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Abstract 

A new algorithm is proposed for obtaining explicit solutions of the Cauchy problem defined by a certain class of partial 
differential equations (PDE) of parabolic type. The algorithm exploits the algebraic structure of the problem to transform 
the PDE into an ordinary matrix differential equation, which is then solved by Lie algebraic techniques. 
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1. I n t r o d u c t i o n  

In this paper we use Lie agebraic methods to obtain explicit expressions that approximate the 
solution (provided it exists) of the Cauchy problem defined by 

~ f ( t ; x )  = A ( t ; x ) f ( t ; x ) ,  f ( 0 ; x )  = g(x), (1) 

where x =- (xl,x2 . . . .  ,Xm) E R m, g is an arbitrary bounded analytic function defined in some open 
domain in ~m and 

~--~ (~2 ~'~ ~Xj m 
A(t; x)=- a i j ( t ) ~  q- bij(t)xi -q- ~ cij(t)xixj 

i,j=l i,j=l i,j=l 

o m 

+ ~ dj(t) + ~ ej(t)xj + h(t). (2)  
j: 1 = j=l 
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The coefficients a~j(t), etc. of the differential operator A(t; x) are defined in an open interval of the 
t-axis containing the origin and are complex-valued bounded analytic functions. 

Problems of  this type appear frequently in the mathematical physics literature. They include par- 
ticular cases of  the time-dependent linear Fokker-Planck equation, the Schrrdinger equation with 
time-dependent potentials and the Helmholtz equation in the approximation of paraxial wave beams, 
just to quote a few examples. 

One should note that A(t; x) is an element of a Lie algebra ~ of finite dimension n under the 
bracket operation [B1, Be] = B~ oBz-B2 oB1, where B1, B2 E ~ and o denotes the operator composition. 

If  A does not depend explicitly of  time t, then we can write the solution of  Eq. (1) as 

f ( t ;  x) -- U(t)f(O; x) = et~g(x), (3) 

where exp(tA) should be interpreted as an element in the simply connected Lie group associated 
with ~ [6]. Thus one can use the properties of the Lie algebra .,~ to study the operator exp(tA). This 
has been done by Steinberg [10] for m -- 1. More specifically, a suitable basis for 2, with constant 
generators Ai, i = 1,.. .  ,n, is chosen and then the elements exp(tAi) are computed. Next, ordering 
formulas of Baker, Campbell, Hausdorff and Zassenhaus type are used to write the evolution operator 
U(t) in the factored form 

U(t) = e x p ( f  l(t)A1) e x p ( f  2(t)A2).. .  e x p ( f  n(t)An), (4) 

where the f i ( t )  are t-dependent analytic functions (with the exception of  certain isolated points) 
linked to the constant coefficients of the operator A(x)  [10]. One natural method of  calculating the 
{f i}  is to differentiate (4) with respect to t and then solve the result for df,./dt, which yields a system 
of  nonlinear ordinary differential equations with constant coefficients that can be easily integrated. 
This technique can be generalized to the case of explicitly time-dependent operators A(t; x), although 
now the ordinary differential equations that determine the functions f~(t) in Eq. (4) cannot be solved, 
in general, by quadratures for arbitrary coefficients of the operator A. 

In this paper we present a modified version of the above algorithm, based entirely on Lie algebraic 
methods, for solving approximately the Cauchy problem (1) when the coefficients of  A are arbitrary 
functions of time. As a result, no ordinary differential equations for the functions f~(t) must be 
solved. The method consists of finding a low-dimensional faithful matrix representation Q of  the Lie 
algebra ~ and then applying Lie algebraic techniques to obtain the solution of  the corresponding 
image of  our partial differential equation in ~). If  the associated Lie groups are also isomorphic, one 
can get in a straightway explicit expressions for the functions f i ( t )  appearing in Eq. (4) [4], and 
thus a closed-form solution for the Cauchy problem (1). This algorithm can easily be implemented 
for computational purposes for any particular example considered. 

Conventionally, the solution of Eq. (1) is formally written in the applications as a time-ordered 
exponential operator [9] 

[ (/0 )1 /0 t' /0 U(t) = P exp A(s) ds =-- I + dtl dt2 • • • dt, A(tl ) . . .  A(tn), (5) 
n = l  

but this aproach presents two main drawbacks in relation to the previous scheme. First, the treatment 
depends on whether the coefficients in (2) are constant or not; in the first case the time-ordered 
exponential reduces to an ordinary one (Eq. (3)), whereas in the latter one has to construct the 
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formal series (5) explicitly. Secondly, it is not easy to evaluate the action of  the operator U(t) on 
f (0 ;  x)  and to study the influence of  the single factors A~ on the time evolution of f(t; x). On the 
other hand, from Eq. (4) we may gain insight into the properties of U(t) through a knowledge of  
the spectral properties of  the individual operators A~ [12]. We can also consider physical situations 
where this kind of parameterization is of  particular value [6]. 

Here, we assume that the solution to the Cauchy problem defined by Eq. (1) is uniquely deter- 
mined, at least for t sufficiently small, provided the initial data 9(x) is chosen in some appropriate 
space of functions ~ .  The resulting flow f ( t ; x )=  (U(t)9)(x) will then be on the given function 
space X. The verification of  this hypothesis leads to very difficult problems on existence and unique- 
ness of  solutions [8] that we shall not consider in this work. Here we will obtain results which are 
of a formal nature, but nevertheless will have direct practical applications. 

2. The algebraic method 

Suppose the linear operator A(t; x) can be expressed in the form 

n 

A(t; x) = ~ ai(t)Ai(x), n finite, (6) 
i = 1  

where the a~(t) (i = 1 . . . . .  n) are scalar functions of  time, and A1,A2,...,An are time-independent 
operators that: form a basis of  the Lie algebra ~ under the bracket operation. 

Let us suppose we have found a low-dimensional faithful matrix representation (~ of ~. Using 
this isomorphism we can consider the associated equation 

dj 
= A( t ) f ,  (7) 

which will be referred as the image equation of (1) in the matrix representation. Here ~](t) is the 
s × s matrix in Q, image of A(t; x) C 5~, and f ( t )  ~ ~s. Equivalently, we can consider the linear 
equation 

dU(t)  _ ~](t)0(t),  U(0) : i ,  (8) 
dt 

where ] is the s x s identity matrix, f ( t )  = U ( t ) f ( 0 )  and the matrix ,4(t) can be written as 

n 

.4(t) = ~ ai(t)fl4i, (9) 
i - -1  

with ~]~ the element of the basis of  Q associated with the operator A~(x). 
Wei and Norman [12] have shown that if U(t)  is a solution of Eq. (8), then there exists a 

neighborhood of t = 0 where it can be represented in the form 

U(t)  = exp(fl(t)i]~ ) exp(f2(t)A2). . ,  exp(f,(t)A,), (10) 
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the f i ( t )  being scalar functions of  time. Moreover, the f i ( t )  satisfy a set of differential equations 
which depend only on the Lie algebra .~ and the coefficients ai(t)'s. This representation is global 
for all solvable Lie algebras, and for any real 2 × 2 system of equations. 

Now if the Lie groups associated with the Lie algebras 0 and ~ are also isomorphic, it is possible 
to express the solution of Eq. (1) locally as f ( t ;x)=--  U( t ) f (O;x) ,  with 

U(t) = exp(fl(t)A1 ) exp(f2(t)A2). . . exp(fn(t)An). (11 ) 

Finally, by computing explicitly the flows 

(exp(f ,  Ai)9)(x) ,  i =  1 , . . . ,n ,  (12) 

we obtain a formal expression for the solution of the Eq. (1) in a neighborhood of t = 0 in terms 
of the unknown functions f i ( t ) .  

In the general case of a time-dependent operator A(t; x) E ~, the set of differential equations that 
determine the scalar functions f i ( t ) ,  or equivalently the system (8), cannot be solved by quadratures. 
Instead, approximate methods of  resolution are required. 

The approximation scheme we adopt here is to apply the so-called Fer factorization [5] to the 
matrix equation (8). The main features of this method have been analyzed in the reference [3], 
where its properties as a symplectic integration algorithm have also been established for Hamiltonian 
systems of ordinary differential equations. In particular, it allows to construct explicit convergent 
approximations to the solution of the initial value problem (8) in a neighborhood of  t = 0, so that, 
once this solution has been obtained, comparison with Eq.(10) leads to the corresponding expressions 
for the functions ]](t). 

The general characteristics of the Fer factorization are included in the following result [5]: 

Theorem 2.1. Let  fl(t) and U(t) be two bounded linear operators actin9 on a Euclidean space, 
with IIA(t)II a continuous function. Then: 

(a) The solution o f  the initial value problem 

dU(t )  _ A(t)U(t) ,  U(O) = [, (13) 
dt 

may be expressed in the form 

O(t) = e F . . . .  eF"On, (14) 

with 

dO~ : H~(t)O~, 0~(0) = L 
dt 

// = g , . ( t ' )  d t ' ,  14o - (15) 

o~ 

Hi+l = Z (--1)/+lJ j=l ( J  + 1)! [Fi+l, [Fi+l,... [Fi+l,Hi]...]] 
j t i m e s  
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(i > O) and therefore it can be written as an infinite product  o f  exponentials 

O( t )  = eFle F2 .. . e F" . . .  (16) 

(b) This infinite product  is convergent i f  the operators Hi( t )  are bounded and II Hi(t)II (i > 0) 
are continuous functions, only f o r  times t such that 

~0 t II < ~, (17) IIA(t') dt' 

where ~ is the nonzero solution o f  the equation 

fo¢ 1 - eZX(1 - 2X)d x 
= 2x (¢ -~ 0.861). (18) 

Here convergence has to be understood as 

lim It H.(s)II  ds = 0. 
n---+ OO 

When the functions involved in Eq. (14) belong to a solvable Lie algebra, then a finite product 
of  exponentials is attained for the linear operator U(t). Otherwise, in the applications, we must 
truncate the infinite product for U(t) in the nth term, n -- 1,2,.. .  by doing Un ----i. Thus we obtain 
an approximate expression for the evolution operator in the form 

U( t )  ~ gn(t) = eF'e F2 .. "e F". (19) 

In that case we have the following result concerning the error bounds of the approximation [2]: 

Theorem 2.2. Le t  E , ( t )  be the difference between the exact  and the approximate  solution o f  Eq. 
(13), 

E, ( t )  = U ( t ) -  l~,(t). (20) 

Then 

with 

and 

II En(t)II <~K~(t) exp Ki(t)  , n >~ 1, 

fOt Ko ~ 11-4(t')ll dt' 

fo x" 1 - e2X(1 - 2X)dx. 
Kn+ l = 2x 

If we denote K0 ---- a~, with 0 < ~ < 1, then it can be shown that 

(21) 

II E.(t)II < ~2"g.(c~)~, (22) 
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where 9n is a function that tends to a constant as n increases. Therefore, the rate of convergence of 
the procedure is very fast. 

Therefore, Fer's factorization provides a reliable and computationally well adapted Lie algebraic 
method [3] to obtain approximate solutions to the linear equation (8), and consequently, convergent 
expressions for the characteristic ordering functions fi(t) of Eq. (10). These expressions are valid in 
a neighborhood of t = 0 and involve only quadratures. The method also allows to compute explicitly 
the region of convergence and the error bound of the approximation. 

For concluding this section, we can summarise the proposed algebraic method for solving the 
Cauchy problem (1) as the following computational algorithm: 

Step I: Identify the algebra involved in the problem and a low-dimensional faithful matrix repre- 
sentation. 

Step II: Apply the Fer factorization to the image equation (7) in that matrix representation. 
Step III: Obtain the ordering functions fi(t) by comparison with the corresponding Wei-Norman 

representation (Eq. (10)). 
Step IV: Compute explicitly the flows (12) and finally the action of the operator U(t) (Eq. (11 )) 

on the function 9(x). 

3. Examples 

For the sake of illustration, in this section we apply the successive steps of the above algo- 
rithm to solve some physically important linear partial differential equations of parabolic type whose 
coefficients are arbitrary functions of time. 

Example 1. As a first application we take 

A(t;x) = a(t)02 + b(t)xO ÷ d(t)O + h(t), (23) 

where the notation 0 _-- 0/0x has been used. This corresponds to a one-dimensional Fokker-Planck 
(or forward Kolmogorov) equation whose diffusion and drift coefficients are both arbitrary functions 
of time. It is used in a stochastic treatment of a given macroscopic system. More specifically, 
the Fokker-Planck equation is an equation of motion for the distribution function f( t;x) of the 
fluctuating macroscopic variables that describe the system [9]. 

If we identify the operators A1 = I, A2 = x0, A3 = 0, A4 = 02 as the basis of the Lie algebra 
in this case, then the basic bracket operators are given by 

[A:2,A3] = - A 3 ,  [A2,A4] = - 2 A 4 ,  [A3,A4] = 0 (24) 

and therefore the sub-algebra L =-- (Az,A3,A4) is solvable. It is easy to realize that a matrix repre- 
sentation for these operators is provided by 

[i°il [°li] [i°i] A2---- 1 , 23---- 0 0 , ~z~4---- 0 , 
0 0 0 0 

(25) 
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thus specifying the matrix image of our partial differential equation in the form of  Eq. (7), or 
equivalently, 

dO 
- -  ~ 4 ( t ) O ( t ) ,  (26) 

dt 

with ~i(t) 4 ^ = ~i=1 ai(t)Ai and al(t) = h(t), a2(t) = b(t), a3(t) = d(t), a4(t) = a(t). 
Now the Wei-Norman factorization (10), when applied to the matrix equation (26), leads to the 

expression 

U ( t )  = e f '  0 e f :  e J 2 f 3  , ( 2 7 )  

0 0 e af2 

with the functions f ,( t) ,  i = 1 , . . . ,4  to be determined. 
In this case, by applying Fer's factorization (Theorem 2.1) to Eq. (26) we obtain the exact 

solution as 

U(t) = eF'e F2, (28) 

where 

4 
F1 = Z ~i(t)f4i, 

i=l 
~0 t ~i(t) = ai(s) ds, (29) 

and 

F 2 = ~2)(t)/13 ~- 0~2)(/)~z]4, ~0 t o¢~ 2) = hl l ) ( s )ds ,  

h~l)(t) = 1- ~-~2e~2 + e ~2 - 1)(~3a2 - -  ~2a3), (30) 

h~l)(t)_ - 1 (-2~2e2~2 + e2~2 2 ~  - -  1 ) ( ~ 4 a 2  - -  c~2a4). 

If we evaluate explicitly the exponentials of  Eq. (28) and compare the matrix thus obtained with 
the expression (27), after some algebra we obtain the exact expressions for the ordering functions 
f i ( t )  in terms of  quadratures 

/0t f l  (t) = h(s) ds, 

fOt f 2 ( t )  = b ( s )d s ,  (31) 

f3( t )  = J/a't d(s)eZ2(s) ds, 

/0 t f 4 ( t )  = a(s)e z2(') ds. 
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The same expressions can be obtained, of course, by writting down and solving the differential 
equations satisfied by the functions f~(t) [14]. This is possible here because the Lie algebra involved 
is solvable. 

Finally, by using the easily derivable expressions [11, 14] 

r a l  
exp[a(t)X ~x I 9(x) = 9 (ea(')x), (32) 

exp [a(t)~x I 9(x)=9(x+ a( t ) ) ,  (33) 

exp # ( x ) -  J - ~  exp 9(y)dy, (34) 

we find for f(t;x), 

ef'(') / / ~  [ -[y-(xef2m+f3(t ) )]2 t > O ,  (35) 
f(t;x) -- 4x/~f4(t  ) ~ dyy(y) exp 4fa(t)  ' 

a result previously obtained in [11, 14] with different algebraic techniques. 

Example 2. Next we consider the operator A(t;x) given by 

A(t;x) = a ( t ) c  32 q- b(t)xO + c(t)x 2, (36) 

where a(t), b(t), c(t) are complex valued bounded analytic functions. This constitutes a generalization 
of  a linear Fokker-Planck equation. If  we denote 

2 I 2 ( 3 7 )  A~ = / ,  Ae = ¼(1 + 2x0), A3 = ix , A4 = ~c3 , 

then these operators form a basis of the Lie algebra .~, the basic bracket relations are 

[Az,A3] = A3, [A2,A4] = - A 4 ,  [A3,A4] = - A 2  (38 )  

and the sub-algebra (Az,A3,A4> can be identified with SU(1,1), which is not solvable. A matrix 
representation of the SU(1, 1) generators is provided by 

,[; ,[°°01 ,39, 4 2 = 5  -- ' 0 0 ' = ~  1 ' 

and the image of  the operator A(t;x) under this representation can be written as Eq. (9) with 
al(t) = -lb(t), a2(t) = 2b(g), a3(t) = 2c(t), a4(t) = 4a(t). 

If we apply the Wei-Norman factorization to the linear equation (8), the corresponding solution 
can be now represented as 

- ef2/2(1 -- ] ½/3f4) --f3e f2/2 
U(t)  = e f' (40) ] 1 ¢ ~-f2/2 e-f2/2 

~J4 ~ 

in a neighborhood of t = 0. In this case the system of differential equations that determine the 
functions fi  cannot be solved by quadratures for arbitrary coefficients ai(t) [4]. Nevertheless, Fer's 
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factorization provides an iterative procedure for obtaining convergent approximations to the matrix 
U(t) in terms of quadratures. More specifically, by applying Theorem 2.1 we get up to order n 

with 

U(t) ~ l~n(t) = eFte F2 ' ' '  e F", (41) 

4 t 

F1 = Z ~5~)(t)]~' ' ~51)(t) = fo a,(s)ds 
/=1 (42) 

4 t 

Fi+l = ~ ~5++l)(t)Aj, ~i+l)(t) = fo hSO(s)ds' i =  1 , . . . , n -  1, 
j=2  

where hy)(t), j = 2,3,4, are the coordinates of the matrix Hi+ 1 with respect to the basis {Ai} (Eq. 
(15)), which depend both on the coefficients h5 i-1) and a5 i) [3]. A simple calculation shows that 

e F' (coshooi)I2 + sinh~oi = B(0 , (43) 
fDi 

where 

1 ~/0{(i)2 .(i) .(0 1 [ ~  0 --20~I 0- 
-- -- 2% a 4 , __~i) (44) 

and /2 denotes the 2 x 2 identity matrix. 
In this way we can write an approximation to the matrix /)(t) as 

I)n(t)-----e'~") [ ullu2, u22U12] , (45) 

whence, by comparing with Eq. (40), we get 

/0' 1 b(s) ds, f2(t)  = - 2  log U22 f l ( t )  = ~]l)(t) = - 5  (46) 

f3(t) = --U12U22, f4(t)  = 2U21U22 - 1 ,  

i.e., approximate explicit expressions for the ordering functions ft.(t) in terms of quadratures. This 
procedure converges to the true solution U(t) as n --+ cxz, and therefore to the functions fi, in time 
intervals [0, t[ such that 

f ' II II < 4, (47) & s )  ds 

with 

H(t)  = [ : ( ;~)  -2c(t)_b(t) ]" ] (48) 

Finally, the solution of Eq. (1), with A(t;x) given by (36), can be found, by applying Step IV, as 
in the preceding example, thus obtaining the expression 
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1 
f ( t ; x )  -- 

x/.f4(t) 
r 1 1 2 f2 exp [f l( t )  + ~f2(t) + 5 f 3 ( t ) x  e ] 

for t > 0. 

f 
~O(2 

× d y g ( y )  exp 
oo 

_ ( y  _ x e f 2 ( t ) / 2 ) 2  

f4(t) 
(49) 

f 0  t 6 ( t ) = - f l ( t )  - ½f2( t )=  log q~(t)-  b(s)ds ,  

1 
= 

I 
fl(t) = -2u21(t)  o(t),  

then the solution of Eq. (50) is given by 

( x y )  
f ( t ; x ,  y )  = e x p [ - 6 ( t )  - (2( t )xy]R t; ~o(t)' ~p(t) ' 

under the assumption that 

R(t;x,  y )  = exp [-fl(t)#~y] dp(x, y )  

(53) 

(54) 

(55) 

Example 3. As a third and last example we consider the equation [13, 15] 

~ + b ( t ) x  + b ( t ) y  + c ( t ) x y +  ~ f ( t ; x , y )  = 0 (50) 

subject to the initial condition f (0 ;x ,  y)  = qS(x, y). This two-dimensional parabolic PDE is a par- 
ticular case of an equation introduced and solved by Lambropoulos [7] when the coefficients b and 
c are constants. Later Wilcox [13] obtained a closed-form solution by normal-ordering exponential 
operators techniques. In the following we apply the method outlined in the previous section to solve 
the general case of arbitrary time-dependent coefficients. In [7] one instance of a physical problem 
in which a special form of this equation arises is presented. 

As in the previous examples, if we introduce the operators 

At = I ,  A2 ½(1 + XC3x + yC~y), A3 1 2 = = 5xy, A4 = C~xy, (51) 

then Eq. (50) can be written as Eq. (1) with A ( t ; x , y )  = ~=1  ai(t)Ai and al( t)  = b(t), a2(t) = 
-2b( t ) ,  a3(t) = -2c( t ) ,  a4 = -1 .  Moreover, we have the basic bracket operations (38) of  the 
algebra SU(1, 1 ), so the same steps of the Example 2, when applied to this case, lead to the ordering 
functions 

/0' f l ( t )  = b(s) ds, qo(t) =- e -f2(t)/2 = u22(t), (52) 

f3( t )  = -UlzU22, f4( t )  = 2uzlu51, 

where the coefficients uij(t) are evaluated by means of  Fer's factorization. If  we denote 
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exists. In the particular case of constant coefficients, Fer's expansion leads to the exact solution 
U ( t )  = e v '  , o r ,  equivalently, 

~p(t) = cosh cot + bs inh  cot, 
co 

~(t) = log qg(t) - bt, 

fl(t) = 7 ,  
cq~ 

f2(t) 7 
q9 

(56) 

with 

co ---- x / ~  - c, ~ - Csinh cot. 
co 

This is just the solution obtained by Wilcox [13] for Eq. (50) in the time-independent case. 

(57) 

4. Summary and conclusions 

In this paper we have considered an algorithm based entirely on Lie algebraic methods for obtain- 
ing closed-form solutions of  the Cauchy problem defined by a wide class of linear partial differential 
equations. When this algorithm is applied, the solution is written as a finite product of  exponen- 
tials depending on certain ordering functions fg for which convergent approximations are obtained 
in an explicit form. This technique can be viewed as a useful altemative to more conventional 
methods. 

Application of  the method requires the identification of  the finite-dimensional algebra involved 
in the PDE and a low-dimensional matrix representation of  the generators of the algebra. In this 
representation we consider and solve the image equation of our PDE by means of Fer's factorization, 
thus obtaining convergent expressions for the ordering functions f,. in terms of quadratures. 

Some advantages of  this procedure are at hand. First, there is no formal distinction in treating 
equations with constant or time-dependent coefficients, since they appear in a linear combination of 
operators of the same finite-dimensional Lie algebra. Second, the solution is represented in factorized 
form, which allows the treatment of each individual factor and avoids the use of  time-ordered expo- 
nentials. Third, this method can be, at least formally, extended to algebras with higher dimensionality 
without any conceptual problem, although technical difficulties may appear. Finally, the algorithm is 
computationally well adapted and rather general in its applications. 
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