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The Schrödinger eigenvalue problem is solved with the imaginary time propagation technique. The
separability of the Hamiltonian makes the problem suitable for the application of splitting methods.
High order fractional time steps of order greater than two necessarily have negative steps and can-
not be used for this class of diffusive problems. However, there exist methods which use fractional
complex time steps with positive real parts which can be used with only a moderate increase in the
computational cost. We analyze the performance of this class of schemes and propose new methods
which outperform the existing ones in most cases. On the other hand, if the gradient of the potential
is available, methods up to fourth order with real and positive coefficients exist. We also explore
this case and propose new methods as well as sixth-order methods with complex coefficients. In
particular, highly optimized sixth-order schemes for near integrable systems using positive real part
complex coefficients with and without modified potentials are presented. A time-stepping variable
order algorithm is proposed and numerical results show the enhanced efficiency of the new methods.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821126]

I. INTRODUCTION

We consider the eigenvalue problem for the stationary
Schrödinger equation (SE) (¯ = m = 1),

Hφi(x) = Eiφi(x), i = 0, 1, 2, . . . , (1)

where

H = T + V (x) = −1

2
� + V (x), (2)

V (x) denotes the interaction potential and � is the Lapla-
cian operator. Since the Hamiltonian H is a Hermitian oper-
ator, its eigenvalues Ei are real valued, and its correspond-
ing real eigenfunctions φi(x) form a basis of the underlying
Hilbert space. This particular problem has attracted great in-
terest among theorists and practitioners1–3 due to its relevance
for the understanding of the atomic and molecular structure of
matter.

A widely used approach to solve this problem is based on
using the corresponding time-dependent Schrödinger equa-
tion in imaginary time (t = −iτ ), whose formal solution is
given by the evolution operator exp (−τH). In this way, in
general, any initial condition, under the action of exp (−τH),
converges asymptotically to the ground state solution when τ

→ ∞. Notice that the evolution operator exp (−τH) has the
same eigenfunctions as the problem (1) and (2). This tech-
nique is usually referred to as the imaginary time propaga-
tion method (ITP for short). In this setting, only the action of
exp (−τH) on a wave function has to be computed.4, 5

The ITP method can be regarded as an analog of the well-
known power method in numerical linear algebra.6 In this
sense, one may also consider the inverse power method: in-

stead of the iterative application of the exponential operator
exp (−τH), the scheme vn+1 = (H − Ẽi)−1vn, n = 0, 1, 2, . . .
is used for some given Ẽi . This iteration is known to converge
after normalization to the eigenvector with eigenvalue closest
to Ẽi . Although faster convergence than for the ITP method
can be observed for an accurate initial guess Ẽi ≈ Ei , in gen-
eral, the algorithm needs more iterations until convergence.7

Since the operators e−τV and e−τT can be exactly com-
puted in the coordinate and momentum space, respectively,
the operator splitting technique involving a composition of
these exponential operators with appropriate coefficients can
be used to approximate e−τH. The computational cost depends
on the number of changes between these coordinates which
are cheaply performed by Fast Fourier transforms (FFT).

However, the operator splitting technique has some limi-
tations. In particular, splitting methods of order p > 2 require
negative time-steps8, 9 and the instabilities caused thereof are
analogous to the ones for the integration of a diffusion equa-
tion backwards in time. If it is feasible to compute the gra-
dient of the potential V , generalized splitting methods al-
low to build methods with positive coefficients up to fourth
order,10–12 but higher order methods also use negative time-
steps. In this paper, we propose methods to overcome the
order barriers for both cases by using complex time-steps.
Splitting methods can be tailored to particular equations to
achieve better performances and we present criteria based
on near-integrability that apply to a wide range of prob-
lems and thus yield highly efficient high order schemes. The
obtained methods outperform the existing splitting schemes
when high accuracy is desired and could be appropriate for
elaborating a variable order algorithm. We also report some
numerical experiments illustrating the efficiency of the new
methods.
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II. THE IMAGINARY TIME INTEGRATION METHOD
FOR THE SCHRÖDINGER EQUATION

An important property of the Hermitian operator H is that
(choosing properly the origin of the potential) its eigenvalues
0 ≤ E0 ≤ E1 ≤ . . . are real and nonnegative, and the cor-
responding eigenfunctions φi can be chosen to form a real
orthonormal basis on its domain. The problem (1) originates
from the time-dependent SE

i
∂

∂t
ψ(x, t) = Hψ(x, t), ψ(x, 0) = ψ0(x). (3)

A Wick rotation of the time coordinate, t = −iτ , transforms
(3) into a diffusion type equation

− ∂

∂τ
ψ(x, τ ) = Hψ(x, τ ), ψ(x, 0) = ψ0(x), (4)

with formal solution ψ(x, τ ) = e−τHψ(x, 0). After expanding
the initial condition ψ0 in the basis of eigenfunctions φi,

ψ0(x) =
∑

i

ci φi(x), ci = 〈φi(x) | ψ(x, 0)〉 ,

where 〈 · | · 〉 is the usual L2 scalar product, the time evolution
of (4) is given by

ψ(x, τ ) = e−τH ψ(x, 0) =
∑

i

e−τEi ci φi(x). (5)

Asymptotically, for a sufficiently long time integration, we
get ψ(x, τ ) → e−τE0 c0φ0 since the other exponentials decay
more rapidly. The convergence rate depends of course on the
separation of the eigenvalues. For simplicity, we restrict our-
selves to the non-degenerate case E0 < E1. If there is degen-
eracy, it converges to a linear combination of eigenfunctions,
and repeating this process with different initial conditions one
can obtain a complete set of independent vectors of the sub-
space which can be orthonormalized.

Normalization of the asymptotic value yields the eigen-
function φ0 and the corresponding eigenvalue is computed via
E0 = 〈φ0|Hφ0〉. Excited states can be obtained by propagat-
ing different wave functions simultaneously (or successively)
in time and using, for example, the Gram-Schmidt orthonor-
malization or diagonalizing the overlap matrix.7

For simplicity in the presentation, the spatial dimension
is set to one unless it is explicitly stated, but our results also
apply to higher dimensions.

The problem is further simplified by assuming x ∈ [a, b]
with the interval [a, b] sufficiently large such that the wave
function and all its derivatives of interest vanish at the bound-
aries. For numerical computations, the infinite dimensional
domain of H has to be truncated, which is done by discretizing
the spatial coordinate x: we fix N equally spaced grid points
xi = x0 + k�x, k = 0, 1, 2, . . . , N − 1, with a = x0 and
b = xN. In this way, the interval is divided into N subinter-
vals of size �x = (b − a)/N.

The potential V is represented in this grid by a diagonal
matrix and the periodicity of the system (ψ (n)(a) = ψ (n)(b)
= 0, n = 0, 1, 2, . . . ) allows for the use of spectral methods (in
space) for the calculation of T, namely, the Fast Fourier trans-
form after which the matrix representation of T also becomes
diagonal. The computational costs for the application of V

and T to a vector are thus proportional to N and Nlog N op-
erations, respectively. In a d-dimensional space with N mesh
points on each dimension, their costs are proportional to Nd

and Ndlog N, respectively.

III. SPLITTING METHODS FOR
THE SCHRÖDINGER EQUATION

To approximate the time evolution (5), i.e., the compu-
tation of e−τH acting on a vector, we propose to use compo-
sitions of the operators e−τV and e−τT evaluated at different
times. A first example is provided by the well-known Strang
splitting

�
[2]
h ≡ e− h

2 V e−hT e− h
2 V , (6)

verifying �
[2]
h = e−hH + O(h3) with h ≡ �τ . Higher or-

der approximations can be obtained by a more general
composition

�
[p]
h ≡

m∏

i=1

e−aihT e−bihV , (7)

where �
[p]
h = e−hH + O(hp+1) if the coefficients ai, bi are

chosen such that they satisfy a number of order conditions
(with m sufficiently large). It is well-known, however, that
methods of order greater than two (p > 2) necessarily have
negative coefficients8, 9, 13 (a simple proof can be found in
Ref. 14). While this is usually not a problem for the coeffi-
cients bi, having negative ai coefficients makes the algorithm
badly conditioned (in the limit N → ∞).

Composition methods with coefficients bi positive are
also convenient for unbounded potentials, e.g., V (x) = x2,
since negative values of bi can generate large roundoff errors
in the exponential e−biV at the boundaries if the interval-size
of the spatial discretization is not appropriately chosen and
the potential takes exceedingly large values.

Splitting methods are particularly appropriate for the nu-
merical integration of this problem since the choice of the
time step, h, is not affected by the mesh size. Taking a finer
mesh (i.e., a larger value of N) does not necessarily lead
to a smaller time step, and the extra computational effort
originates only from the FFTs, whose cost is Nlog (N) (or
Ndlog (N) in a d-dimensional problem with N points on each
coordinate).

One possible approach to derive the order conditions to
be satisfied by the coefficients ai, bi consists in applying the
Baker-Campbell-Hausdorff formula to the composition (7),
which we assume consistent (

∑
iai = ∑

ibi = 1).15 Thus we
get �

[p]
h = exp(−hH), with

H = T + V + hf2,1[T , V ]

+ h2
(
f3,1[T , [T , V ]] + f3,2[V, [T , V ]]

) + · · · , (8)

where fi,j are polynomials of degree i in the coefficients ak,bk

and the symbol [T , V ] stands for the commutator of the op-
erators T and V . Condition f2,1 = 0 leads to second order
methods, and this can always be achieved by taking a left-
right symmetric composition in (7) because all even terms
automatically vanish. Methods of higher orders require in
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addition f3,1 = f3,2 = 0. Taking into account consistency, these
equations can be written as16

f3,1 :
∑

1≤i<j≤k≤m

aibjak = 1

6
, (9)

f3,2 :
∑

1≤i≤j≤k≤m+1

biajbk = 1

6
. (10)

These two conditions imply that at least one of the ai as well
as one of the bi become negative (see Refs. 14 and references
therein), so that only methods of order two can be used for
this problem.

There are several possibilities to circumvent this limita-
tion, and in the following, we enumerate some of them.

A. Modified potentials

If the kinetic energy operator in (4) is quadratic in mo-
menta, then the nested commutator

[V, [T , V ]] = (∇V (x))T (∇V (x)) (11)

is diagonal in coordinate space. For this reason, (11)
is usually called modifying potential. In consequence,
[V, [V, [T , V ]]] = 0 and we can replace the terms e−bihV in
(7) by the more general operator

e−bihV −cih
3[V,[T ,V ]]

involving two parameters. As a result, condition (10) becomes

f3,2 :
∑

1≤i≤j≤k≤m+1

biajbk +
m∑

i=1

ci = 1

6
. (12)

This equation can always be satisfied with a proper
choice of the coefficients ci, so that the constraints on the co-
efficients ai, bi reduce to the single condition f3,1 = 0, allow-
ing for positive coefficients. In addition, solutions with posi-
tive ci coefficients also exist. A first example is the 4th-order
composition10, 17

�
[4]
h ≡ e− h

6 V e− h
2 T e− 2h

3 V − h3

72 [V,[T ,V ]] e− h
2 T e− h

6 V . (13)

It turns out, however, that 6th-order methods using the opera-
tor (11) necessarily have some negative coefficients ai.18

B. Near-integrable systems

When the Hamiltonian can be considered as a perturbed
system, i.e., H = H0 + εVε(x) with an exactly solvable part
H0 = T + V0(x) and a small perturbation εVε(x), it is advan-
tageous to split the Hamiltonian into the dominant part H0 and
its perturbation εVε. For example, if one is interested in the
lower excited states, which evolve near the minimum of the
potential, it can be useful to separate the quadratic part and
to treat the remainder as a perturbation since the harmonic
oscillator has a simple and fast solution using FFTs.19, 20

Notice that in this case, the commutator

[εVε, [H0, εVε]] = ε2 (∇Vε (x))T (∇Vε (x))

depends only on the coordinates and modified potentials can
also be applied as before. Then, all compositions remain the
same except for replacing T by H0 and V by εVε.

With the additional information that one part of the oper-
ator is significantly smaller than the other, it is clear that the
error expansion for a consistent method �h can be asymptot-
ically expressed as

�h − e−hH =
∑

i≥1

∑

k≥si

ei,k εihk+1, as (h, ε) → (0, 0),

where the si start from the first non-vanishing error coefficient
esi ,k . We say that �h is of generalized order (s1, s2, . . . , sm)
(where s1 ≥ s2 ≥ · · · ≥ sm) if the local error satisfies that

�h − e−hH = O(εhs1+1 + ε2hs2+1 + · · · + εmhsm+1).

Thus, for a method of generalized order (8, 2), denoted by
�

(8,2)
h , the error reads

�
(8,2)
h − e−hH = e1,9εh

9 + e2,2ε
2h3 + O(ε3h3).

This class of schemes can also be applied in several other
situations. For instance, suppose one takes a sufficiently fine
mesh. Then ‖T ‖  ‖V ‖ and the previous considerations ap-
ply (with H0 = T).

C. Complex coefficients

A third possibility consists of considering complex co-
efficients in the composition (7) (with or without modified
potentials). In other problems where the presence of negative
real coefficients is unacceptable, the use of high-order split-
ting methods with complex coefficients having positive real
part has shown to possess some advantages. In recent years
a systematic search for new methods with complex coeffi-
cients has been carried out and the resulting schemes have
been tested in different settings: Hamiltonian systems in ce-
lestial mechanics,21 the time-dependent Schrödinger equation
in quantum mechanics22, 23 and also in the more abstract set-
ting of evolution equations with unbounded operators gener-
ating analytic semigroups.24, 25 It is worth noticing that the
propagator exp (z�) (z ∈ C) associated with the Laplacian is
well-defined (in a reasonable distributional sense) if and only
if Re(z) ≥ 0,24 which is the case for the presented methods.

Many of the existing splitting methods with complex co-
efficients have been constructed by applying the composition
technique to the symmetric second-order leapfrog scheme (6).
For example, a fourth-order integrator can be obtained with
the symmetric composition

�
[4]
h = �

[2]
αh �

[2]
βh �

[2]
αh , (14)

where

α = 1

2 − 21/3e2ikπ/3
, β = 21/3e2ikπ/3

2 − 21/3e2ikπ/3
(15)

and k = 1, 2. In both cases, one has Re(α), Re(β) > 0.
Higher order composition methods with complex coefficients
and positive real part can be found in Refs. 24, 25, and 27,
where several numerical examples are also reported.
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IV. NEW SPLITTING METHODS FOR THE ITP
PROBLEM

In this section, we carry out a systematic search
of methods within the classes (a)–(c) above enumerated.
The best methods for each subclass are stated online26

with 25 digits of accuracy whereas the methods used in
Sec. V are given in the subsequent tables with 18 digits for
simplicity.

We only consider symmetric methods and, since T and V

have qualitatively different properties, we analyze both TVT-
and VTV-type compositions, defined as

�
[p]
h = e−a1hT e−b1hV e−a2hT · · · e−a2hT e−b1hV e−a1hT (16)

and

�
[p]
h = e−b1hV e−a1hT e−b2hV · · · e−b2hV e−a1hT e−b1hV , (17)

respectively. In principle, both compositions have the same
computational cost for the same number of exponentials. Nev-
ertheless, due to a projection step to the real part after each
full time-step, only in the VTV composition we can concate-
nate the last map in the current step with the first stage in the
next one. The TVT compositions thus require two additional
FFTs in comparison with the VTV composition, and this is
accounted for in the numerical experiments.

The methods we obtain are classified into two families:
(i) methods without modified potentials and (ii) methods with
modified potentials. For each class we distinguish between
methods for general problems (with the unique constraint
that [V, [V, [T , V ]]] = 0) and methods for near-integrable
problems (when the main dominant part contains the kinetic
energy).

We have explored both TVT and VTV compositions with
different number of stages. In some cases we consider ex-
tra stages to have free parameters for optimization. When the
number and complexity of the order conditions is relatively
low, we get all solutions. We then select the solutions hav-
ing all of their coefficients with positive real part. Finally, we
choose the solution which minimizes

∑

i

(|ai | + |bi |) (18)

and/or minimizes the absolute value of the real part of the co-
efficients appearing at the leading error terms. These methods
are subsequently tested on several numerical examples. After
this process, we collect a number of schemes offering the best
performance for most of the problems considered. In practice,
however, one has to bear in mind that the relative performance
between different methods depends eventually on the particu-
lar problem considered, the desired accuracy, the initial con-
ditions, etc.

A. Methods without modified potentials

TVT and VTV compositions with 3 up to 9 stages have
been analyzed. To simplify the notation, we denote composi-

TABLE I. Compositions TVT without modified potentials.

T845 = a1 b1 a2 b2 a3 b3 a3 b2 a2 b1 a1

a1 = 0.071401131540044698 + 0.010155431019886789i

b1 = 0.178696854264631978 + 0.028197506313218021i

a2 = 0.236383805190074736 + 0.070427007139534522i
b2 = 0.198453474708154649 + 0.082962314733854963i

a3 = 1/2 − (a1 + a2) = 0.1922... − 0.0806...i
b3 = 1 − 2(b1 + b2) = 0.2457... − 0.2223...i

T8647 = a1 b1 a2 b2 a3 b3 a4 b4 a4 b3 a3 b2 a2 b1 a1

a1 = 0.055705821110864236 + 0.018670384565085049i

b1 = 0.115779449626990422 + 0.046131356173382847i
a2 = 0.118843282163492564 − 0.024151805322796634i

b2 = 0.129128920804026450 − 0.119039413303774209i

a3 = 0.158591515575195578 − 0.076302551893579599i
b3 = 0.184643464154438944 − 0.003053761445376182i

a4 = 1/2 − (a1 + a2 + a3) = 0.1669... + 0.0818...i
b4 = 1 − 2(b1 + b2 + b3) = 0.1409... + 0.1519...i

T869 = a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 a5 b4 a4 b3 a3 b2 a2 b1 a1

a1 = 0.042257897299860339 − 0.014215780224181831i

b1 = 0.094894869367770736 − 0.037963806472588094i
a2 = 0.095260398471830494 + 0.004518725891475591i

b2 = 0.097374660381711248 + 0.088518877931710497i

a3 = 0.099960578944766657 + 0.090271995071312563i
b3 = 0.118584793520055816 + 0.038356250608401259i

a4 = 0.148695530402608487 + 0.011438117187614089i

b4 = 0.136865119760326031 − 0.023587404969570006i
a5 = 1/2 − (a1 + a2 + a3 + a4) = 0.1138... − 0.0920...i
b5 = 1 − 2(b1 + b2 + b3 + b4) = 0.1046... − 0.1306...i

tions (16) and (17) as

Tnm = a1 b1 a2 · · · a2 b1 a1,

Vnm = b1 a1 b2 · · · b2 a1 b1,

respectively. Here n indicates the order (or generalized order)
of the method and m corresponds to the number of stages,
i.e., the number of bi coefficients in the TVT composition
or the number of ai coefficients in the VTV composition.
The coefficients of the selected TVT methods are collected in
Table I, whereas those corresponding to the TVT methods are
displayed in Table II.

1. Methods for general problems

Analogously to (8), the symmetric compositions (16)
and (17) can be formally expressed as a single exponential
�

[p]
h = exp(−hH) with polynomials fi, j in ak, bl multiplying

commutators Ei, j:

H = T + V + h2(f3,1E3,1 + f3,2E3,2)

+ h4(f5,1E5,1 + f5,2E5,2 + f5,3E5,3 + f5,4E5,4)

+ h6(f7,1E7,1 + f7,2E7,2 + · · · ) + · · · ,

where the Ei, j are chosen to form a basis of the algebra of
commutators of length i. The chosen basis elements relevant
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TABLE II. Compositions VTV without modified potentials.

V845 = b1 a1 b2 a2 b3 a3 b3 a2 b2 a1 b1

b1 = 0.052472525516129026 − 0.010958940842458138i

a1 = 0.175962140656732362 − 0.054483056228160557i

b2 = 0.246023563332753880 − 0.125228547924834352i
a2 = 0.181259898687454283 − 0.034864508232090522i

b3 = 1/2 − (b1 + b2) = 0.2015... + 0.1362...i
a3 = 1 − 2(a1 + a2) = 0.2856... + 0.1787...i

V8647 = b1 a1 b2 a2 b3 a3 b4 a4 b4 a3 b3 a2 b2 a1 b1

b1 = 0.060017770752528926 − 0.009696150746907738i

a1 = 0.108904710931114447 − 0.075700232434276860i
b2 = 0.067017987316853817 + 0.003927567742822542i

a2 = 0.106594114300156182 + 0.139651903644940761i

b3 = 0.189300872388005476 + 0.091055103879530385i
a3 = 0.204897016414416105 + 0.009719057955143112i

b4 = 1/2 − (b1 + b2 + b3) = 0.1837... − 0.0853...i
a4 = 1 − 2(a1 + a2 + a3) = 0.1592... − 0.1473...i

V869 = b1 a1 b2 a2 b3 a3 b4 a4 b5 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1

b1 = 0.032497706037458608 + 0.010641310380458924i

a1 = 0.087895680441261752 + 0.036052576182866484i
b2 = 0.094180923422602148 + 0.023866875362648754i

a2 = 0.095351855399045611 − 0.065128376035135147i

b3 = 0.101132953097231180 − 0.112201757337044841i
a3 = 0.121865575594908413 − 0.054974002471495827i

b4 = 0.160941382119434892 − 0.016127643896952891i

a4 = 0.141506882718462097 + 0.024607229046524026i
b5 = 1/2 − (b1 + b2 + b3 + b4) = 0.1112... + 0.0938...i
a5 = 1 − 2(a1 + a2 + a3 + a4) = 0.1068... + 0.1189...i

for our exposition are

E3,1 = [T , [T , V ]], E3,2 = [V, [T , V ]],

E5,1 = [T , [T , [T , [T , V ]]]], E5,2 = [V, [T , [T , [T , V ]]]],

E5,3 = −[T , [V, [T , [T , V ]]]], E5,4 = [V, [V, [T , [T , V ]]]],

E7,1 = [T , [T ,E5,1]], E7,2 = [V, [T ,E5,1]].

Here we summarize some of the methods which have been
analyzed:

a. 3-stage compositions. A 3-stage composition has suf-
ficient parameters to build 4th-order methods. There is one
real solution and two complex solutions (conjugate to each
other). For example, the VTV method corresponds to the
composition (14) when �

[2]
h is given by (6). The TVT version

is obtained by interchanging T and V .

b. 5-stage compositions. Fourth-order methods with two
free parameters can be obtained using 5-stage symmetric
compositions. These two parameters can be used to build
methods of effective order 6 (i.e., 4th-order methods that
are conjugate to 6th-order methods by a near-identity change
of variables). This requires to impose some additional con-
straints on the leading error terms, f5,j, j = 1, 2, 3, 4. Specif-
ically, these are f5,1 − f5,2 = 0 and f5,3 + f5,4 = 0.28 We have
found six solutions for the TVT composition and three solu-
tions for the VTV composition with coefficients having posi-

tive real part. The solutions with smallest error terms at order
5 are denoted by T45 and V45.26

c. 7-stage compositions. In principle, there are sufficient
parameters to build 6th-order methods with 7 stages. For the
TVT composition there are 11 solutions with all coefficients
having positive real parts. The solution leading to a minimum
value of the norm of the error at order 7 can be found online.26

With respect to the VTV composition, the best method
we have found is identical with the most efficient sixth-order
method obtained by Chambers,21 where it has been presented
as a symmetric composition similar to (14) but with 7 stages
instead of 3, and with �

[2]
h given by (6).

2. Methods for near-integrable problems

Proceeding analogously as before, we arrive at the fol-
lowing methods. We recall that in all compositions one should
replace T by H0 and V by εVε.

a. n-stage compositions of generalized order (2n, 2). This
class of compositions has real and positive coefficients.29, 30 A
4-stage VTV composition of generalized order (8, 2) is given
by scheme V84MLR

4 in Table IV with c1 = 0.

b. 5-stage compositions. To build a method of general-
ized order (8,4) the following conditions must be satisfied by a
consistent and symmetric method: f3,1 = f3,2 = f5,1 = f7,1 = 0.
It requires at least 5 stages, and in this case only one solution
with all coefficients having positive real part is found both
for the TVT and VTV compositions. The coefficients of these
methods, denoted by T845 and V845, are collected in Tables I
and II, respectively.

c. (8,6,4) methods. To build a (8,6,4) method, the coef-
ficients of a consistent and symmetric method must satisfy the
following order conditions: f3,1 = f3,2 = f5,1 = f5,2 = f5,3 = f7,1

= 0. They, therefore, require at least 7 stages. In this case,
it is possible to get all solutions. Scheme T8647 corresponds
to the solution minimizing (18), whereas V8647 provides the
minimum value of |f5,3 + f5,4|.

d. (8,6) methods. Increasing the number of stages to 9
we have two free parameters, which are used to satisfy in
addition the following conditions: f5,4 = f7,2 = 0. In this
way, methods of generalized order (8,6) and effective order
(10,8,6) are obtained. Two efficient schemes correspond to
T869 and V869 in Tables I and II, respectively.31

B. Methods with modified potentials

Fourth-order methods incorporating modified potentials
do exist with real and positive coefficients. In fact, 2- and
3-stage schemes have been extensively studied.11, 12, 18 Meth-
ods of generalized order (n, 4) also exist with positive real
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TABLE III. Compositions TVT with modified potentials.

T84M5 = a1 (b1 c1) a2 (b2 c2) a3 (b3 c3) a3 (b2 c2) a2 (b1 c1) a1

a1 = 0.058520963359694865
b1 = 0.145381537601615725, c1 = 0.000245906549261228
a2 = 0.207903047442871771
b2 = 0.244351408696638327, c2 = 0.000259178561419125
a3 = 1/2 − (a1 + a2) = 0.2336...
b3 = 1 − 2(b1 + b2) = 0.2205..., c3 = 0.000938105701711153

T86M5 = a1 (b1 c1) a2 (b2 c2) a3 (b3 c3) a3 (b2 c2) a2 (b1 c1) a1

a1 = 0.063556051997493102 + 0.010606890396680920i

b1 = 0.156939525347224563 + 0.027931306200415819i
c1 = 0.000133739181746125 + 0.000085540153220213i

a2 = 0.208998817231756322 + 0.040240203826523395i

b2 = 0.222383136675982213 + 0.026033262090035938i
c2 = 0.000484323504408882 + 0.000241671051573332i

a3 = 1/2 − (a1 + a2) = 0.2274... − 0.0508...i
b3 = 1 − 2(b1 + b2) = 0.2414... − 0.1079...i
c3 = 0.000179180363327321 − 0.000858304413034511i

coefficients.30 Here, we construct new methods of general-
ized order (6,4) and (8,4) with this property and generalize
the treatment to 6th-order schemes with complex coefficients.
In all cases, we take compositions TVT and VTV with up to
5 stages and denote them as

TnMm = a1 (b1 c1) a2 · · · a2 (b1 c1) a1,

VnMm = (b1 c1) a1 (b2 c2) · · · (b2 c2) a1 (b1 c1).

Here, the parenthesis is used to help counting of the number of
exponentials, and the letter M indicates that the methods use
modified potentials. Notice that the number of free parame-
ters can differ for the TVT and VTV sequences with the same
number of exponentials because the exponent of a modified
potential contains two parameters. The coefficients of the se-
lected methods are collected in Tables III and IV for the TVT
and VTV compositions, respectively.

1. Methods for general problems

a. 4-stage compositions. Under the restriction of hav-
ing real positive coefficients, we have obtained the fourth-
order VTV method OMF-4M, already discovered in Ref. 11
(Eq. (36) therein).

The VTV composition allows one to build 6th-order
methods, whereas the TVT needs an extra stage. There is only
one solution (and its complex conjugate) with all coefficients
having positive real part. It is denoted by V6M4 and can be
found in the supplementary material.26

2. Methods for near-integrable problems

We first consider (n, 4) methods with real and positive
coefficients. For schemes of generalized order (8,6) we collect
only complex solutions with positive real part.

a. (6,4) methods. They require at least 3 stages to satisfy
the following order conditions: f3,1 = f3,2 = f5,1 = 0. The co-
efficients ai and bi correspond to the methods (6,2) obtained

TABLE IV. Compositions VTV with modified potentials.

V84M5 = (b1 c1) a1 (b2 c2) a2 (b3 c3) a3(b3 c3) a2 (b2 c2) a1 (b1 c1)
b1 = 0.042308451243127365, c1 = 0.000232966269565498
a1 = 0.142939324267716184
b2 = 0.219303568753387110, c2 = 5.56677120231130 × 10−7

a2 = 0.242474508234531493
b3 = 1/2 − (b1 + b2) = 0.2292..., c3 = 0.000794490777479431
a3 = 1 − 2(a1 + a2) = 0.2384...

V84MLR
4 = (b1 c1) a1 (b2 c2) a2 (b3 c3) a2 (b2 c2) a1 (b1 c1)

b1 = 1/20, c1 = 3861−791
√

21
129600 , a1 = 1/2 − √

3/28
b2 = 49/180, c2 = 0
a2 = 1/2 − a1 = √

3/28
b3 = 1 − 2(b1 + b2) = 16/45, c3 = 0

V86M5 = (b1 c1) a1 (b2 c2) a2 (b3 c3) a3(b3 c3) a2 (b2 c2) a1 (b1 c1)
b1 = 0.046213625838152095 − 0.007824529355983108i

c1 = 0.000035830461339520 + 0.000074370857685421i
a1 = 0.152650950104799817 − 0.030279967163699065i

b2 = 0.224258052678856384 − 0.050879282402761772i
c2 = 0.000338053435041382 − 0.000490508913279372i

a2 = 0.226364275186039762 − 0.016537249619936515i

b3 = 1/2 − (b1 + b2) = 0.2295... + 0.0587...i
c3 = 0.000408311644874003 + 0.000484371967433683i

a3 = 1 − 2(a1 + a2) = 0.2420... + 0.0936...i

in Ref. 29 (without modified potentials). We have also con-
sidered methods with 4 stages in order to have additional free
parameters. As previously mentioned, there is the same num-
ber of order conditions as parameters to get a method of order
6 for the VTV sequence, but there are no solutions with co-
efficients being real and positive. To get a sixth-order method
the following conditions must also to be satisfied: f5,2 = f5,3

= f5,4 = 0. The coefficients ci only appear in f5,3 and f5,4 and
can only be used to cancel these terms. The VTV sequence
has three free parameters which can be used to annihilate f5,3

and f5,4 and to minimize the absolute value of f5,2 under the
constraint that all coefficients must be real and positive. The
TVT sequence has only two free parameters which can be
used to annihilate f5,3 and to minimize the absolute value of
the dominant term, f5,2, under the same constraint on the co-
efficients. The best methods we have obtained are denoted by
T64M4 and V64M4 and are published online.26

b. (8,4) methods. They require at least 4 stages. The co-
efficients ai and bi correspond to the methods (8,2) without
using modified potentials and obtained in Ref. 29. There is
one coefficients ci in the TVT composition which can be used
to cancel f5,3, and two coefficients ci in the VTV composi-
tion which can be used to annihilate f5,3 and f5,4. The solu-
tion with c2 = c3 = 0 was already obtained in Ref. 30. We
have collected the corresponding coefficients for this method,
V84MLR

4 , in Table IV. We have also considered methods with
5 stages in order to have an additional free parameters. There
is the same number of order conditions as parameters to get a
method of order (8,6) (which would be of order 6 for a gen-
eral problem) but, obviously, there are no solutions with co-
efficients real and positive. As in the previous case, the term
f5,2 cannot be zeroed using real positive coefficients. Then in
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both TVT and VTV compositions we have chosen the method
which, while having real and positive coefficients, minimize
its absolute value. The best methods we have obtained are de-
noted by T84M5 and V84M5.

c. (8,6) methods. They require at least 5 stages and do
not admit real and positive solutions for the coefficients and
we are forced to consider complex solutions. We have found
only one solution with positive real part in the coefficients
for both TVT and VTV compositions. The coefficients for
the methods denoted by T86M5 and V86M5 are given in
Tables III and IV, respectively.

V. NUMERICAL EXAMPLES

A. Efficiency of the methods

As test bench for the numerical methods, we consider
in the following two qualitatively different cases, the Pöschl-
Teller potential and a perturbed harmonic oscillator, the lat-
ter being a classic example of a near-integrable system and of
practical interest.3 These two problems can be numerically in-
tegrated using modified potentials. However, we compare the
relative performance of the methods (with and without mod-
ified potentials) separately in order to study the performance
of the methods when it is not feasible to compute the gradient
of the potential.

The numerical integration proceeds as follows: starting
from random initial data, we iterate with fixed time-step until
the sufficiently large final time T = 100 and compare the re-
sult with the exact solution, ψ(T), which has been obtained by
integrating with a much smaller time step. The spatial interval
is fixed for all experiments to [−10, 10] and is discretized with
N = 128 equidistant mesh points. Similar results are obtained
for larger N = 256, 512, 1024. At each step, we project the ob-
tained vector to its real part and normalize it to one in �2(R),
i.e., given the method �

[p]
h and initial conditions, un ∈ RN ,

we compute un+1 as

ũn+1 = �
[p]
h un,

then, since ũn+1 is a complex vector (but O(hp) away from
a real vector) we project on the real space by removing the
imaginary part

ūn+1 = Re(ũn+1)

and then normalize the solution un+1 = ūn+1/‖ūn+1‖, where
the norm is given by

‖w‖2 ≡ �x

N−1∑

j=0

w2
j , w = (w0, . . . , wN−1) ∈ RN.

We take as the computational cost the number of Fourier
transforms necessary until the final time. In addition, the
methods using complex coefficients are penalized by a fac-
tor 2 in the computational cost, which comes from the use of
complex Fourier transforms instead of real FFT. We repeat the
numerical integrations for different values of the time step,
i.e., h = T/M for different values of M. We take as the ap-
proximate solution, φ(T) = un in each case and measure the

error as

error = ‖ψ(T ) − φ(T )‖.
This procedure will allow us to determine the efficiency

of the new splitting methods, which will depend on the de-
sired accuracy, and thereby choose the methods which are
most appropriate for implementation with a more efficient
algorithm that is based on variable time step and order. We
distinguish two types of problems: on the one hand, meth-
ods that include modified potentials, the reference methods
being Chin-4M (13), OMF-4M11 and V84MLR

4
30 given in Ta-

ble IV as well as a differently optimized scheme with three
modified potentials SCB-4M32 and on the other hand, meth-
ods without modifying potentials with the reference meth-
ods V82,29 the fourth order complex triple-jump scheme (14),
referenced as Yoshida 4 and a 6th-order complex coefficient
method by Chambers.21 As a reference, we also include the
results obtained by a 6-stage sixth-order extrapolation method
which takes the Strang splitting (6) as the basic method with
the same decompositions like the other methods (T + V and
H0 + εVε for the perturbed problem, respectively), and it is
used with time steps h, h/2, and h/3. We remark that all rel-
evant methods in the cited papers have been tested and the
most efficient ones for this problem are included in the plots.

1. Pöschl-Teller potential

We have chosen the well-known one-dimensional
Pöschl-Teller potential for the availability of analytic solu-
tions of the eigenstates

H = −1

2

∂2

∂x2
− λ(λ + 1)

2
(sech(x)2 − 1), (19)

with λ(λ + 1) = 10. The results of our computation are shown
in Figure 1(a). The higher order of the complex coefficient
methods outweighs their extra cost starting from moderate ac-
curacy. The optimizations of the error terms can be clearly
appreciated in the comparison with the 4th order triple-jump
(14). When we consider methods with modified potentials, we
observe that the new methods show only slight improvements
with respect to the method OMF-4M since both parts of the
splitting T and V are of comparable size. As the desired pre-
cision is increased, the new sixth order methods dominate in
efficiency.

2. Perturbed harmonic oscillator

To illustrate the benefits of methods designed for near
integrable systems, we use the Hamiltonian

H = −1

2

∂2

∂x2
+ 1

2
ω2x2 + εVε(x)

and split it in a large part HHO = − 1
2

∂2

∂x2 + 1
2ω2x2 and a small

part εVε(x). The trap frequency is set to ω = 1 and the pertur-
bation εVε is given by the Pöschl-Teller potential in (19), with
λ(λ + 1) = 2/5. The harmonic part HHO can be solved exactly
via an exact splitting using Fourier transforms, cf. Ref. 19,
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FIG. 1. In the first row, efficiency curves (error vs. number of FFTs) for methods without force evaluations are presented, with the new methods (triangles)
performing best for high accuracies. The middle rows depict methods based on modified potentials. In the right column, T86M5 intersects with V84M5 at
precision 10−13, whereas it already improves on T84M5 at 10−9 for the left column. SCB-4M has the parameters (cf. Ref. 32 for notation) t0 = 0.1215 and a1
= 0.33 and overlaps with Chin-4M in the right plot and has thus been omitted. In the bottom row, the random initial conditions (green line), the ground states
(black line), and the potentials (dashed blue line), scaled by 1/5 to fit the axis, are shown. (a) Unperturbed Pöschl-Teller potential and (b) HO perturbed by a
Pöschl-Teller potential.

where it is shown that

e−iδHHO ≡ e−i ω
2 tan( δω

2 ) x2
e−i 1

2ω
sin(δω) p2

e−i ω
2 tan( δω

2 ) x2
,

for |δω| < π and p2 ≡ − ∂2

∂x2 .
From the computational point of view, it is suggested20 to

consider the VTV split instead of the TVT split because it can
be concatenated with the perturbation which only depends on
the coordinates and no additional FFTs are necessary, i.e.,

. . . e−ibj+1τεV e−iaj τHHOe−ibj τεV . . . .

In Ref. 19, this decomposition is generalized to the two-
dimensional problem H = 1

2 (p2
x + p2

y) + 1
2 (w2

1x
2 + w2

2y
2)

− �(xpy − ypx) and in Ref. 20 to the non homoge-

neous and possibly time-dependent one-dimensional problem
H = 1

2p2 + 1
2w(t)x2 + f (t)p + g(t)x.

After the substitution δ = −ih, we have

e−hHHO ≡ e− ω
2 tanh( hω

2 ) x2
e− 1

2ω
sinh(hω) p2

e− ω
2 tanh( hω

2 ) x2
,

for |Im(h)ω| < π and Re(h) > 0 (for numerical stability) and
the perturbation part is easily propagated after discretization
by the exponential of a diagonal matrix. In this setting, the
higher order in the small parameter is amplified and the ef-
ficiency plots in Figure 1(b) indicate that the new methods
outperform the existing ones when high precision is sought
and overall when modified potentials are allowed. We ob-
serve in both examples that, when modified potentials can be
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computed without exceedingly large computational cost, they
should be used.

Further numerical experiments show that the efficiency
curves are independent of the mesh size, i.e., the norm of T,
and the cost only increases as Nlog (N) as expected. The rea-
son for this can be understood by following the evolution of
the state vector along the iterations of the algorithm. Whereas
in the beginning one has a non-smooth configuration u0, af-
ter a few steps the vector ui is close to an eigenstate and thus
smoothened.

It is important to remark that the methods proposed in this
work can be implemented in an algorithm which uses variable
step, variable order, variable mesh size, and variable simple-
double precision. The best implementation can depend on the
class of problems to be solved. For illustration, we present an
implementation with variable time steps.

B. Variable step method

The previous examples show that for low accuracies and
large time steps, the (8,2) method (with real coefficients) per-
forms best. However, if we allow for variable time steps, as
proposed in Refs. 5 and 7, the computational cost is drasti-
cally reduced. We propose an improved time-stepping algo-
rithm that is based on two different estimators for the eigen-
value.

Recall that fixing the time-step and iterating to conver-
gence will yield an eigenvector with the error being of the
order of the method O(hp) since we are computing exactly
the spectrum of a perturbed Hamiltonian. Assume now that
we are close to convergence, i.e., one has obtained an eigen-
vector un = v0 + O (hp) and we consider the decomposition
in the basis of exact eigenvectors vi of H,

un =
N−1∑

i=0

divi, where
N−1∑

i=0

|di |2 = 1.

It is clear that di = O(hp), i > 1 and due to the nor-
malization d0 = 1 + O(h2p)). Then, an energy estimation is
given by

Eh,1 ≡ uT
n Hun = E0 + O(h2p).

Alternatively, the energy can be estimated by the loss of norm
in each time step,

ūn+1 = e−hH un + O(hp+1) = e−hE0v0 + O(hp+1)

and then

Eh,2 ≡ log (‖ūn+1‖)

h
= E0 + chp + O(hp+1).

Combining both expressions yields an error estimate for the
energy,

�Eh ≡ Eh,2 − Eh,1 = chp + O(hp+1).

The convergence in energy is measured by comparison with
the previous time step,

δEn
h ≡ En

h,1 − En−1
h,1 = dh2p + O(h2p+1).

The time stepper then works as follows: starting from a large
step size, the time step is decreased by a factor 1/2 whenever

the actual reduction in energy of the iteration δE falls below
the maximally reachable precision �E, i.e., |δE| < (�E)2

and the iteration is terminated once the error estimate �E has
reached a given tolerance.

For the numerical experiments, we use the same config-
urations as for constant time step but terminate the algorithm
when convergence in energy is reached at �E < 10−10. The
iterations are initialized with random normalized data and a
time step of τ = 10. The results are displayed in Figure 2(a)
for the Pöschl-Teller potential and in Figure 2(b) for the per-
turbed harmonic oscillator with the same parameters as in the
fixed-step size experiments. The error is measured as the �2

norm of the difference between the current value of the algo-
rithm ψ(t) and the exact ground state φ(T) as in the previous
experiments, error = ‖ψ(t) − φ(T )‖.

As expected, it is apparent that lower order methods show
better smoothing behavior for the first steps, when the wave
function is still rough (recall that the algorithm is initialized
by a worst-case wave function). For higher precisions, the new
methods clearly outperform the existing ones, with the sole
exception of the unperturbed setting with modified potentials,
where the globally optimized OMF-4M method can hardly be
improved unless extremely high precision is sought and the
6th order methods of Tables IV and III become favorable (not
shown). Finally, if one is interested in very high accuracies,
high order extrapolation methods1, 33 can be used for the last
part of the time integration.

The results indicate that for low precision, i.e., for the
first iterations, a lower order method should be used and then,
after a certain precision is reached, e.g., when the higher order
methods exhibit their superiority the algorithm should change
to the optimal method, either V8647 or V86M5 until conver-
gence. Further preliminary experiments on this adaptive order
strategy have shown that there is plenty of room for optimiza-
tion, e.g., by changing the initial step-size, adjusting the step-
size by a different factor or by modifying the control criterion.
Each of which has certain advantages and disadvantages, de-
pending on the initial conditions and the range of precision.

For excited states, one expects an even better perfor-
mance of the new methods since several states have to be
computed to high precision in order to avoid error accumu-
lation and the gains of the new methods are thus amplified.
We have confirmed this conjecture by numerical experiments.
The results thereof are omitted in the article since they do not
contribute insight beyond the presented experiments: they are
qualitatively identical.

VI. CONCLUSIONS AND OUTLOOK

We have studied the Schrödinger eigenvalue problem by
the imaginary time propagation method and proposed split-
ting schemes with positive real coefficients using modified
potentials as well as with complex coefficients that can over-
come the order barrier for parabolic problems since the coef-
ficients have only positive real parts. The obtained sixth order
methods are clearly superior to any classical ones for high
precisions. On the other hand, when the gradient of the po-
tential can be cheaply evaluated, the high order methods with
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FIG. 2. Evolution of precision in the �2 norm of the position vector with the variable time step algorithm described in Sec. V B. As in Fig. 1, the top row gives
the results for standard methods whereas the bottom row shows methods with modifying potentials. (a) Unperturbed case (b) Perturbed case.

complex coefficients are efficient only at very high accuracies
due to the double cost caused by complex arithmetic.

We have proposed different high order methods to reach
highly accurate results. An efficient implementation should
take into account, for example, a preliminary time integration
on a coarse mesh using simple precision arithmetic in order to
get, as fast as possible, a smooth and relatively accurate solu-
tion from a random initial guess, and next consider a refined
mesh using arithmetic in double precision. For simple preci-
sion arithmetic and low accuracies, it suffices to consider only
low order methods, and when higher accuracies are desired
we turn to double precision, variable time step, and variable
order methods. The best algorithm could depend on the class
of problems to solve.

It is also important to remark that the form of the expo-
nent allows that the techniques presented in this work can also
be transferred to other areas whenever splitting is appropriate
and the integration has to be performed forward in time, e.g.,
statistical mechanics of quantum systems, where one has to
compute the Boltzman operator exp (−βH), with β = (kT)−1

or quantum Monte-Carlo simulations.22

Finally, we would like to mention that real time integra-
tion with complex coefficients is under investigation. To com-
pute e−iai tT requires complex FFTs, and this is irrespective of
the coefficients ai being real or complex. However, the con-
straints Im(ai) ≤ 0 and the consistency condition,

∑
iai = 1,

necessarily require ai ∈ R, while bi can be complex. A large
number of new methods have been explored, but the superi-
ority is not yet clear since there exist highly efficient methods
with real coefficients for perturbed problems28, 34 and using
modified potentials.35
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