

◦ ϕ[a]
a2τ ◦ ϕ

[b]
b2τ

◦ ϕ[a]
a1τ ◦ ϕ

[b]
b1τ

(23)

with

b1 =
1
10

−
1
30

i, b2 =
4
15

+
2
15

i, b3 =
4
15

−
1
5
i and a1 = a2 = a3 = a4 =

1
4

provides a 4th-order symmetric scheme (see [6]). Taking (23) as basic method we get maxi=1,2,3 Arg(bi) = arccos (4/5)
so that

2θ4
π

+
1888
3465

< 0.409666 +
1888
3465

< 0.96 < 1

and thus all methods

S[4]
τ → R̂(1)

τ → R̂(2)
τ → R̂(3)

τ → R̂(4)
τ

of respective orders 4, 6, 8, 10 and 11 obtained by the procedure (22) have all their coefficients with positive real parts.
As far as the fa part is concerned, the maximum argument is less than 0.55 π2 .

4. Numerical experiments

In this section we illustrate the previous results on several numerical examples, comprising Hamiltonian systems and
partial differential equations of evolution previously discretised in space.

4.1. Harmonic oscillator

We first consider the simple harmonic oscillator, with Hamiltonian

H = T (p) + V (q) =
1
2
p2 +

1
2
q2.

If we denote by MX (τ ) the exact matrix evolution associated with the Hamiltonians X = H , T and V , i.e., (q(τ ), p(τ ))T =

MX (τ )(q(0), p(0))T , then

MH (τ ) =

(
cos(τ ) sin(τ )

− sin(τ ) cos(τ )

)
, MT (τ ) =

(
1 τ

0 1

)
, MV (τ ) =

(
1 0

−τ 1

)
,

respectively. We take as basic symmetric (and symplectic) scheme the leapfrog/Strang splitting:

S[2]
τ = MT (τ/2)MV (τ )MT (τ/2) (24)

and compute the first three iterations in (22). In Table 1 we collect the main term in the truncation error for the resulting
integrators R̂(i)

τ , i = 1, 2, 3. We also check their time-symmetry and the preservation of the symplectic character of the
approximate solution matrix by computing its determinant (a 2 × 2 matrix A is symplectic iff det(A) = 1). One can observe
that these results are in agreement with the previous estimates.

Next we take initial conditions (q, p) = (2.5, 0), integrate until the final time tf = 104 with S[2]
τ , R̂(1)

τ , and R̂(2)
τ and

compute the relative error in energy along the evolution. The result is depicted in Fig. 1. We see that for R̂(1)
τ and R̂(2)

τ the
error in energy is almost constant for a certain period of time, and then there is a secular growth proportional to O(τ 7).
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Table 1
Main term in the truncation error, degree of symmetry and symplecticity for schemes R̂(i)

τ obtained from the basic
leapfrog integrator for the simple harmonic oscillator. I2 stands for the 2 × 2 identity matrix..
ψτ MH (τ ) − ψτ ψτ ◦ ψ−τ − I2 det (ψτ )

R̂(1)
τ

(
0 −

1
180

−
1

120 0

)
τ 5

(
−

1
1728 0
0 −

1
1728

)
τ 8 1 −

1
1728 τ

8

R̂(2)
τ

(
0 3.8 × 10−5

5.1 × 10−5 0

)
τ 7

(
5.4 × 10−6 0

0 5.4 × 10−6

)
τ 8 1 + 5.4 × 10−6 τ 8

R̂(3)
τ

(
5.8 × 10−9 0

0 5.8 × 10−9

)
τ 8

(
−1. 1 × 10−8 0

0 −1. 1 × 10−8

)
τ 8 1 − 1. 1 × 10−8 τ 8

Fig. 1. Error in energy along the integration for the harmonic oscillator taking (24) as the basic integrator in the sequence (22).

4.2. Kepler problem

Next, we consider the two-dimensional Kepler problem with Hamiltonian

H(q, p) = T (p) + V (q) =
1
2
pTp − µ

1
r
. (25)

Here q = (q1, q2), p = (p1, p2), µ = GM , G is the gravitational constant and M is the sum of the masses of the two bodies.
Taking µ = 1 and initial conditions

q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e
1 − e

, (26)

if 0 ≤ e < 1, then the solution is periodic with period 2π , and the trajectory is an ellipse of eccentricity e. Note that the
gradient function must here be implemented carefully so as to be analytic for complex values of z = q21 + q22. Here, we
define it using the following determination of the complex logarithm (analytic on the complex plane outside the negative
real axis):

∀ (x, y) ∈ R2 s.t. x + iy /∈ R−, L(x + iy) = log |x + iy| + 2i arctan
(

y
x + |x + iy|

)
.

As a consequence, the analytic continuation of the function 1/r3 = 1/(q21 + q22)
3/2 writes

exp
(
−

3
2
L(x + iy)

)
,

where x = ℜ(q21 + q22) and y = ℑ(q21 + q22).
Here, as with the harmonic oscillator, we take as basic method the 2nd-order Strang splitting

S[2]
τ = ϕ

[a]
τ/2 ◦ ϕ[b]

τ ◦ ϕ
[a]
τ/2, (27)

where ϕ[a]
τ (respectively, ϕ[b]

τ ) corresponds to the exact solution obtained by integrating the kinetic energy T (p) (resp.,
potential energy V (q)) in (25).

We take e = 0.6, integrate until the final time t = 20 with Strang and the schemes obtained by the recursion (22)
with i = 1, 2, 3 for several time steps and compute the relative error in energy at the final time. Fig. 2 shows this error as
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Fig. 2. Left figure: Relative error in energy vs. the inverse of the step size τ after approximately 3.183 periods (t = 20) for the Kepler problem for
the schemes obtained by the recurrence (22). Right figure: Evolution of this error along the integration.

a function of the inverse of the step size 1/τ to illustrate the order of convergence: order 2 for Strang, order 4 for R̂(1)
τ and

order 6 for R̂(2)
τ . For R̂(3)

τ , and contrary to what happens to the harmonic oscillator, the observed numerical order is higher
than expected, varying between 7 and 8. We do not have at present a theoretical explanation for this phenomenon. Fig. 2
(right) depicts the time evolution of this error when the final time is t = 104.

4.3. The semi-linear reaction–diffusion equation of Fisher

Our third test-problem is the scalar equation in one-dimension
∂u(x, t)
∂t

= ∆u(x, t) + F (u(x, t)), (28)

with periodic boundary conditions on the interval [0, 1]. Here F (u) is a nonlinear reaction term. For the purpose of testing
our methods, we take Fisher’s potential [17]

F (u) = u(1 − u)

as considered for example in [8].
The splitting corresponds here to solving, on the one hand, the linear equation with the Laplacian (as fa), and on the

other hand, the non-linear ordinary differential equation
∂u(x, t)
∂t

= u(x, t)(1 − u(x, t)),

with initial condition u(x, 0) = u0(x), whose analytical solution is given by the well-defined (for small enough complex
time t) formula

u(x, t) = u0(x) + u0(x)(1 − u0(x))
(et − 1)

1 + u0(x)(et − 1)
.

Here we aim to solve Eq. (28) with periodic boundary conditions on the interval [0, 1], and initial condition u0(x) =

sin(2πx). Numerically, the interval is discretised on a uniform grid, i.e., xj = j/N, j = 0, . . . ,N − 1, N ∈ N, and u(x, t) is
approximated by Fourier pseudo-spectral methods. In this way we construct a vector u with components (u)j ≈ u(xj−1, t),
j = 1, 2, . . . ,N . If we denote by uτ the whole numerical solution computed by a certain integrator with step size τ from
t = 0 until the final time, and by uτ/2 the corresponding numerical solution computed by the same integrator with step
size τ/2, then the quantity Eτ := ∥uτ − uτ/2∥∞ is a good indicator of the convergence order.

Numerical simulations were carried out in quadruple precision (with Intel Fortran) such that roundoff errors are
suppressed. Fig. 3 shows the successive errors Eτ , at final time T = 10, of the methods obtained with the sequence
(22) with the Strang splitting as the basic method S[2]

τ (left) and the fourth order scheme S[4]
τ given by (23) (right) with

different time steps τj = 0.1/2j, j = 1, . . . , 7. One can clearly observe that the convergence order matches the previous
analysis with a slightly better performance for the highest order, analogously to the Kepler problem. Fig. 4 shows the
successive errors versus the number of basic integrators in each case.

4.4. The semi-linear complex Ginzburg–Landau equation

Our final test problem is the complex Ginzburg–Landau equation on the domain (x, t) ∈ [−100, 100] × [0, 100],
∂u(x, t)
∂t

= α∆u(x, t) + εu(x, t) − β|u(x, t)|2u(x, t), (29)
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Fig. 3. Successive errors Eτ versus time step τ for Eq. (28) of the composition methods starting from the Strang scheme (left) and the fourth order
scheme S[4]

τ (right).

Fig. 4. Successive errors Eτ versus number of basic integrators for Eq. (28) of the composition methods starting from the Strang scheme (left) and
the fourth order scheme S[4]

τ (right).

with α = 1 + ic1, β = 1 − ic3 and initial condition u(x, 0) = u0(x). Here, ε, c1 and c3 denote real coefficients. In physics,
the Ginzburg–Landau appears in the mathematical theory used to model superconductivity. For a broad introduction to
the rich dynamics of this equation, we refer to [18]. Here, we will use the values c1 = 1, c3 = −2 and ε = 1, for which
plane wave solutions establish themselves quickly after a transient phase (see [19]). In addition, we set

u0(x) =
0.8

cosh(x − 10)2
+

0.8
cosh(x + 10)2

,

so that the solution can be represented in Fig. 5.
To apply the composition methods presented in previous sections, it seems natural to split equation (29) as
∂u(x, t)
∂t

= (1 + ic1)∆u(x, t) + εu(x, t), (30)

whose solution is u(x, t) = eεtet(1+ic1)∆u0(x) for t ≥ 0, and
∂u(x, t)
∂t

= −(1 − ic3)|u(x, t)|2u(x, t) (31)

with solution is for t ≥ 0

u(x, t) = e−(1−ic3)
∫ t
0 M(x,s)dsu0(x) = e−

β
2 log(1+2tM0(x))u0(x).
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Fig. 5. Colourmaps of the amplitude |u(x, t)|2 (left) and real part ℜ(u(x, t)) (right) of the solution of (29).

Here we have first solved the equation for M(x, t) := |u(x, t)|2, given by

∂M(x, t)
∂t

= −2M2(x, t),

with solution

M (x, t) =
M0(x)

1 + 2M0(x)t
.

Considering t now as a complex variable with positive real part does not raise any difficulty for the first part, since
eεtet(1+ic1)∆ is well-defined. More care has to be taken for the second part, since u ↦→ |u|2u is not a holomorphic function,
and this prevents us from solving (29) in its current form. As a consequence, we first rewrite (29) as a system for
(v(x, t), w(x, t)) where v(x, t) = ℜ(u(x, t)) and w(x, t) = ℑ(u(x, t)):⎧⎪⎨⎪⎩

∂v(x, t)
∂t

= ∆v(x, t) − c1∆w(x, t) + εv(x, t) − (v2(x, t) + w2(x, t))(v(x, t) + c3w(x, t))

∂w(x, t)
∂t

= c1∆v(x, t) +∆w(x, t) + εw(x, t) − (v2(x, t) + w2(x, t))(−c3v(x, t) + w(x, t))
(32)

and now solve it for complex time t ∈ C with ℜ(t) ≥ 0. Observing that(
−1 −c3
c3 −1

)
= PD3P−1 and

(
1 −c1
c1 1

)
= PD1P−1,

with

D1 =

(
α 0
0 ᾱ

)
, D3 =

(
−β 0
0 −β̄

)
, P =

(
i 1
1 i

)
and P−1

=

(
−

i
2

1
2

1
2 −

i
2

)
,

system (32) can be rewritten as⎧⎪⎨⎪⎩
∂ṽ(x, t)
∂t

=

(
α∆ṽ(x, t) + εṽ(x, t)

)
−

(
βM̃(x, t)ṽ(x, t)

)
∂w̃(x, t)
∂t

=

(
ᾱ∆w̃(x, t) + εw̃(x, t)

)
−

(
β̄M̃(x, t)w̃(x, t)

) (33)

where M̃(x, t) = 4iṽ(x, t)w̃(x, t) and where(
ṽ

w̃

)
=

1
2

(
−i 1
1 −i

)(
v

w

)
.

It is not difficult to see that the exact solution of the second part of (33) is given by{
ṽ(x, t) = ṽ0(x)e−

β
2 log(1+2tM̃0(x))

w̃(x, t) = w̃0(x)e−
β̄
2 log(1+2tM̃0(x))

(34)
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Fig. 6. Successive errors Eτ versus time step τ for Eq. (29) of the composition methods starting from the Strang scheme (left) and the fourth order
scheme S[4]

τ (right).

where M̃0(x) is now defined as M̃0(x) := 4iṽ0(x)w̃0(x). Note that here, by convention, the logarithm refers to the principal
value of log(z) for complex numbers: if z = (a + ib) = reiθ with −π < θ ≤ π , then

log z := ln r + iθ = ln |z| + i arg z = ln(|a + ib|) + 2i arctan
(

b

a +
√
a2 + b2

)
.

Since log(z) is not defined for z ∈ R−, this means that the solution (ṽ(x, t), w̃(x, t)) is defined only as long as 1+2M̃0(x)t /∈
R−. Finally, the solution (v(x, t), w(x, t)) is of the form{

v(x, t) = v0(x) (e
−βL(x,t)

+e−β̄L(x,t))
2 − w0(x) (e

−βL(x,t)
−e−β̄L(x,t))
2i

w(x, t) = v0(x) (e
−βL(x,t)

−e−β̄L(x,t))
2i + w0(x) (e

−βL(x,t)
+e−β̄L(x,t))
2

where L(x, t) := log(1 + 2tM̃0(x)) = log(1 + 2tM0(x)) with M0(x) = v20(x) + w2
0(x).

Denoting V = (v1, . . . , vN ) ∈ RN and W = (w1, . . . , wN ) ∈ RN , we eventually have to numerically solve the following
system:{

V̇ = AV − c1AW + εV − G(V + c3W )
Ẇ = c1AV + AW + εW − G(−c3V + W )

where G is the diagonal matrix with Gi,i = v2i + w2
i .

Eq. (29) is solved with periodic boundary conditions on the interval [−100, 100]. Now, in the previous example, the
interval is discretised on a uniform grid, i.e., xj = j/N, j = 0, . . . ,N −1, N ∈ N with N = 512, and u(x, t) is approximated
by Fourier pseudo-spectral methods. The successive errors Eτ := ∥uτ − uτ/2∥∞ are shown also here to confirm the
convergence order. Fig. 6 shows the successive errors, at final time T = 10, of the schemes obtained by applying the
sequence (22) from the basic Strang splitting and the fourth-order scheme (23) with τj = 0.1/2j, j = 1, . . . , 7. The
observed order of convergence matches the previous analysis with a slightly better performance for the highest order.
Fig. 7 shows the successive errors versus the number of basic integrators.
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Appendix

In this Appendix we provide an alternative proof of Proposition 2 via Lie formalism. This allows us not only to gain
some additional insight into the structure of the methods, but also to generalise the result on pseudo-symplecticity to
other properties of geometric character, very often related to Lie groups, the differential equation may possess.
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Fig. 7. Successive errors Eτ versus number of basic integrators for Eq. (29) of the composition methods starting from the Strang scheme (left) and
the fourth order scheme S[4]

τ (right).

To begin with, if ϕτ is the exact flow of Eq. (1), then for each infinitely differentiable map g , the function g(ϕτ (x))
admits an expansion of the form [14,20]

g(ϕτ (x)) = exp(τF )[g](x) = g(x) +

∑
k≥1

τ k

k!
F k

[g](x),

where F is the Lie derivative associated with f ,

F =

∑
i≥1

fi(x)
∂

∂xi
. (35)

Analogously, for a given integrator ψτ one can associate a series of linear operators so that

g(ψτ (x)) = exp(Y (τ ))[g](x), with Y (τ ) =

∑
j≥1

τ jYj

for all functions g [21]. The integrator ψτ is of order k if

Y1 = F and Yj = 0 for 2 ≤ j ≤ k.

For the adjoint integrator ψ∗
τ = ψ−1

τ , one clearly has

g(ψ∗

τ (x)) = exp
(
−Y (−τ )

)
[g](x).

This shows that ψτ is symmetric if and only if Y (τ ) = τY1 + τ 3Y3 + · · ·, and in particular, that symmetric methods are of
even order.

An integrator S[2n]
τ of order 2n ≥ 2 can be associated with the series

Φ(τ ) = exp
(
τF + τ 2n+1N2n+1 + τ 2n+2N2n+2 + · · ·

)
(36)

for certain operators Nk. Then, the adjoint method (S[2n]
τ )∗ has the associated series

Φ∗(τ ) = exp
(
τF + τ 2n+1N2n+1 − τ 2n+2N2n+2 + · · ·

)
.

In consequence, S[2n]
τ is pseudo-symmetric of order q ≥ 2n + 1.

(i) Let us analyse first the case q > 2n + 1. Then, N2n+2 = · · · = Nq = 0 in (36) and the series of operators associated
with the composition ψ [2n+1]

τ = S[2n]
γ1τ

◦ S[2n]
γ2τ

is

Ψ (τ ) = Φ(γ2τ )Φ(γ1τ ) ≡ exp(V (τ )),

where V (τ ) can be formally determined by applying the Baker–Campbell–Hausdorff formula [13] as

V (τ ) = (γ1 + γ2)τF + (γ 2n+1
1 + γ 2n+1

2 )τ 2n+1N2n+1

+
1
2
(γ2γ 2n+1

1 − γ1γ
2n+1
2 )τ 2n+2

[F ,N2n+1] + (γ 2n+3
1 + γ 2n+3

2 )τ 2n+3N2n+3 + O(τ 2n+4).
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Here [·, ·] denotes the usual Lie bracket. Clearly, the order of ψ [2n+1]
τ is 2n + 1 if

γ1 + γ2 = 1, γ 2n+1
1 + γ 2n+1

2 = 0, (37)

so that γ2 = γ̄1 ≡ γ is given by Eq. (5) (with k = 2n). In that case we can write

V (τ ) = τF + τ 2n+2G(τ ), with G(τ ) =

∞∑
i=0

τ iGi,

whereas for the adjoint method one has

Ψ ∗(τ ) = exp(−V (−τ )) = exp
(
τF + τ 2n+2G̃(τ )

)
, with G̃(τ ) =

∞∑
i=0

(−1)i+1τ iGi.

In particular, G0 =
1
2 (γ2γ

2n+1
1 − γ1γ

2n+1
2 )[F ,N2n+1], and G1 = (γ 2n+3

1 + γ 2n+3
2 )N2n+3.

The series Ψ (τ ) can also be written as

Ψ (τ ) = exp
(τ
2
F
)
expW (τ ) exp

(τ
2
F
)
,

where W (τ ) is determined by applying the symmetric BCH formula [13] as

W (τ ) = τ 2n+2G(τ ) +
1
24
τ 2n+4

[F , [F ,G(τ )]] + O(τ 4n+4)

= τ 2n+2G0 + τ 2n+3G1 + τ 2n+4(G2 +
1
24

[F , [F ,G0]]
)
+ O(τ 2n+5).

By the same token,

Ψ ∗(τ ) = exp
(τ
2
F
)
exp

(
−W (−τ )

)
exp

(τ
2
F
)
.

Consider now the method

Rτ =
1
2

(
ψ [2n+1]
τ + (ψ [2n+1]

τ )∗
)
. (38)

Clearly, its associated series of operators,

R(τ ) =
1
2
Ψ (τ ) +

1
2
Ψ ∗(τ ),

can be expressed as

R(τ ) = exp
(τ
2
F
)
Y exp

(τ
2
F
)
,

where

Y =
1
2
exp (W (τ ))+

1
2
exp (−W (−τ )) .

By expanding, we have

Y = I +
1
2

(
W (τ ) − W (−τ )

)
+

1
4

(
W 2(τ ) + W 2(−τ )

)
+ · · · ,

but

W (τ ) − W (−τ ) = 2τ 2n+3
∞∑
i=0

τ 2iz2i ≡ 2τ 2n+3Z(τ ),

with z0 = G1, z2 = G3 +
1
24 [F , [F ,G1]], etc. In general, z2i is a linear combination of the operators {F ,N2n+1,N2n+2, . . .}

and their nested Lie brackets. In addition, W 2(τ ) + W 2(−τ ) = O(τ 4n+4), so that we can write

Y = I + τ 2n+3Z + O(τ 4n+4) = exp
(
τ 2n+3Z

)
+ O(τ 4n+4)

and

R(τ ) = exp
(τ
2
F
)

exp
(
τ 2n+3Z

)
exp

(τ
2
F
)

+ O(τ 4n+4),

whence the following statements follow at once:

• Method (38) is of order 2n + 2, since R(τ ) = exp(τF ) + O(τ 2n+3).
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• Since Z(τ ) only contains even powers of τ (up to τ q+1Nq+1), then e
τ
2 Feτ

2n+3Ze
τ
2 F is a symmetric composition and Rτ

is pseudo-symmetric of order min(q, 4n + 3).
• Let us suppose that scheme (38) is applied to a Hamiltonian system and that S[2n]

τ is of pseudo-symplecticity order r .
Since Z is an operator in the free Lie algebra generated by {F ,N2n+1,N2n+2, . . .}, clearly the composition e

τ
2 Feτ

2n+3Ze
τ
2 F

is symplectic (at least up to terms O(τ r )). As a matter of fact, this can be extended to any geometric property
the differential equation (1) has: volume-preserving, unitary, etc., as long as the basic scheme S[2n]

τ preserves this
property up to order r .

Finally, in view of (19)–(21) and recalling that q ≥ 2n+2, the same considerations apply if we take the complex conjugate
instead of the adjoint, i.e., to the scheme

R̂τ = ℜ(ψ [2n+1]
τ ) =

1
2

(
ψ [2n+1]
τ + ψ

[2n+1]
τ

)
. (39)

(ii) We analyse next the case q = 2n + 1. Then N2n+2 ̸= 0 in (36) and, if γ1 and γ2 verify equations (37), then V (τ ) read

V (τ ) = τF + τ 2n+2V0 + O(τ 2n+3)

with

V0 = (γ 2n+2
1 + γ 2n+2

2 )N2n+2 +
1
2
(γ2γ 2n+1

1 − γ1γ
2n+1
2 )[F ,N2n+1].

Notice that, whereas γ 2n+2
1 + γ 2n+2

2 is a real number, γ2γ 2n+1
1 − γ1γ

2n+1
2 has non-vanishing real and imaginary parts. In

any event, the same procedure as in the previous case can be carried out, leading to the conclusion that method (38) is
still of order 2n + 2.

The situation is different, however, for method (39), since relations (19)–(21) do not provide further information. We
have to analyse instead

ℜ(Ψ (τ )) = exp
(τ
2
F
)

ℜ
(
expW (τ )

)
exp

(τ
2
F
)
,

with W (τ ) = τ 2n+2V0 + O(τ 2n+3). Noting that

ℜ
(
expW (τ )

)
= I + ℜ

(
W (τ )

)
+ O(τ 4n+4) = I + τ 2n+2

ℜ(V0) + O(τ 2n+3)

then we can write

ℜ(Ψ (τ )) = exp
(τ
2
F
)

exp
(
τ 2n+2

ℜ(V0) + O(τ 2n+3)
)

exp
(τ
2
F
)

+ O(τ 4n+4).

In consequence, R̂τ is a method of order 2n + 1, pseudo-symmetric of order 2n + 1 and pseudo-symplectic of order
min(r, 2n + 1).

References

[1] E. Hairer, Ch. Lubich, G. Wanner, Geometric Numerical Integration. Structure-PReserving Algorithms for Ordinary Differential Equations, second
ed., Springer-Verlag, 2006.

[2] A. Murua, J.M. Sanz-Serna, Order conditions for numerical integrators obtained by composing simpler integrators, Phil. Trans. R. Soc. A 357
(1999) 1079–1100.

[3] P. Chartier, A. Murua, An algebraic theory of order, ESAIM Math. Model. Numer. Anal. 43 (2009) 607–630.
[4] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations, Phys. Lett. A

146 (1990) 319–323.
[5] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990) 262–268.
[6] F. Castella, P. Chartier, S. Descombes, G. Vilmart, Splitting methods with complex times for parabolic equations, BIT 49 (2009) 487–508.
[7] E. Hansen, A. Ostermann, High order splitting methods for analytic semigroups exist, BIT 49 (2009) 527–542.
[8] S. Blanes, F. Casas, P. Chartier, A. Murua, Optimized high-order splitting methods for some classes of parabolic equations, Math. Comp. 82

(2013) 1559–1576.
[9] A.D. Bandrauk, H. Shen, Improved exponential split operator method for solving the time-dependent Schrödinger equation, Chem. Phys. Lett.

176 (1991) 428–432.
[10] J.E. Chambers, Symplectic integrators with complex time steps, Astron. J. 126 (2003) 1119–1126.
[11] M. Suzuki, General theory of higher-order decomposition of exponential operators and symplectic integrators, Phys. Lett. A 165 (1992) 387–395.
[12] P. Chartier, Symmetric methods, in: Encyclopedia of Applied and Computational Mathematics, Springer, 2015, pp. 1439–1448.
[13] S. Blanes, F. Casas, A Concise Introduction to Geometric Numerical Integration, CRC Press, 2016.
[14] J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, 1994.
[15] P. Chartier, Lapôtre. E., Reversible B-Series, Technical Report 1221, INRIA, 1998.
[16] A. Aubry, P. Chartier, Pseudo-symplectic Runge–Kutta methods, BIT 38 (1998) 439–461.
[17] M. Sari, Fisher’s equation, in: Encyclopedia of Applied and Computational Mathematics, Springer, 2015, pp. 550–553.
[18] W. van Saarloos, The complex Ginzburg–Landau equation for beginners, in: P.E. Cladis, P. Palffy-Muhoray (Eds.), Spatio-Temporal Patterns in

Nonequilibrium Complex Systems, Addison-Wesley, 1995, pp. 19–32.
[19] D.M. Winterbottom, P.C. Mathews, S.M. Cox, Oscillatory pattern formation with a conserved quantity, Nonlinearity 18 (2005) 1031–1056.
[20] V.I. Arnold, Mathematical Methods of Classical Mechanics, second ed., Springer-Verlag, 1989.
[21] S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl.

45 (2008) 89–145.

http://refhub.elsevier.com/S0377-0427(20)30297-1/sb1
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb1
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb1
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb2
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb2
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb2
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb3
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb4
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb4
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb4
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb5
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb6
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb7
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb8
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb8
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb8
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb9
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb9
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb9
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb10
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb11
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb12
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb13
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb14
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb15
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb16
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb17
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb18
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb18
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb18
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb19
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb20
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb21
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb21
http://refhub.elsevier.com/S0377-0427(20)30297-1/sb21

	Compositions of pseudo-symmetric integrators with complex coefficients for the numerical integration of differential equations
	Introduction
	Composition and pseudo-symmetry or pseudo-symplecticity
	Families of pseudo-symplectic methods
	Numerical experiments
	Harmonic oscillator
	Kepler problem
	The semi-linear reaction–diffusion equation of Fisher
	The semi-linear complex Ginzburg–Landau equation

	Acknowledgements
	Appendix
	References


