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Abstract
A large number of splitting methods for autonomous separable systems exist
in the literature which have been designed for many different structures of the
vector field. However, the performance of most of these methods is diminished
and their orders of accuracy are frequently reduced when applied to non-
autonomous problems. Based on the formal solution obtained from the Magnus
series expansion, we show how to modify a standard splitting method for
autonomous problems to treat non-autonomous systems with similar or better
efficiency. We illustrate this technique to build new fourth- and sixth-order
schemes whose performance is then illustrated on several numerical examples.
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1. Introduction

Splitting methods constitute a widespread procedure to integrate numerically differential
equations, particularly in the context of geometric integration. Suppose we have a system of
ODEs of the form

x ′ = f (x) = f [A](x) + f [B](x), x(t0) = x0 ∈ R
d , (1)

with f : R
d −→ R

d and such that the associated vector field (or Lie operator) is split
accordingly as Lf = Lf [A] + Lf [B] , with

Lf [A] =
d∑

i=1

f
[A]
i (x)

∂

∂xi

, Lf [B] =
d∑

i=1

f
[B]
i (x)

∂

∂xi

.
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Suppose in addition that the h-flows ϕ
[A]
h and ϕ

[B]
h corresponding to Lf [A] and Lf [B] , i.e., the

solution of the systems

x ′ = f [A](x), x ′ = f [B](x),

respectively, can be either exactly computed or accurately approximated. In that case it is
useful to consider splitting methods of the form

ψh = ϕ
[A]
a1h

◦ ϕ
[B]
b1h

◦ ϕ
[A]
a2h

◦ · · · ◦ ϕ
[B]
bm−1h

◦ ϕ
[A]
amh ◦ ϕ

[B]
bmh (2)

with ai, bi ∈ R chosen as to ensure that the numerical integrator ψh is an approximation of
order p in the time step h to the exact flow ϕh.

A large number of splitting methods of different orders exist in the literature (see
[10, 13, 17] and references therein) which are especially adapted to numerically integrate
different families of problems. Thus, one could distinguish, for example (i) the general
separable problem (1), when no more assumptions are made on the vector fields Lf [A] and
Lf [B] ; (ii) near-integrable systems, which correspond to x ′ = f [A](x)+εf [B](x) with ‖ε‖ � 1;
(iii) the second-order differential equation x ′′ = g(x), etc. The performance of the different
splitting schemes may greatly differ depending on the particular problem where they are used.
It is important, then, to first analyse the problem to be solved in order to choose the most
appropriate method.

If the problem is non-autonomous, i.e.,

x ′ = f (x, t) = f [A](x, t) + f [B](x, t), x(t0) = x0, (3)

the usual trick of taking t as a new coordinate allows us to apply standard algorithms on
the transformed (autonomous) equation. More specifically, equation (3) is equivalent to the
enlarged system

d

dt




x

xt1

xt2


 =




f [A](x, xt1)

0
1


︸ ︷︷ ︸

f̂ [A]

+




f [B](x, xt2)

1
0


︸ ︷︷ ︸

f̂ [B]

(4)

with xt1, xt2 ∈ R. Note that if the systems

y ′ = f̂ [A](y), y ′ = f̂ [B](y)

with y = (x, xt1, xt2) are solvable, then a splitting method similar to (2) can be used, since xt1

is constant when integrating the first equation and xt2 is constant when solving the second one.
This, in fact, can be considered as a generalization of the procedure proposed in [21] for time-
dependent and separable Hamiltonian systems, and is of interest if the time-dependent part in
f [A] and f [B] is cheap to compute. Otherwise the overall algorithm may be computationally
costly, since these functions have to be evaluated m times (the number of stages in (2)) per
time step.

Another drawback of the procedure is the following. Suppose that, when the time is
frozen, the function f in (3) has a special structure which allows us to apply highly efficient
integrators. If now t is a variable, with (4) this time dependency is eliminated but the structure
of the equation is generally modified and one has to resort to more general and less efficient
integrators. Let us illustrate this issue with a simple example.

Example. Consider the time-dependent Hamiltonian

H(q, p, t) = e−εt 1
2p2 + eεt

(
1
4q4 − 1

2q2 − δ cos(ωt)q
)
, (5)
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Figure 1. Average error versus number of force evaluations in the numerical integration of (6) using
sixth- and eighth-order symplectic integrators for general separable systems (SS96 and SS178)
and a sixth-order symplectic integrator for Nyström problems SRKN116 with initial conditions
q(0) = 1.75, p(0) = 0. (a) ε = δ = 0; (b) ε = 1/20, δ = 1/4, ω = 1.

q, p ∈ R, with associated equations

q ′ = e−εtp, p′ = −eεt (q3 − q − δ cos(ωt)). (6)

This system corresponds to the well-known Duffing oscillator [9]. Let us discuss first the
autonomous case, ε = δ = 0, and integrate the corresponding equations (6) with a symplectic
method. In fact, since the kinetic energy is quadratic in momenta, symplectic Nyström methods
usually show the best performance [20]. Thus, we carry out the integration in this case with the
9-stage sixth-order SS96 and the 17-stage eighth-order SS178 methods for general separable
problems built by McLachlan [15], and the symmetric 11-stage sixth-order Nyström method
SRKN116 given in [6].

We take as initial conditions q(0) = 1.75, p(0) = 0, integrate up to t = 10π and measure
the average error in phase space in terms of the number of force evaluations for different time
steps (in logarithmic scale). The results are shown in figure 1(a). Observe how the especially
adapted SRKN116 scheme is the most efficient method.

Next we repeat the same experiment with ε = 1/20, δ = 1/4, ω = 1 and the splitting (4).
The corresponding results are plotted in figure 1(b). It is worth noting how the performance
of the Nyström method has deteriorated. In fact, it now behaves just as a fourth-order scheme.
In addition, each step involves 11 evaluations of the time-dependent functions.

To avoid the difficulties exhibited by the previous example, several numerical methods
based on the Magnus series have been proposed recently [5, 7]. The idea is first to express the
exact flow of x ′ = f (x, t) as the exponential of the Lie operator associated with a series of
autonomous functions w = ∑

i wi . Then this series is truncated, w ≈ w[p], and at t = t0 + h

the h-flow of the autonomous differential equation

x ′ = w[p](x), x(0) = x0 (7)

is approximated with a numerical integrator up to a certain order consistent with the previous
truncation.

The purpose of this paper is to adapt the above procedure to the explicitly time-dependent
separable system (3) and design new and efficient splitting methods for such a problem. More
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specifically, we propose to approximate the exact solution of (3) or equivalently the flow ϕh

by the composition

ψ
[p]
m,h = ϕ

[Â1]
h ◦ ϕ

[B̂1]
h ◦ ϕ

[Â2]
h ◦ · · · ◦ ϕ

[B̂m−1]
h ◦ ϕ

[Âm]
h ◦ ϕ

[B̂m]
h , (8)

where the maps ϕ
[Âi ]
h , ϕ

[B̂i ]
h are the exact h-flows corresponding to the time-independent

differential equations

x ′ = Âi(x), x ′ = B̂i(x), i = 1, . . . , m (9)

respectively, with

Âi(x) ≡
k∑

j=1

ρijf
[A](x, τj ), B̂i(x) ≡

k∑
j=1

σijf
[B](x, τj ). (10)

Here τj = t0 + cjh and the (real) constants cj , ρij , σij are chosen such that ϕh = ψ
[p]
m,h +

O(hp+1). Furthermore, our aim is that the new schemes, when applied to (3) with the time
frozen, reproduce the standard splitting (2). This will be accomplished by ensuring that∑

j ρij = ai and
∑

j σij = bi . The integrators of order 4 and 6 that we construct here satisfy
this property and are generally more efficient than standard splitting methods applied to the
enlarged system (4).

As we will show, the only restriction for cj in (10) is that they must be nodes of a
quadrature rule of order at least p, and thus Newton–Cotes, Gauss–Legendre, Lobatto and
Radau formulae are equally valid options. For instance, if a Gauss–Legendre quadrature rule
is adopted, with k evaluations of f [A](x, τj ) and f [B](x, τj ) a method of order p = 2k can be
built (taking m sufficiently large). Once the quadrature nodes τj and the number of stages m
are fixed, there still remains to obtain the coefficients ρij , σij such that ψ

[p]
m,h has the desired

order. This is done by requiring that composition (8) match the solution of (3) as given by the
Magnus expansion. The task is made easier by noting that the order conditions to be satisfied
by ρij and σij are identical both for linear and nonlinear vector fields. Thus, we first solve
the problem for the linear case and then we generalize the treatment to arbitrary nonlinear
separable problems.

The basic assumption in this approach is, obviously, that equations (9) are either solvable
or accurately and efficiently approximated. Relevant examples of this situation include:
(i) classical Hamiltonian systems with a time-dependent potential, (ii) the linear and nonlinear
Schrödinger equations with time-dependent kinetic and/or potential energy and (iii) the linear
system x ′ = M(t)x when the matrix M is split into its upper and lower triangular parts.

The class of methods we propose here is closely related to the schemes analysed in [7] for
the general equation x ′ = f (x, t). There the exact flow ϕh is approximated by the composition

ψ
[f1]
h ◦ ψ

[f2]
h ◦ · · · ◦ ψ

[fn−1]
h ◦ ψ

[fn]
h , (11)

where ψ
[fi ]
h is a map which approximates up to order p the solution of the system

x ′ = fi(x) ≡
k∑

j=1

dijf (x, τj ), i = 1, . . . , n (12)

for some constants τj , dij .
If the scheme (11) is applied to the separable problem (3), then each map ψ

[fi ]
h may be

chosen as a splitting method, since (12) is also separable. Observe, though, that this splitting
method has to be used n times per step and this is exceedingly costly for a number of problems.
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2. Magnus expansion for separable linear systems

As stated in the introduction, we first consider the simpler case of a linear time-dependent
separable problem

x ′ = M(t)x = (A(t) + B(t))x, x(t0) = x0 (13)

instead of (3) and design the new algorithms for (13). Here A(t) and B(t) are sufficiently
smooth d × d matrices, so that the maps appearing in (8) (or (2)) are simply exponentials of
linear combinations of A and B evaluated at t = τj , j = 1, . . . , k.

It has been known for a long time that, locally, the solution of (13) can be written as

x(t0 + h) = e�(h)x0, (14)

where �(h) = ∑∞
k=1 �k(h) and �k is a multiple integral of combinations of nested

commutators containing k matrices M(t) [14]. This is the so-called Magnus expansion of
the solution. An important feature of this expansion is that if (13) is defined on a Lie group
G, e� stays on G even if the series is truncated, provided M(t) belongs to the Lie algebra
associated with G [11]. In [12] it is shown how all the multidimensional integrals appearing in
� can be approximated just by evaluating M(t) at the nodes of a one-dimensional quadrature.
Also the number of commutators has been reduced to a minimum, thus producing powerful
numerical integrators [2, 3].

If M(t) is separable, as in (13), the presence of commutators in methods of order
higher than 2 typically destroys this separability and, as a consequence, the evaluation of
the exponential is more complicated [4]. This is especially serious for nonlinear problems,
since then the commutators are replaced by Lie brackets of vector fields. The new schemes
we propose here also avoid this deficiency.

When a Taylor series of the matrix M(t) is inserted in the recurrence defining the Magnus
expansion, one gets explicitly the expression of �k . To take advantage of the time-symmetry
property of the solution, the Taylor series is considered around the midpoint t1/2 = t0 + h/2.
In that case only odd powers of h appear in �. Specifically, up to order p ≡ 2s = 6 the
relevant terms in � are [2]

� = µ1 +
1

12
µ3 − 1

12
[µ1, µ2] +

1

240
[µ2, µ3] +

1

360
[µ1, µ1, µ3]

− 1

240
[µ2, µ1, µ2] +

1

720
[µ1, µ1, µ1, µ2] + O(h7), (15)

where µi = hi

(i−1)!
di−1M(t)

dt i−1

∣∣
t=t1/2

and
[
µi1 , . . . , µil−1 , µil

] ≡ [
µi1 ,

[
. . . ,

[
µil−1, µil

] · · · ]] is an

element of order O(hi1+···+il ). As is well known, µ1, µ2, µ3 can be considered as the generators
(with grades 1, 2, 3, respectively) of a graded free Lie algebra L(µ1, µ2, µ3) [18].

Let us now introduce the averaged matrices

M(i) ≡ 1

hi

∫ t0+h

t0

(t − t1/2)
iM(t) dt = 1

hi

∫ h/2

−h/2
t iM(t + t1/2) dt (16)

for i = 0, . . . , s − 1. If their analytical evaluation is not possible or is computationally
expensive, a numerical quadrature may be used instead. In fact, the integrals M(i), i � 1, can
be approximated up to the required order just by evaluating M at the nodes ci of the quadrature
rule required to compute M(0). Denoting these by Mi ≡ M(t0 + cih), i = 1, . . . , k, one can
write

M(i) = h

k∑
j=1

(
Q

(s,k)
X

)
ij
Mj , i = 0, . . . , s − 1, (17)
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with

Q
(s,k)
X =




b1 · · · bk

...
. . .

...

b1
(
c1 − 1

2

)s−1 · · · bk

(
ck − 1

2

)s−1


 (18)

and
(
Q

(s,k)
X

)
ij

stands for the element ij of the matrix Q
(s,k)
X ∈ R

s×k .
Here bi, ci are the weights and nodes, respectively, of the quadrature X. It should be

remarked that in (17) we have omitted terms of order greater than the order of the method
itself.

As an example, if fourth- and sixth-order Gauss–Legendre quadrature rules are considered,
then b1 = b2 = 1/2, c1 = 1/2 − √

3/6, c2 = 1/2 +
√

3/6 to order 4 and b1 = b3 = 5/18,

b2 = 4/9, c1 = 1/2 − √
15/10, c2 = 1/2, c3 = 1/2 +

√
15/10 to order 6, so that

Q
(2,2)
G =

(
1
2

1
2

−
√

3
12

√
3

12

)
, Q

(3,3)
G =




5
18

4
9

5
18

−
√

15
36 0

√
15

36
1

24 0 1
24


 . (19)

On the other hand, it is clear that M(i)(−h) = (−1)i+1M(i)(h) and furthermore

M(i) =
s∑

j=1

(T (s))ijµj ≡
s∑

j=1

1 − (−1)i+j

(i + j)2i+j
µj , 0 � i � s − 1. (20)

If this relation is inverted (to order 4, s = 2, and six, s = 3) one has

R(2) ≡ (T (2))−1 =
(

1 0
0 12

)
, R(3) =


 9

4 0 15
0 12 0

−15 0 180


 (21)

and the corresponding expression of µj in terms of M(i) or Mj is then given by

µi =
s∑

j=1

(R(s))ijM
(j−1) = h

k∑
j=1

(
R(s)Q

(s,k)
X

)
ij
Mj . (22)

In other words, by virtue of (22) we can write �(h) in terms of the univariate integrals (16)
and also in terms of any desired quadrature rule, although the process of construction and
analysis of the new methods is considerably simplified if one works in the free Lie algebra
L(µ1, µ2, µ3).

Let us discuss specifically the separable problem (13). It is clear that µi = αi + βi , where

αi = hi

(i − 1)!

di−1A(t)

dt i−1

∣∣∣∣
t=t1/2

, βi = hi

(i − 1)!

di−1B(t)

dt i−1

∣∣∣∣
t=t1/2

and thus, from (15),

�(h)= α1 + β1 + 1
12 (α3 + β3) + 1

12 (−[α1, α2] − [α1, β2] + [α2, β1] − [β1, β2]) +O(h5), (23)

whereas at higher orders the number of terms increases dramatically. It makes sense, then, to
impose some simplifying conditions. For instance, if we suppose that the matrices A(t) and
B(t) commute with themselves at different times, then obviously [αi, αj ] = [βi, βj ] = 0,
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Table 1. Dimension of the subspace Lp of the graded Lie algebra generated by
{α1, β1, α2, β2, α3, β3} when: (i) the algebra is free (cp,1), (ii) [αi, αj ] = [βi, βj ] = 0 for i �= j

(cp,2), (iii) in addition [βi, βj , βk, αl] = 0 (cp,3) and (iv) finally αi = 0 for i > 1 (cp,4).

p cp,1 cp,2 cp,3 cp,4

1 2 2 2 2
2 3 3 3 2
3 8 6 6 4
4 16 10 9 6
5 42 24 20 13

i �= j . In that case (15) leads to

�(h) = α1 + β1 +
1

12
(α3 + β3) +

1

12
(−[α1, β2] + [α2, β1]) +

1

240
([α2, β3] − [α3, β2])

+
1

360
([α1, α1, β3] − [α1, α3, β1] + [β1, α1, β3] − [β1, α3, β1])

+
1

240
([α1, α2, β2] + [α2, α2, β1] − [β2, α1, β2] + [β1, α2, β2])

+
1

720
([α1, α1, α1, β2] − [α1, α1, α2, β1] + [α1, β1, α1, β2]

− [α1, β1, α2, β1] + [β1, α1, α1, β2] − [β1, α1, α2, β1]

+ [β1, β1, α1, β2] − [β1, β1, α2, β1]) + O(h7). (24)

For Nyström problems, in addition, [βi, βj , βk, αl] = 0. This reduces further the number
of terms in �(h). Finally, the special case x ′ = (A + B(t))x is also worth to be studied
separately. Then αi = 0 for i > 1 in the expression (24). For illustration, in table 1 we collect
the dimensions of the first homogeneous subspaces Lp of the graded Lie algebra generated
by {α1, β1, α2, β2, α3, β3} for each case. The column cp,1 indicates the dimension in the
general case, computed according to the (generalized) Witt formula [18]. It exhibits clearly
the necessity of imposing restrictions to reduce the complexity of the problem.

Of course, expressions (23) and (24) can also be written in terms of the univariate integrals

A(i) ≡ 1

hi

∫ h/2

−h/2
t iA(t + t1/2) dt, B(i) ≡ 1

hi

∫ h/2

−h/2
t iB(t + t1/2) dt, (25)

through linear relations analogous to (22).

3. Splitting methods from the Magnus expansion

As it was stated in the introduction, the idea now is to reproduce e�(h) with a composition of
the form

ψ
[p]
m,h =

m∏
i=1

eÃi eB̃i , (26)

with

Ãi = ai1α1 + ai2α2, B̃i = bi1β1 + bi2β2 for p ≡ 2s = 4 (27)

and

Ãi = ai1α1 + ai2α2 + ai3α3, B̃i = bi1β1 + bi2β2 + bi3β3 for p = 6. (28)
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Introducing the matrices A(m,s), B(m,s) ∈ R
m×s with elements (A(m,s))ij ≡ aij ,

(B(m,s))ij ≡ bij , respectively, it is clear that

Ãi =
s∑

j=1

(A(m,s))ijαj , B̃i =
s∑

j=1

(B(m,s))ijβj , 1 � i � m. (29)

Now, taking into account relations (22), we have

Ãi = h

k∑
j=1

(R(m,k))ijAj , B̃i = h

k∑
j=1

(S(m,k))ijBj , 1 � i � m (30)

with

R(m,k) ≡ A(m,s)R(s)Q
(s,k)
X , S(m,k) ≡ B(m,s)R(s)Q

(s,k)
X , (31)

matrices m × k with elements (R(m,k))ij ≡ ρij , (S
(m,k))ij ≡ σij , respectively. In (30),

Aj ≡ A(t0 + cjh) and Bj ≡ B(t0 + cjh), the matrices A and B evaluated at the nodes of the
chosen quadrature rule X.

Of course the coefficients aij , bij are chosen as to guarantee that ψ
[p]
m,hx0 renders an

approximation of order p to the exact solution. The usual approach consists in expanding (26)
with the Baker–Campbell–Hausdorff (BCH) formula [23], matching with the corresponding
expression of �(h) (e.g. (23) or (24)) to determine the order conditions and solving these
equations to find the coefficients of the composition.

The number of order conditions for a method of order p is precisely dimL1 + · · ·+ dimLp

and, as shown in table 1, this number increases rapidly with p. In consequence, it seems
convenient to adopt some simplifying assumptions.

Note that the scheme (26) is a natural extension to the non-autonomous system (13) of
the standard splitting method

ψh =
m∏

i=1

ehaiA ehbiB, (32)

for the time-independent problem x ′ = (A + B)x. In fact, if ψ
[p]
m,h is applied to this equation,

then α2 = β2 = α3 = β3 = 0, since there is no time dependence and Ãi = hai1A, B̃i = hbi1B.
Therefore, one recovers the splitting method ψh by taking ai = ai1, bi = bi1, i = 1, . . . , m

in (26).
The above observation justifies our first simplifying assumption. We start from a good

splitting method for the system (13) when the t variable is frozen. This sets up the values of
ai1, bi1 and so only the order conditions involving aij , bij with j � 2 have to be analysed. An
added value of this hypothesis is that the most difficult order conditions, which are precisely
those involving only ai1, bi1, are already solved by the specific composition (32) considered
at the beginning.

The second simplifying assumption consists in imposing the time symmetry of �(h) to
the composition (26). This symmetry is automatically satisfied (and thus all order conditions
at even orders) if the coefficients are such that either

am+1−i,j = (−1)j+1aij , bm−i,j = (−1)j+1bij , bmj = 0, (33)

or

a1j = 0, am+1−i,j = (−1)j+1ai+1,j , bm+1−i,j = (−1)j+1bij (34)

for j = 1, 2, 3, i = 1, 2, . . . , m, depending on whether the composition (26) starts with eÃ1 or
eB̃1 , respectively. In the first case, the scheme will be said to be of type ABA, whereas in the
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second, of type BAB. Since the first or last exponential is cancelled and one exponential can
be concatenated in two consecutive steps (first same as last, FSAL, property) these symmetric
schemes are referred to as (m − 1)-stage methods.

With the previous premises fourth-order methods can be obtained very easily and even
for sixth-order schemes the number of order conditions to be solved is not prohibitively large.

3.1. Fourth-order methods

For simplicity we consider first the case [α1, α2] = [β1, β2] = 0 in (23) and take the
composition

ψ
[4]
m,h =

m∏
i=1

eÃi eB̃i =
m∏

i=1

eai1α1+ai2α2 ebi1β1+bi2β2 , (35)

ai1, bi1 being the parameters of a standard splitting method of order 4 for autonomous problems.
Therefore, the consistency conditions

m∑
i=1

ai1 = 1,

m∑
i=1

bi1 = 1

hold. When the BCH formula is applied to (35) one gets eC(λ), where

C(λ) = λ1α1 + λ2β1 + λ3α2 + λ4β2 + λ5[α1, β1] + λ6[α1, β2]

+ λ7[α2, β1] + λ8[α1, α1, β1] + λ9[β1, α1, β1] + λ10[β1, α2, β1]

+ λ11[α2, β2] + λ12[α1, α1, β2] + λ13[α1, α2, β1] + λ14[β1, α1, β2]

+ λ15[α1, α1, α1, β1] + λ16[α1, β1, α1, β1] + λ17[β1, β1, α1, β1].

Time symmetry forces that λ3, λ4, λ5, λ10, . . . , λ17 vanish, whereas the equations for λ1, λ2, λ8

and λ9 are satisfied by the starting fourth-order splitting method. In consequence, only the
equations for λ6 and λ7 remain to be solved. If we denote

si =
i∑

j=1

aj1, ui =
m∑

j=i

bj1

(s0 = 0, sm = 1, u1 = 1, um+1 = 0), then these equations are explicitly
m∑

i=1

bi2si = − 1

12
,

m∑
i=1

ai2ui = 1

12
, (36)

where the symmetry conditions (33), (34) have still to be imposed. Perhaps the simplest
solution is obtained by taking ai2 = bi2 = 0 for i > 1, i.e., with

ea11α1+a12α2 eb11β1+b12β2 ea21α1 eb21β1 · · · eb21β1 ea21α1 eb11β1−b12β2 ea11α1−a12α2 ,

although this is not necessarily the most efficient distribution of the coefficients. Since bm1 = 0
in the previous composition, equations (36) lead to

b12(a11 − sm−1) = b12(2a11 − 1) = −1

12
�⇒ b12 = −1

12(2a11 − 1)
; a12 = 1

12
.

The first step in this procedure is to have an efficient standard splitting method. Observe
that if α1, β1 are the dominant terms and the main source of errors comes precisely from these
terms, then one can use higher order standard splitting methods (of order 6 or 8) with the
fourth-order Magnus approximation. The overall order of the resulting schemes will be still 4,
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Table 2. Splitting methods of order 4 for separable non-autonomous systems. GS6-4 is intended
for general separable problems, whereas MN6-4 is a Runge–Kutta–Nyström method. With the
coefficients aij , bij the matrices A(m,2), B(m,2), respectively, are formed.

Order 4; GS6-4 Type BAB

b11 = 0.079 203 696 431 1957 b12 = (2a11 + 2a21 − 2b11 − b21)/d

a11 = 0.209 515 106 613 362 a12 = (2a11 + 2a21 + a31 − 2b11 − 2b21)/c

b21 = 0.353 172 906 049 774 b22 = (−2a11 + b11)/d

a21 = −0.143 851 773 179 818 a22 = 0
b31 = −0.042 065 080 357 7195 b32 = 0
a31 = 1/2 − (a11 + a21) a32 = −a11/c

b41 = 1 − 2(b11 + b21 + b31) b42 = 0

Order 4; MN6-4 Type BAB

b11 = 0.082 984 406 417 4052 b12 = (2a11 + 2a21 − 2b11 − b21)/d

a11 = 0.245 298 957 184 271 a12 = (2a11 + 2a21 + a31 − 2b11 − 2b21)/c

b21 = 0.396 309 801 498 368 b22 = (−2a11 + b11)/d

a21 = 0.604 872 665 711 080 a22 = 0
b31 = −0.039 056 304 922 3486 b32 = 0
a31 = 1/2 − (a11 + a21) a32 = −a11/c

b41 = 1 − 2(b11 + b21 + b31) b42 = 0

c = 12(a11 + 2a21 + a31 − 2b11 + 2a11b11 − 2b21 + 2a11b21)

d = 12(2a21 − b11 + 2a11b11 − 2a21b11 − b21 + 2a11b21)

but the error will presumably decrease. A situation where this approach is worth to be
considered is when the time-dependent functions evolve smoothly.

In the general case of (23) we have two additional order conditions for the coefficients
ai2, bi2:

m∑
i=1

ai2(si + si−1) = −1

6
,

m∑
i=1

bi2(ui + ui+1) = 1

6
. (37)

These equations, together with (36), have to be solved for achieving a fourth-order
integrator. When the symmetry (33), (34) is incorporated, the composition (35) requires at
least five stages. In practice, efficient standard splitting methods involve a larger number of
stages.

In table 2 we collect the coefficients for the splitting method GS6-4 for general separable
problems, formed from the 6-stage (m = 7) fourth-order symmetric integrator S6 of [6] (the
role of A and B is interchanged for convenience in the presentation). When [βi, βj , βk, αl] = 0
we have the scheme MN6-4, built from the Runge–Kutta–Nyström (RKN) method SRKNb

6 of
[6]. Both time-symmetric integrators have the BAB structure

eb11β1+b12β2 ea11α1+a12α2 eb21β1+b22β2 · · · eb21β1−b22β2 ea11α1−a12α2 eb11β1−b12β2

and the solutions collected in table 2 minimize the value of
∑

i |ai2| and
∑

i |bi2|.
Particularizing to this case the linear relations (30) and (31) with the fourth-order Gaussian

quadrature G, one has

Ãi = h

2∑
j=1

(
A(m,2)R(2)Q

(2,2)
G

)
ij
Aj , B̃i = h

2∑
j=1

(
B(m,2)R(2)Q

(2,2)
G

)
ij
Bj ,
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Table 3. Splitting methods of order 6 for separable non-autonomous systems. GS10-6 is intended
for general separable problems, whereas MN11-6 is a Runge–Kutta–Nyström method. With the
coefficients aij , bij the matrices A(m,3), B(m,3) can be formed.

Order 6; GS10-4 Type ABA

a11 = 0.050 262 764 400 3922 a12 = 0.022 059 009 674 017 884 a13 = −0.000 326 878 764 898 432
b11 = 0.148 816 447 901 042 b12 = 0.063 251 931 408 109 57 b13 = 0.031 560 294 843 042 91
a21 = 0.413 514 300 428 344 a22 = 0.036 390 872 638 341 54 a23 = 0.056 397 711 192 736 78
b21 = −0.132 385 865 767 784 b22 = −0.056 422 058 443 5047 b23 = 0.000 047 137 581 655 448 68
a31 = 0.045 079 889 794 3977 a32 = −0.029 722 051 174 027 396 a33 = 0.003 260 304 139 135 0658
b31 = 0.067 307 604 692 185 b32 = 0.030 997 085 102 486 225 b33 = 0.001 271 609 241 968 303
a41 = −0.188 054 853 819 569 a42 = 0.073 160 955 527 116 96 a43 = −0.008
b41 = 0.432 666 402 578 175 b42 = 0.086 709 890 573 243 b43 = 0.012 967 625
a51 = 0.541 960 678 450 780 a52 = −0.108 253 175 473 054 82 a53 = 0
b51 = 1/2 − (b11 + · · · + b41) b52 = 0 b53 = −0.004 18
a61 = 1 − 2(a11 + · · · + a51) a62 = 0 a63 = −0.019 328 939 800 613 495

Order 6; MN11-6 Type BAB

b11 = 0.041 464 998 518 2624 b12 = 0.020 732 500 126 731 092 b13 = 0.013 608 659 602 613 978
a11 = 0.123 229 775 946 271 a12 = 0.054 022 093 644 124 27 a13 = 0.026 164 309 515 298 998
b21 = 0.198 128 671 918 067 b22 = 0.074 648 981 673 040 31 b23 = 0.017 248 381 524 744 054
a21 = 0.290 553 797 799 558 a22 = 0.067 261 231 874 630 62 a23 = 0.025 979 253 037 549 735
b31 = −0.040 006 192 104 1533 b32 = −0.003 449 190 795 776 1338 b33 = 0.002 426 311 565 063 8677
a31 = −0.127 049 212 625 417 a32 = −0.019 024 419 473 703 036 a33 = −0.011 223 011 806 468 85
b41 = 0.075 253 984 301 5807 b42 = 0.016 049 089 279 510 54 b43 = 0.008 383 313 974 244 766
a41 = −0.246 331 761 062 075 a42 = −0.082 873 829 423 851 46 a43 = 0
b51 = −0.011 511 387 420 6879 b52 = −0.005 290 603 565 049 2796 b53 = 0
a51 = 0.357 208 872 795 928 a52 = 0.100 373 207 245 787 58 a53 = 0
b61 = 1/2 − (b11 + · · · + b51) b62 = 0.024 232 288 421 382 347 b63 = 0
a61 = 1 − 2(a11 + · · · + a51) a62 = 0 a63 = 0.001 492 231 840 573 5352

which results finally in

Ãi = (
1
2ai1 −

√
3ai2

)
hA1 +

(
1
2ai1 +

√
3ai2

)
hA2

B̃i = (
1
2bi1 −

√
3bi2

)
hB1 +

(
1
2bi1 +

√
3bi2

)
hB2.

(38)

For future reference, note that eÃi can be seen as the solution of the initial value problem
x ′ = Âix, x(0) = I at t = h, where Ãi = hÂi . Of course, the same considerations apply to
eB̃i .

3.2. Sixth-order methods

In the general separable case, our standard splitting method is the symmetric composition S10

with ten stages (m = 11) given in [6]. Therefore, the final scheme has the ABA form

ea11α1+a12α2+a13α3 eb11β1+b12β2+b13β3 · · · eb11β1−b12β2+b13β3 ea11α1−a12α2+a13α3 .

We can distinguish two different situations.

• Only the conditions [αi, αj ] = [βi, βj ] = 0 for i �= j are imposed. There are 22 order
conditions for the 21 parameters aij , bij , i > 1, whose structure admits in fact several
solutions. With one of them we build the method GS10-6 of table 3.
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• Suppose that, in addition, A in (13) is constant, so that αi = 0 for i > 1. One possible
solution in this case corresponds to the set of coefficients of GS10-6, but now with
ai2 = ai3 = 0, i = 1, . . . , 6. This solution stays very close to the solution which
minimizes the sum of the absolute values of the coefficients, and shows very similar
results in the numerical examples.

If, finally, [βi, βj , βk, αl] = 0 holds, we choose as the starting splitting scheme the 11-
stage (m = 12) symmetric RKN method SRKNb

11 of [6]. Now there are 20 order conditions
and 23 parameters. A possible solution is shown in table 3, and thus the method MN11-6

eb11β1+b12β2+b13β3 ea11α1+a12α2+a13α3 · · · ea11α1−a12α2+a13α3 eb11β1−b12β2+b13β3

is formed.
For the practical application of these methods, we use the linear relations (30) and (31)

with a Gauss–Legendre quadrature rule, so that s = k = 3. As a result we have

Ãi = hÂi ≡ h

3∑
j=1

ρijAj , B̃i = hB̂i ≡ h

3∑
j=1

σijBj (39)

with ρij , σij the elements of

R(m,3) ≡ A(m,3)R(3)Q
(3,3)
G , S(m,3) ≡ B(m,3)R(3)Q

(3,3)
G ,

respectively. Expressions (39) are still valid (with different values of ρij , σij ) if other
quadrature rules are used instead.

4. Methods for separable nonlinear systems

As a matter of fact, the previous treatment can be easily generalized to the nonlinear
equation (3) and the new splitting methods constructed in section 3 can be applied in this
setting with only minor modifications.

If ϕt denotes the exact flow of the differential equation x ′ = f (x, t), i.e., x(t) = ϕt(x0),
then for each infinitely differentiable map g : R

d → R, g(ϕt (y)) admits the representation

g(ϕt (y)) = �t [g](y),

where �t satisfies formally the time-dependent operator equation [5]:

d

dt
�t = �tLf (y,t), y = x0. (40)

Here Lf (y,t) is the Lie operator associated with f , acting on differentiable functions. Just as
for (13), we can now use the Magnus expansion to obtain the formal solution of (40):

�t = exp(Lw(x0,t)), (41)

with w = ∑
i wi . The first two terms read explicitly

w1(x0, t) =
∫ t

t0

f (x0, s) ds,

w2(x0, t) = −1

2

∫ t

t0

ds1

∫ s1

t0

ds2(f (x0, s1), f (x0, s2)),

(42)

where the symbol (f, g) stands for the Lie bracket [1 chapter 8],

(f, g)i =
d∑

j=1

(
fj

∂gi

∂xj

− gj

∂fi

∂xj

)
. (43)
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The object exp(Lw(x0,t)) is called the Lie transform associated with w. When f does not
depend explicitly on time, �t is given simply by �t = exp(tLf ). It verifies the following
important property: if ϕ

[j ]
t is the flow of a differential equation y ′ = f [j ](y), then it is true that

[10, p 84]

g
(
ϕ[1]

t1
◦ ϕ[2]

t2
◦ · · · ◦ ϕ[n]

tn
(y)

) = exp(tnLf [n]) · · · exp(t2Lf [2]) exp(t1Lf [1])[g](y). (44)

In other words, the Lie transforms appear in the reverse order as their corresponding maps.
This also manifests itself in (40), where the linear operator Lf is on the right side of �t .

We analyse now the separable problem (3). Let us define similarly to the linear case

αi = hi

(i − 1)!

∂i−1f [A](x0, t)

∂t i−1

∣∣∣∣
t=t1/2

, βi = hi

(i − 1)!

∂i−1f [B](x0, t)

∂t i−1

∣∣∣∣
t=t1/2

(45)

and the corresponding integrals

A(i) = 1

hi

∫ h
2

− h
2

t if [A](x0, t + t1/2) dt, B(i) = 1

hi

∫ h
2

− h
2

t if [B](x0, t + t1/2) dt. (46)

Then, from the previous considerations, it is clear that the composition (26) corresponds now
to

�
[p]
m,h =

1∏
i=m

exp
(
LB̃i

)
exp

(
LÃi

) = exp(Lw) + O(hp+1), (47)

where Ãi(x0), B̃i(x0) are given by (27) or (28) with exactly the same coefficients aij , bij .
Observe that, due to property (44), the exponentials are disposed in the reverse order. When
αi, βi are expressed in terms of A(i), B(i) and these integrals are approximated with quadrature
rules we have

Ãi(x0) = h

k∑
j=1

(R(m,k))ij f
[A](x0, τj )

B̃i(x0) = h

k∑
j=1

(S(m,k))ij f
[B](x0, τj ),

(48)

where the matrices R(m,k) and S(m,k) are given by (31) and τj = t0 + cjh.
To evaluate the Lie transforms exp

(
LÃi(x0)

)
and exp

(
LB̃i(x0)

)
is equivalent to compute

the h-flow of the autonomous differential equations

x ′ = 1

h
Ãi(x) ≡ Âi(x) x(t0) = x0

x ′ = 1

h
B̃i(x) ≡ B̂i(x) x(t0) = x0

i = 1, . . . , m, (49)

respectively. Let us denote these h-flows by ϕ
[Âi ]
h , ϕ

[B̂i ]
h . Then, according to property (44),

there exists a map

ψ
[p]
m,h = ϕ

[Â1]
h ◦ ϕ

[B̂1]
h ◦ · · · ϕ[Âm]

h ◦ ϕ
[B̂m]
h , (50)

such that g
(
ψ

[p]
m,h(y)

) = �
[p]
m,h[g](y). Note that the maps in (50) act in the same order as the

exponentials of matrices for the linear problem in (26).
In summary, the application of the integrators proposed here involves the following steps.

(i) Select a particular splitting method among those built in section 3 for linear non-
autonomous systems. This provides us with a set of coefficients aij , bij and a specific
distribution of exponentials in (26).
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(ii) For the separable nonlinear problem (3), compute the integrals A(i)(x), B(i)(x) according
to (46) or alternatively, choose a quadrature rule to approximate them to order p.

(iii) Compute Ãi(x), B̃i(x), i = 1, . . . , m, by (48).

(iv) Solve the autonomous nonlinear differential equations (49) and obtain ϕ
[Âi ]
h , ϕ

[B̂i ]
h , i =

1, . . . , m.
(v) To get the approximate solution at t = t0 + h, apply the composition (50) on the initial

condition x0. The sequence of maps in ψ
[p]
m,h corresponds to the specific method selected

in step (i).

Next we illustrate this procedure on a simple example.

Example. Let us consider equation (3) with x = (x1, x2) ∈ R
2 and

f [A](x, t) = (w1(t)x1x2 − w2(t)x1, 0)

f [B](x, t) = (0, w3(t)x2 − w4(t)x1x2).
(51)

Our goal is to apply to this particular problem the sixth-order splitting method GS10-6, whose
coefficients are given in table 3 (step (i)), with a Gauss–Legendre quadrature. In this case,
then, p = 6, s = k = 3. For the step t0 �→ t0 + h, we evaluate first the time-dependent
functions wl(t) at the quadrature nodes,

wlj ≡ wl(τj ), 1 � l � 4, 1 � j � 3,

which allows us to get f [A](x, τj ), f
[B](x, τj ) (step (ii)). Next we compute the vector fields

Ãi, B̃i according to

Ãi(x) = h

3∑
j=1

(
A(m,3)R(3)Q

(3,3)
G

)
ij
f [A](x0, τj )

B̃i(x) = h

3∑
j=1

(
B(m,3)R(3)Q

(3,3)
G

)
ij
f [B](x0, τj ), 1 � i � m = 11.

It is then clear that

Ãi(x) = (w̃1ix1x2 − w̃2ix1, 0), B̃i(x) = (0, w̃3ix2 − w̃4ix1x2)

with

(w̃l1, . . . , w̃lm)T = hA(m,3)R(3)Q
(3,3)
G (wl1, wl2, wl3)

T , l = 1, 2

(w̃l1, . . . , w̃lm)T = hB(m,3)R(3)Q
(3,3)
G (wl1, wl2, wl3)

T , l = 3, 4.

This completes step (iii). Now the solution of (49) is given by the maps (step (iv))

ϕ
[Âi ]
h (x1, x2) = (x1 exp((w̃1ix2 − w̃2i )h), x2)

ϕ
[B̂i ]
h (x1, x2) = (x1, x2 exp((w̃3i − w̃4ix1)h)), 1 � i � m = 11.

Finally, the application of scheme (50) for GS10-6 and the time step tn = t0 + nh �→ tn+1 with
initial conditions x1,0 = x1(tn), x2,0 = x2(tn) can be formulated by the algorithm (step (v))

do i = 1,m

x2,i = x2,i−1 exp(h(w̃3,m+1−i − w̃4,m+1−ix1,i−1))

x1,i = x1,i−1 exp(h(w̃1,m+1−ix2,i − w̃2,m+1−i )).

enddo

(52)

Note that in (50) the maps are computed from the right to the left and the algorithm can be
written as an m − 1 = 10 stage method because of the symmetry (33) and the FSAL property.
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For comparison, we include next the corresponding algorithm for the standard
composition (2) and the splitting (4) based on the same coefficients ai1, bi1 of GS10-6. In
this case two additional initial conditions are required, xt1,0 = tn, xt2,0 = tn:

do i = 1,m

x2,i = x2,i−1 exp(hbm+1−i,1(w3(xt1,i−1) − w4(xt1,i−1)x1,i−1))

xt2,i = xt2,i−1 + hbm+1−i,1

x1,i = x1,i−1 exp(ham+1−i,1(w1(xt2,i )x2,i − w2(xt2,i )))

xt1,i = xt1,i−1 + ham+1−i,1.

enddo

(53)

Observe that in algorithm (53) each function wl(t) is evaluated m times per step.
If the values of the functions wk(t) are known only at certain points (e.g. they are

the solutions of other equations) it suffices for the first algorithm to choose an appropriate
quadrature rule which considers the known points while for the second algorithm it is necessary
to interpolate their values, with sufficient accuracy, at the points required by the algorithm.

5. Numerical examples

After discussing the practical implementation of the new splitting methods proposed in this
work, it is time now to illustrate their performance and long-term behaviour on a pair of
examples.

5.1. The Lotka–Volterra model

As is well known, the autonomous Lotka–Volterra model

x ′
1 = x1(w1x2 − w2), x ′

2 = x2(w3 − w4x1), (54)

with w1, w2, w3, w4 > 0 has periodic trajectories in the region 0 < x1, x2, around
the point (x1, x2) = (w3/w4, w2/w1), and also possesses the first integral I (x1, x2) =
ln

(
x

w3
1 x

w2
2

)− (w4x1 +w1x2). The vector field f (x1, x2) = (x1(w1x2 −w2), x2(w3 −w4x1)) is
separable in two solvable parts, i.e. f [A] = (x1(w1x2 −w2), 0) and f [B] = (0, x2(w3 −w4x1)).
If one considers the transformation q = ln(x1), p = ln(x2), in the new variables the system
is Hamiltonian with H(q, p) = (w3q − w4e

q) + (w2p − w1e
p), which is also separable. In

fact, both splittings are equivalent. In consequence, symplectic splitting methods for separable
problems are suitable to numerically integrate this problem. Since neither the momenta part
nor the coordinate part are quadratic, Nyström methods are not recommended [20]. The
numerical solutions obtained by splitting symplectic integrators are also periodic trajectories
of a perturbed Hamiltonian system, and their error grows more slowly than, in general, with
non-symplectic methods.

Equations (54) are frequently used to describe the population of two species x1(t) (the
number of predators) and x2(t) (the number of preys). External interactions (with other species,
weather influence, etc) can be introduced in this model by taking time-dependent functions
wl(t) in (54). Then we obtain precisely the example analysed in the previous section, with
f [A](x, t) and f [B](x, t) given by (51). In particular, we may consider periodic functions

w1(t) = 1 + ε cos(2t) w3(t) = 1 + ε sin(t)

w2(t) = 2 + ε cos(t) w4(t) = 1 + ε sin(2t).
(55)

When ε = 0 the autonomous problem (54) is recovered. For |ε| � 1, the trajectories
stay in bounded regions of phase space. Since the perturbation is periodic, we may
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Figure 2. Poincaré map at t = 2kπ, k = 0, 1, . . . , 20 000 for the Lotka–Volterra model and
time-dependent functions given in (55).
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Figure 3. Efficiency curves for different splitting methods in the numerical integration of the
Lotka–Volterra model with time-dependent functions (55) and ε = 0.059. For the new methods
GS6-4 and GS10-6 we consider as the cost both the number of stages (right curves) and the number
of time-dependent function evaluations (left curves).

compute the Poincaré map at times t = 2kπ, k = 0, 1, 2, . . .. We take as initial conditions
(x1,0, x2,0) = (1, 1) and different values of ε up to ε ≈ 0.06, where the trajectories are
unbounded. In figure 2 we show the Poincaré map for ε = 0 (closed trajectory) and for
ε = 0.059 with 20 000 points, i.e. at t = 2kπ, 0 � k � 20 000. The numerical computation
is carried out with the sixth-order standard splitting method S10 (applied to (4)) and the new
scheme GS10-6. For this particular case the computational cost of S10 is nearly twice as costly
as GS10-6, although this estimate obviously depends on the cost of the choice of the functions
wl(t) of the model.

Next, for the case ε = 0.059 we plot in figure 3 the work-accuracy curves obtained by
different symplectic splitting methods, including the new integrators designed in this paper.
To do that, we measure the average error in phase space at t = 2kπ, 0 � k � 100, for different
step sizes h.

In the numerical experiments, for the splitting (4) we take as the work per step the number
of stages of the method, which, in general, corresponds to the number of evaluations of each
wl(t). We show the results for GS6-4 and GS10-6 considering as the work per step the two
extreme cases: (i) the cost is given by the number of stages (the solutions are very similar to
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Figure 4. Same as figure 1(b), but including the results for the new sixth-order method for Nyström
methods, MN11-6.

those obtained with the splitting (4) and taking ai = ai,1, bi = bi,1, which have not been plotted
for clarity), and (ii) the cost is given by the number of time-dependent function evaluations
(lines with squares and diamonds, respectively). Depending on the problem (the cost of the
time-dependent functions and the cost of the map) the actual work-accuracy curves should
stay between them. The results are compared with the scheme SS178 and the symmetric–
symmetric five-stage fourth-order, SS54 due to Suzuki [22] (the curve obtained by scheme
SS96 stay between them).

5.2. The Duffing oscillator

As our second example, we consider again the one-dimensional Duffing oscillator (6). We
repeat the experiment shown in figure 1(b), but now including the new method results MN10-6,
whose coefficients are collected in table 3.

The corresponding results are shown in figure 4. As before, for the new method we take
as its computational cost the two extreme cases previously enumerated. Observe that even
in the least favourable situation the asymptotic behaviour of the scheme MN10-6 corresponds
to a sixth-order method, as it should be. For this particular problem the fourth-order method
MN6-4 exhibits a lower performance than MN10-6 for the whole range of accuracy shown in
the figure, and so the corresponding curves have been omitted.

6. Conclusions and outlook

In this work, we have shown how to adapt splitting methods for autonomous separable
systems to the more general case of explicitly time-dependent vector fields. The resulting new
integration schemes are more efficient than standard methods applied to the enlarged system
(4) on the numerical examples considered.

As a matter of fact, these methods can also be used on more relevant problems. Just as an
example, note that the non-autonomous Duffing oscillator (6) can be written as

q ′′ = −εq ′ + q − q3 + δ cos(ωt). (56)

Thus one expects that the relative efficiency of the different integration methods analysed here
should not change when applied to the more general problem

q ′′ = A(t)q ′ + f (q, t) q0 = q(t0) ∈ R
l (57)



5422 S Blanes and F Casas

with A ∈ R
l×l . This system describes, in particular, a system of coupled Duffing oscillators

[19]. It is separable as

d

dt

{
q

v

}
=

{
v

A(t)v

}
+

{
0

f (q, t)

}
. (58)

Equivalently, one can also write

q ′ = M(t)p p′ = −M(t)−1f (q, t) (59)

with p = M−1q ′ and M(t) being the solution of the linear equation M ′ = A(t)M . If
f (q, t) = −∇qV (q, t) this second system of equations is nearly Hamiltonian. Both systems
are separable in exactly solvable parts for the autonomous case (e.g. if time is frozen), and
RKN methods can be used for their numerical integration.

It is worth mentioning that on the numerical examples shown in this work, the cost
of the time-dependent functions is significant. However, there are some other important
problems where this is not the case, as occurs, for example, in the numerical integration of
the Schrödinger equation using Fourier methods. This problem is separable and the cost of
the splitting methods is dominated by the number of stages because this number coincides
with the number of Fourier transforms required by the method. In [8], splitting methods
tailored for the autonomous problem of order p = m with m = 4, 6, 8, 10, 12 (the number
of stages per step) are given. Their performance on the autonomous Schrödinger equation is
superior to other splitting methods of similar order. However, if these methods are used for the
non-autonomous problem (e.g. with a time-dependent potential) the order of all these methods
reduces to p = 3 making them useless. It is then noticeable to mention that the Magnus
technique proposed in this work can also be used to recover the order these methods have for
the autonomous problem. The Lie algebra has additional simplifications but the schemes in
[8] are not symmetric so, in practice, we expect it is possible to build methods up to order 6
or 8 but, as mentioned, we can use the coefficients ai,1, bi,1 of a higher order method.

Another interesting problem corresponds to the near-integrable system, x ′ = f [A](x, t) +
εf [B](x, t) with ‖ε‖ � 1. For the autonomous case, a number of highly efficient splitting
methods can be found in [16]. If we consider the enlarged system (4) then both parts of the
vector field are O(1) and the performance of these methods can be strongly reduced. The same
procedure shown in this paper can also be used to build methods for this problem but taking
into account a bi-graded Lie algebra in terms of powers of h and ε. Then, these constitute
interesting problems to be analysed in the future.
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