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Abstract
In this paper we develop and analyse new explicit Magnus expansions for the
nonlinear equation Y ′ = A(t, Y )Y defined in a matrix Lie group. In particular,
integration methods up to order four are presented in terms of integrals which
can be either evaluated exactly or replaced by conveniently adapted quadrature
rules. The structure of the algorithm allows us to change the step size and even
the order during the integration process, thus improving its efficiency. Several
examples are considered, including isospectral flows and highly oscillatory
nonlinear differential equations.

PACS numbers: 02.60.−x, 02.60.Lj, 02.30.Hq
Mathematics Subject Classification: 65L05, 41A55, 22E60

1. Introduction

Nowadays the so-called Magnus expansion constitutes a widespread tool to construct
approximate solutions of non-autonomous systems of linear ordinary differential equations.
As is well known, the basic idea is to represent the solution of

Y ′ = A(t)Y, Y (0) = Y0, (1)

where A is an n × n matrix, in the form Y = exp(�(t))Y0 and express � as an infinite series
�(t) = ∑∞

k=1 �k(t), whose terms are linear combinations of integrals and nested commutators
involving the matrix A at different times [22]. In particular, the first terms read explicitly

�1(t) =
∫ t

0
A(t1) dt1, �2(t) = 1

2

∫ t

0
dt1

∫ t1

0
dt2[A1, A2],

where Ai ≡ A(ti) and [X, Y ] ≡ XY − YX is the commutator of X and Y. Explicit formulae
for �k of all orders have been given in [19] by using graph theory, whereas in [21] a recursive
procedure for the generation of �k was proposed. Different approximations to the solution
of (1) are obtained when the series of � is truncated. This procedure has the very attractive
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property of ensuring preservation of important qualitative properties of the exact solution at
any order of truncation.

Since the 1960s, the Magnus expansion has been successfully applied as an analytic tool
in numerous areas of physics and chemistry, from nuclear, atomic and molecular physics to
nuclear magnetic resonance and quantum electrodynamics (see [1] for a list of references).
Also a convergence proof for the series defining � has been obtained [1].

In recent years, Iserles and Nørsett [19] used rooted trees to analyse the expansion terms,
leading to a recursive procedure to generate � and constructing practical algorithms for
the numerical integration of equation (1). The resulting schemes are prototypical examples
of geometric integrators: numerical methods for discretizing differential equations which
preserve their known qualitative features, such as invariant quantities and geometric structure
[14]. By sharing such properties with the exact solution, these methods provide numerical
approximations which are more accurate and more stable for important classes of differential
equations, such as those evolving on Lie groups. In addition, several integrators based on
the Magnus expansion have proved to be highly competitive with other, more conventional
numerical schemes with respect to accuracy and computational effort [2, 3].

In this respect, there are two important factors involved in the process of rendering Magnus
expansion as a class of numerical integrators. Firstly, the structure of the Magnus series is
such that the number of matrix evaluations required to compute all the multivariate integrals in
the expansion to a given order is the same as the cost of the single quadrature formula for �1

[19]. Secondly, an optimization procedure can be designed to reduce a great deal the number
of commutators required by the scheme [3].

It is perhaps for these reasons that, although these algorithms have been primarily designed
for linear problems, where the matrix function A depends on time only, several attempts have
been made to generalize the formalism when A = A(t, Y ). In that case, though, multivariate
integrals depend also on the value of the (unknown) variable Y at quadrature points. This leads
to implicit methods and nonlinear algebraic equations in every step of the integration [30]
which in general cannot compete in efficiency with other classes of geometric integrators such
as splitting and composition methods. An interesting alternative has been proposed by Blanes
and Moan [4]: they use a conveniently modified version of the Magnus expansion to construct
a new class of splitting methods for non-autonomous Hamiltonian dynamical systems.

In this paper we try to overcome some of the aforementioned difficulties and develop new
explicit Magnus expansions for the nonlinear equation

Y ′ = A(t, Y )Y, Y (0) = Y0 ∈ G, (2)

where G is a matrix Lie group, A : R+ ×G −→ g and g denotes the corresponding Lie algebra
(the tangent space at the identity of G). Equation (2) appears in relevant physical fields such
as rigid mechanics and in the calculation of Lyapunov exponents (G ≡ SO(n)), Hamiltonian
dynamics (G ≡ Sp(n)) and quantum mechanics (G ≡ SU(n)). In fact, it can be shown that
every differential equation evolving on a matrix Lie group G can be written in the form (2).
Moreover, the analysis of generic differential equations defined in homogeneous spaces can
be reduced to the Lie-group equation (2) [28]. It is therefore of the greatest interest to design
numerical geometric integration schemes for the system which are computationally as efficient
as possible.

One common technique to solve (2) whilst preserving its Lie-group structure is to lift Y (t)

from G to the underlying Lie algebra g (usually with the exponential map), then formulate
and solve there an associated differential equation and finally map the solution back to G. In
this way the discretization procedure works in a linear space rather than in the Lie group. In
particular, the idea of Munthe-Kaas is to approximate the solution of the associated differential
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equation in the Lie algebra g by means of a classical Runge–Kutta method, thus obtaining the
so-called Runge–Kutta–Munthe-Kaas (RKMK) class of schemes [18, 25, 26].

In this paper a general procedure for devising Magnus expansions for the nonlinear
equation (2) is introduced. It is based on applying Picard’s iteration on the associated
differential equation in the Lie algebra and retaining in each iteration the terms necessary
to increase the order while maintaining the explicit character of the expansion. The resulting
methods are thus explicit by design and are expressed in terms of integrals. They provide
continuous approximations to the exact solution, i.e., they are valid for all values of t, not just at
discrete time steps. These approximations can be treated in different ways depending on how
the integrals are computed. If they are replaced by standard quadrature rules, new numerical
integrators arise which can be expressed as RKMK schemes, although they generally involve
more computational effort per step. Nevertheless, their structure allows quite naturally to
design algorithms with variable approximation order during the integration process.

For certain types of nonlinear problems, such as those whose solution is highly oscillatory,
the integrals appearing in the formalism can be approximated by specially adapted quadrature,
thus rendering new integration methods specifically oriented to this class of systems.

Since the Magnus expansion we elaborate here yields explicit continuous approximate
solutions, it might constitute a useful device in perturbation theory of nonlinear differential
equations depending on a certain parameter ε [29]: the integrals could be conveniently
replaced by expressions containing the parameter and it would be possible to analyse the
ε-dependence of the resulting approximations. Also the continuous solutions provided by the
formalism could be employed (analogously to continuous variants of Runge–Kutta methods)
in delay-differential equations [15].

The plan of the paper is as follows. In section 2 the explicit Magnus expansion for
equation (2) is presented and analysed, in general and for the particular yet highly important
case of isospectral flows. In section 3 we construct some numerical schemes based on the
new expansion and illustrate their features with a numerical example, comparing them with
the class of RKMK methods. In section 4 we show how the expansion can be implemented
to integrate highly oscillatory nonlinear ODEs, by choosing the right quadrature rules on a
modified version of the algorithm. Finally, section 5 contains some conclusions.

2. Magnus expansion

2.1. General case

As usual, the starting point in the formalism is to represent the solution of (2) in the form

Y (t) = e�(t)Y0. (3)

Then one obtains after trivial algebra the differential equation satisfied by �:

�′ = d exp−1
� (A(t, e�Y0)), �(0) = O. (4)

Here

d exp−1
� (C) =

∞∑
k=0

Bk

k!
adk

�C,

{Bk}m∈Z+ are the Bernoulli numbers and adm is a shorthand for an iterated commutator,

ad0
�A = A, adm+1

� A = [
�, adm

�A
]
, m � 0.
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In the linear case, i.e. when A depends on time only, the Magnus series for � can be obtained
by Picard’s iteration,

�[0](t) ≡ O

�[m+1](t) =
∫ t

0
d exp−1

�[m](s)
A(s) ds =

∫ t

0

∞∑
k=0

Bk

k!
adk

�[m](s)
A(s) ds, m � 0.

The same formal procedure can also be applied to equation (4), giving instead

�[m+1](t) =
∫ t

0
d exp−1

�[m](s)
A

(
s, e�[m](s)Y0

)
ds

=
∫ t

0

∞∑
k=0

Bk

k!
adk

�[m](s)
A

(
s, e�[m](s)Y0

)
ds, m � 0.

The next step in getting explicit approximations is to truncate appropriately the d exp−1

operator in the above expansion. Roughly speaking, when the whole series for d exp−1 is
considered, the power series expansion of the iterate function �[k](t), k � 1, only reproduces
the expansion of the solution �(t) up to certain order, sayO(tm). In consequence, the (infinite)
power series of �[k](t) and �[k+1](t) differ in terms of order O(tm+1). The idea is then to
discard in �[k](t) all terms of order greater than O(tm). This of course requires careful analysis
of each term in the expansion. For instance, �[0] = O implies that (�[1])′ = A(t, Y0) and
therefore

�[1](t) =
∫ t

0
A(s, Y0) ds = �(t) + O(t2).

Since

A
(
s, e�[1](s)Y0

) = A(0, Y0) + O(s)

it follows at once that

−1

2

∫ t

0

[
�[1](s), A(s, e�[1](s)Y0)

]
ds = O(t3).

When this second term in �[2](t) is included and �[3] is computed, it turns out that �[3]

reproduces correctly the expression of �[2] up to O(t2). Therefore we truncate d exp−1 at the
k = 0 term and take

�[2](t) =
∫ t

0
A

(
s, e�[1](s)Y0

)
ds.

With greater generality, we let

�[1](t) =
∫ t

0
A(s, Y0) ds

�[m](t) =
m−2∑
k=0

Bk

k!

∫ t

0
adk

�[m−1](s)
A

(
s, e�[m−1](s)Y0

)
ds, m � 2

(5)

and take the approximation �(t) ≈ �[m](t). This results in an explicit approximate solution
that involves a linear combination of multiple integrals of nested commutators, so that
�[m](t) ∈ g for all m � 1. In addition, it is a trivial exercise to show that �[m](t) reproduces
exactly the sum of the first m terms in the � series of the usual Magnus expansion for the
linear equation Y ′ = A(t)Y . It makes sense, then, to regard the scheme (5) as an explicit
Magnus expansion for the nonlinear equation (2).
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The actual order of approximation is provided by the following result (which as a matter
of fact generalizes the cases m = 1 and m = 2 studied before):

Theorem 2.1. Let �(t) be the exact solution of the initial value problem (4) and �[m](t) the
iterate given by scheme (5). Then it is true that

�(t) − �[m](t) = O(tm+1).

In other words, �[m](t), once inserted in (3), provides an explicit approximation Y [m](t)

for the solution of (2) that is correct up to order O(tm+1).

Sketch of the proof: To simplify matters, let us consider the autonomous case, i.e.,
Y ′ = A(Y )Y . The extension to the general situation is straightforward.

In this case a long but simple calculation shows that the exact solution of (4) can be written
as the infinite series

�(t) =
∞∑
l=1

t lωl

with ω1 = A(Y0), ω2 = 1
2G1 and, for l � 3,

lωl = Gl−1 +
l−1∑
j=1

Bj

j !

∑
k1+···+kj =l−1
k1�1,...,kj �1

adωk1
· · · adωkj

A(Y0)

+
l−2∑
j=1




j∑
s=0

Bs

s!

∑
k1+···+ks=j

k1�1,...,ks�1

adωk1
· · · adωks


 Gl−1−j

+
l−2∑
j=1

Bj

j !

∑
k1+···+kj =l−2
k1�1,...,kj �1

adωk1
· · · adωkj

G1. (6)

Here Gk is a function which depends on Y0, ω1, . . . , ωk ,

Gk = Gk(Y0;ω1, ω2, . . . , ωk), k � 1.

On the other hand, if we discard all terms of order exceeding O(tm) in �[m](t) given by (5),
then

�[m](t) =
m∑

l=1

t l ω̂l ,

where ω̂1 = A(Y0) and ω̂l, 2 � l � m, is given by the same expression (6) with the
substitutions

ωk �−→ ω̂k, Gk �−→ Ĝk,

but now Ĝk = Ĝk(Y0; ω̂1, ω̂2, . . . , ω̂m−1), k = 1, . . . , m.
Since ω̂1 = ω1, then Ĝ1 = G1 and, by induction,

ω̂l = ωl, Ĝl = Gl for l = 1, . . . , m − 1,

but Ĝm = Ĝm(Y0; ω̂1, ω̂2, . . . , ω̂m−1), whereas Gm = Gm(Y0;ω1, ω2, . . . , ωm), so that
Ĝm �= Gm. In consequence

�′(t) − (�[m](t))′ = tm(Gm − Ĝm) + O(tm+1)

and thus �(t)−�[m](t) = O(tm+1). �
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2.2. Isospectral flows

The Magnus expansion introduced before can be easily adapted to construct a exponential
representation of the solution for the differential system

Y ′ = [A(t, Y ), Y ], Y (0) = Y0 ∈ Sym(n). (7)

Here Sym(n) stands for the set of n × n symmetric real matrices and the (sufficiently smooth)
function A maps R+ × Sym(n) into so(n), the Lie algebra of n × n real skew-symmetric
matrices. It is well known that the solution itself remains in Sym(n) for all t � 0. Furthermore,
the eigenvalues of Y (t) are independent of time, i.e., Y (t) has the same eigenvalues as Y0. This
remarkable qualitative feature of the system (7) is the reason why it is called an isospectral
flow. Such flows have several interesting applications in physics and applied mathematics,
from molecular dynamics to micromagnetics to linear algebra [9].

Since Y (t) and Y (0) share the same spectrum, there exists a matrix function Q(t) ∈ SO(n)

(the Lie group of all n × n real orthogonal matrices with unit determinant), such that
Y (t)Q(t) = Q(t)Y (0), or equivalently,

Y (t) = Q(t)Y0Q
T (t). (8)

Then, by inserting (8) into (7), it is clear that the time evolution of Q(t) is described by

Q′ = A(t,QY0Q
T )Q, Q(0) = I, (9)

i.e., an equation of type (2). Yet there is another possibility: if we seek the orthogonal matrix
solution of (9) as Q(t) = exp(�(t)) with � being skew symmetric,

Y (t) = e�(t)Y0 e−�(t), t � 0, �(t) ∈ so(n), (10)

then the corresponding equation for � reads

�′ = d exp−1
� (A(t, e�Y0 e−�)), �(0) = O. (11)

In a similar way as for equation (4), we apply Picard’s iteration to (11) and truncate the d exp−1

series at k = m − 2. Now we can also truncate consistently the operator

Ad�Y0 ≡ e�Y0 e−� = ead�Y0

and the outcome still lies in so(n). By doing so, we replace the computation of one matrix
exponential by several commutators.

In the end, the scheme reads

�[1](t) =
∫ t

0
A(s, Y0) ds

�m−1(t) =
m−1∑
l=0

1

l!
adl

�[m−1](t)
Y0 (12)

�[m](t) =
m−2∑
k=0

Bk

k!

∫ t

0
adk

�[m−1](s)
A(s,�m−1(s)) ds, m � 2

and, as before, one has �(t) = �[m](t) + O(tm+1). Thus

�1(t) = Y0 + [�[1](t), Y0]

�[2](t) =
∫ t

0
A(s,�1(s)) ds

�2(t) = Y0 + [�[2](t), Y0] +
1

2
[�[2](t), [�[2](t), Y0]]

�[3](t) =
∫ t

0
A(s,�2(s)) ds − 1

2

∫ t

0
[�[2](s), A(s,�2(s))] ds
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and so on. Observe that this procedure preserves the isospectrality of the flow since the
approximation �[m](t) lies in so(n) for all m � 1 and t � 0. It is also equally possible to
develop a formalism based on rooted trees in this case, in a similar way as for the standard
Magnus expansion.

An important subclass of systems is formed by the so-called quasilinear isospectral
flows. We say that the system (7) is quasilinear if A is a linear function in the entries of Y,
i.e., A(t, α1Y1 + α2Y2) = α1A(t, Y1) + α2A(t, Y2). In the autonomous case, some relevant
examples include the double bracket flow, the periodic Toda lattice, the Toeplitz annihilator
defined by

Ak,l(Y ) =



Yk+1,l − Yk,l−1, 1 � k < l � n,

0, 1 � k = l � n,

Yk−1,l − Yk,l+1, 1 � l < k � n.

(13)

[12] and certain classes of Lie–Poisson flows [6, 7]. The isospectral flow (7) with a matrix
A given by (13) can be used to find a symmetric Toeplitz matrix with a prescribed set of real
numbers as its eigenvalues. The corresponding flow generally converges to an asymptotic
state, so that in this context it is very useful to have explicit approximations [30].

When the iterative scheme (12) is applied to a time-independent quasilinear flow one gets
the expression

�[m](t) =
m∑

l=1

t lωl,

where the coefficients ωl are constructed recursively (as in the proof of theorem 2.1, but now
the functions Gk are determined explicitly):

ω1 = A(Y0)

2ω2 = A
(
adω1Y0

)

lωl =
l−1∑
j=1

1

j !

∑
k1+···+kj =l−1
k1�1,...,kj �1

A
(
adωk1

· · · adωkj
Y0

)
+

l−1∑
j=1

Bj

j !

∑
k1+···+kj =l−1
k1�1,...,kj �1

adωk1
· · · adωkj

A(Y0)

+
l−1∑
j=2




j−1∑
s=1

Bs

s!

∑
k1+···+ks=j−1
k1�1,...,ks�1

adωk1
· · · adωks







l−j∑
p=1

1

p!

∑
k1+···+kp=l−j
k1�1,...,kp�1

A
(
adωk1

· · · adωkp
Y0

)

 l � 3. (14)

In this case it is even possible to obtain a domain of convergence of the procedure when
m → ∞ by applying the same techniques as in [10]. Specifically, let us consider a norm in
so(n) and a number µ > 0 satisfying

‖[X, Y ]‖ � µ‖X‖‖Y‖
for all X, Y in so(n) and suppose that A is a matrix such that ‖A(Y )‖ � K‖Y‖ for a certain
constant K. (A discussion of an important case when µ < 2 can be found in [5].) Then the
series

∞∑
l=1

t l‖ωl‖
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converges for 0 � t < tc, where tc = ξ

µK‖Y0‖ and

ξ =
∫ 2π

0

e−x

2 + x
2

(
1 − cot x

2

) dx 
 0.688 776 . . .

Example: the double bracket flow. The double bracket equation

Y ′ = [[Y,N ], Y ], Y (0) = Y0 ∈ Sym(n) (15)

was introduced by Brockett [8] and Chu and Driessel [12] to solve certain standard problems
in applied mathematics, although similar equations also appear in the formulation of physical
theories such as micromagnetics [24]. Here N is a constant matrix in Sym(n). As mentioned
before, it constitutes an example of a quasilinear isospectral flow with A(Y ) ≡ [Y,N ]. Then,
clearly, ‖A(Y )‖ � K‖Y‖ with K = µ‖N‖. With these substitutions, (14) reproduces exactly
the expansion obtained in [16] with the convergence domain established in [10].

3. Numerical integrators based on the Magnus expansion

3.1. The new methods

To build a practical numerical integrator based on the nonlinear Magnus expansion (5) (or
(12)), the integrals appearing in the formalism have to be conveniently evaluated. For most
problems, though, only the first-order approximation �[1](t) can be exactly computed, and so
the remaining integrals needed at higher orders must be replaced by affordable quadratures,
depending on the particular problem. Also the existence of several commutators and matrix
exponential evaluations at the intermediate stages requires a detailed treatment to reduce the
computational complexity and render practical integration schemes.

To illustrate the different issues involved in the construction of numerical methods from
(5) we consider here schemes of order 2 and 3, whereas a fourth-order method is presented
in the appendix. In all cases, we choose quadrature rules with equispaced points along the
interval [tn, tn + h].

Order 2. This case corresponds to m = 2 in (5), so that

�[1](t) =
∫ t

0
A(s, Y0) ds (16)

�[2](t) =
∫ t

0
A

(
s, e�[1](s)Y0

)
ds. (17)

If A is such that the integral (16) can be exactly computed, all that is required to get a second-
order integrator is to replace the integral (17) with a quadrature rule of order 2. For instance,
if we discretize �[2] with the trapezoidal rule, then

�[2](h) = h

2

(
A(0, Y0) + A

(
h, e�[1](h)Y0

))
+ O(h3). (18)

In fact, to build a second-order scheme it is not necessary to evaluate exactly the integral
(16), but only a first-order approximation. If, for instance, we use Euler’s method,
�[1](h) = hA(0, Y0) + O(h2) and this results in a new explicit second-order scheme

v1 ≡ h

2
(A(0, Y0) + A(h, ehA(0,Y0)Y0)) = �[2](h) + O(h3)

(19)
Y1 = ev1Y0,
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which is precisely the two-stage Runge–Kutta–Munthe-Kaas (RKMK) method with Butcher
tableau

0
1 1

1
2

1
2

.

Needless to say, method (19) is different from (18) when matrix A depends explicitly on time,
although both are second-order approximations to �(t).

If �[2] is discretized with the midpoint rule instead,

v2 ≡ hA

(
h

2
, e

h
2 A(0,Y0)Y0

)
= �[2](h) + O(h3)

Y1 = ev2Y0, (20)

we retrieve exactly the RKMK Heun method [18, p 355].
We see that, at order 2, the well-known explicit RKMK schemes are reproduced by the

Magnus expansion as soon as �[1] is discretized with a first-order quadrature. New schemes
arise, however, when �[1] is evaluated exactly.

Order 3. In addition to equations (16) and (17) we have to work with

�[3](t) =
∫ t

0

(
A2(s) − 1

2
[�[2](s), A2(s)]

)
ds, (21)

where A2(s) ≡ A
(
s, e�[2](s)Y0

)
. If we use Simpson’s rule to approximate (21), then

�[3](h) = h

6
(A(0, Y0) + 4A2(h/2) + A2(h))

− h

3
[�[2](h/2), A2(h/2)] − h

12
[�[2](h), A2(h)] + O(h4).

Now �[1] can be approximated with Euler and �[2](h) with the midpoint rule, eq.(20), whereas

�[2]

(
h

2

)
= h

4

(
A(0, Y0) +

h

4
A

(
h

2
, e

h
2 A(0,Y0)Y0

))
+ O(h3)

to get a third-order scheme. The algorithm can be formulated à la RKMK as

u1 = 0

k1 = hA(0, Y0)

u2 = 1
2k1

k2 = hA(h/2, eu2Y0)

u3 = 1
4 (k1 + k2) (22)

k3 = hA(h/2, eu3Y0)

u4 = k2

k4 = hA(h, eu4Y0)

v3 = 1
6 (k1 + 4k3 + k4) − 1

3 [u3, k3] − 1
12 [u4, k4]

Y1 = ev3Y0.

This method closely resembles the RKMK scheme based on the Butcher tableau

0
∣∣

1
2

∣∣ 1
2

1
∣∣ −1 2∣∣∣∣ 1

6
2
3

1
6

. (23)
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Table 1. Computational cost of different integrators for equation (2).

Order Method A evaluations Commutators Exponentials

2 RKMK 2 0 2
Magnus 2 0 2

3 RKMK 3 1 3
Magnus 4 1 4

4 RKMK 4 2 4
Magnus 6 2 6

As a matter of fact, the technique developed in [27] for RKMK methods can also be applied
here to reduce the number of commutators. The idea is to introduce transformed variables

Qi =
i∑

j=1

Vij kj = O(hqi ),

where the constants Vij are chosen in such a way that the resulting integers qi are as large as
possible. Then it is clear that[

Qi1 ,
[
Qi2 , . . . ,

[
Qim−1,Qim

] · · · ]] = O(hqi1 +···+qim )

which allows us to discard terms of order higher than the method itself. Thus, for the integrator
(22) we use instead

Q1 = k1 = O(h) Q2 = k2 − k1 = O(h2)

Q3 = k3 − k2 = O(h3) Q4 = k4 − 2k2 + k1 = O(h3)
(24)

and thus

u1 = 0 u2 = 1
2Q1

u3 = 1
2Q1 + 1

4Q2 u4 = Q1 + Q2

v3 = Q1 + Q2 + 2
3Q3 + 1

6Q4 − 1
6 [Q1,Q2].

(25)

The resulting algorithm involves four A evaluations, one commutator and three matrix
exponentials per time step. It is therefore computationally more expensive than the
corresponding RKMK scheme based on (23), as shown in table 1.

Order 4. With m = 4 we can use Simpson’s rule to approximate �[4](h). The computations
already done to find �[3](h) can be reused here, but it is still necessary to calculate �[3](h/2)

up to order O(h3) and perform two new A evaluations. The resulting algorithm is presented
in the appendix and requires six A evaluations, two commutators and six matrix exponentials
per time step.

By following this strategy new explicit numerical integrators for equation (2) of arbitrary
order can be constructed. They are written in the same format as the RKMK class of schemes
when �[1] is discretized with a first-order quadrature. One could say, then, that the nonlinear
Magnus expansion generates specific RKMK methods when the integrals are replaced by
appropriate quadratures. But they are different in the following sense. Due to its iterative
character, in a Magnus method of order p, unlike a conventional RKMK scheme, the internal
stages provide approximations to the exact solution up to order p − 1. For this reason the new
methods require, in general, more computational effort per time step, but on the other hand,
variable step size and order techniques can be incorporated in a natural way into the algorithm
[15, p 233] thus improving its overall efficiency.
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In table 1 we display the computational cost of the numerical integrators based on the
nonlinear Magnus expansion (5) obtained in this section in terms of A evaluations, number
of commutators and matrix exponentials needed. For comparison we also include RKMK
schemes of the same order based on standard Runge–Kutta methods (the explicit third-
order Magnus method developed by Zanna [30] by relaxed collocation requires the same
computational effort as the corresponding RKMK scheme).

With respect to the isospectral flow, it is possible to design a new family of numerical
integrators from (12) with the same type of numerical quadratures. Essentially, the main
difference with, say, algorithm (22), is that the action eui Y0 e−ui is replaced by an appropriate
truncation. As a consequence, the methods require only the evaluation of a single matrix
exponential per step at the price of more commutators involved in the procedure. In particular,
we have constructed a fourth-order scheme requiring twelve commutators.

3.2. Numerical examples

As an illustration of the algorithms proposed here we consider the isospectral flow Y ′ =
[A(t, Y ), Y ] governed by the skew-symmetric 3 × 3 matrix A whose upper-diagonal elements
are

A12(t, Y ) = α1(t)(Y22 − Y11)

A13(t, Y ) = α2(t)(Y23 − Y12) (26)

A23(t, Y ) = α3(t)(Y33 − Y22),

with αi(t) = cos ωit . Observe that the case ωi = 0 corresponds to the Toeplitz annihilator
problem (13) with n = 3.

Our purpose, rather than providing a complete characterization of the numerical integrators
based on the Magnus expansion, is to show how they behave in practice in comparison
with other integration schemes. In particular, we check the order of approximation, the
computational efficiency and the qualitative description of the exact flow. To this end we only
consider the general scheme presented in the appendix (adapted to the isospectral case) and the
fourth-order algorithm built from (12) mentioned before, requiring 12 commutators and only
one matrix exponential. They are compared with the Runge–Kutta–Munthe-Kaas integrator
(RKMK4) based on ‘the’ Runge–Kutta method with Butcher tableau

0
∣∣∣

1
2

∣∣∣ 1
2

1
2

∣∣∣ 0 1
2

1
∣∣∣ 0 0 1∣∣∣∣∣∣ 1

6
1
3

1
3

1
6

. (27)

First, we carry out a numerical integration in the interval t ∈ [0, 20] for several (constant)
values of the step size h with initial condition Y0 = Q diag(η)QT . Here η = [1, 2, 3]T and
Q is a randomly chosen orthogonal matrix. To study the efficiency of the methods, the error
is determined at the final time by computing the Frobenius norm of the difference between
the approximate and the exact solution matrices (we take as exact solution the outcome of
integrating the problem with a higher-order approximation). Then this error is represented as a
function of the computational effort measured in terms of floating point operations (evaluated
using Matlab 5.3 built-in routine flops). The evaluation of matrix exponentials is done with
the built-in function expm, although also the Rodrigues formula can be used to get an explicit
expression for exp u, u ∈ so(3) [23, p 261]. The corresponding efficiency curves are plotted
in figure 1.
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Figure 1. Error versus floating point operations obtained with the fourth-order integrators based
on Magnus (solid line with circles), RKMK4 (dashed line with +) and a Magnus method adapted
to isospectral flows involving 12 commutators and 1 matrix exponential per time step (dash-dotted
line with ∗).

Observe that, in agreement with the theoretical estimates of table 1, RKMK4 is more
efficient than the algorithm (A.1) based on the general Magnus expansion, whereas the
efficiency shown by the especially adapted Magnus scheme is slightly better. This is quite
remarkable in view of the more complex structure of the algorithms based on the nonlinear
Magnus expansion.

Next we take ωi = 0 and the initial condition Y0 = diag(2, 5, 9). In that case, solving the
corresponding problem (7) allows us to find a symmetric 3 × 3 Toeplitz matrix that possesses
the same sequence of eigenvalues as Y0, i.e., we can solve the inverse eigenvalue problem
[11, 18]. Note that A(Y ) = O if Y is a Toeplitz matrix (hence the name of the Toeplitz
annihilator), so that a solution of the isospectral problem defined by A is a fixed point of
the flow.

When the problem is discretized with a standard integrator (such as multistep or Runge–
Kutta schemes), the numerical flow fails to converge to the correct Toeplitz matrix, since they
do not preserve the eigenvalues along the evolution, whereas isospectral methods tend to a
Toeplitz matrix with the right eigenvalues [18]. This can be clearly observed in figure 2, where
the ‘Toeplitz error’ log ‖A(Yn)‖F is plotted as a function of time when Yn is obtained with
RKMK4 and the new fourth-order isospectral Magnus method, both with step size h = 1/6.
As t increases, the Toeplitz error becomes progressively smaller and eventually Yn converges
to a symmetric Toeplitz matrix up to machine accuracy, whereas the eigenvalues are preserved
by construction. It is worth noticing, however, that the approximation obtained by Magnus
attains the numerical limit with fewer iterations than RKMK4.

4. Application to highly oscillatory nonlinear ODEs

Suppose now that we are given the ODE system

y′ = A(t, y)y, y(0) = y0 ∈ M, (28)
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Figure 2. Toeplitz error log ‖A(Yn)‖F versus time for a 3×3 symmetric Toeplitz inverse eigenvalue
problem when solved by RKMK4 (dashed line) and the new isospectral integrator based on Magnus
expansion (dash-dotted line).

whereM ⊂ R
d is a homogeneous space acted upon by the Lie groupG and A : R+×M −→ g.

In that case y(t) evolves inM, as well as the approximations obtained with the explicit Magnus
expansion (5).

Let us assume in addition that the solution of (28) oscillates rapidly. In the linear case a
conveniently chosen transformation prior to the application of the Magnus expansion allows
us to get very accurate results [17]. We generalize this approach to the nonlinear setting.

Suppose that we have computed yn ≈ y(tn) and wish to advance to tn+1 = tn + h. The
idea is to consider a new variable z(x) such that

y(tn + x) = exA(tn,yn)z(x). (29)

Then
dz
dx

= B(x, z(x))z, z(0) = yn (30)

with

B(x, z(x)) = F−1(x)[A(tn + x, F (x)z(x)) − A(tn, yn)]F(x) (31)

and F(x) = exp[xA(tn, yn)]. We note for future use that B(0, z(0)) = O.
Observe that the new variable z(x) may also be seen as a correction to the solution provided

by the first-order term �[1] of the Magnus expansion (discretized with Euler’s method). For this
reason one expects that if the system (30) is solved with the nonlinear Magnus expansion the
error in the corresponding approximations will be significantly smaller than with the standard
algorithm, even when the same quadrature rules are used [17]. But in the highly oscillatory
case other especially tailored quadratures exist which provide excellent results [20].

To illustrate the main features of the nonlinear modified Magnus expansion applied to the
highly oscillatory system (28), let us consider equations of the form

y ′′ + a(t, y, y ′)y = 0, y(0) = y0, y ′(0) = y ′
0, (32)

where it is assumed that a(t, y, y ′) 
 1. Particular examples are the Emden–Fowler (a = ty2),
the Lane–Emden (a = (y/t)n−1) and the Thomas–Fermi (a = −(y/t)1/2) equations [31].
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When (32) is written in a matrix form, we obtain (28) with

A(t, y) =
(

0 1
−a(t, y) 0

)

and y = (y, y ′)T . Denoting by θn ≡ √
a(tn, yn), it is clear that

F(x) = exA(tn,yn) =
(

cos xθn θ−1
n sin xθn

−θn sin xθn cos xθn

)
,

whereas for the new matrix B one gets, after some algebra,

B(x, z(x)) = 1
4

(
θ2
n − θ2(x)

)
[2M1 + M2 e2iθnx + M3 e−2iθnx] (33)

with θ2(x) ≡ a(tn + x, F (x)z(x)) and

M1 =
(

0 −θ−2
n

1 0

)
, M2 =

(
iθ−1

n θ−2
n

1 −iθ−1
n

)
, M3 =

(−iθ−1
n θ−2

n

1 iθ−1
n

)
.

This is the expression required for applying the nonlinear Magnus expansion (5). The first
term is given by

�[1](x) =
∫ x

0
B(τ, yn) dτ = 1

2

∫ x

0

(
θ2
n − θ2

1 (τ )
)

dτM1

+
1

4

∫ x

0

(
θ2
n − θ2

1 (τ )
)

e2iθnτ dτ M2 +
1

4

∫ x

0

(
θ2
n − θ2

1 (τ )
)

e−2iθnτ dτ M3

≡ I0(x)M1 + I+(x)M2 + I−(x)M3,

where now θ2
1 (τ ) ≡ a(tn + τ, F (τ)yn). Since B(0, yn) = O, any quadrature rule that uses

only the values of θ2
n − θ2

1 (τ ) at the endpoints requires only the value at x (the value at the
origin is zero). For the non-oscillatory part I0(x) we can use the trapezoidal rule

I0(x) ≈ xϕ1(x), with ϕ1(x) ≡ 1
4

(
θ2
n − θ2

1 (x)
)
.

For I±(x) it seems appropriate to apply Filon–Lobatto quadratures. With this class of methods
one has in general∫ x

0
f (τ) e±2iθnτ dτ ≈ b±

1 (θn)f (0) + b±
2 (θn)f (x)

with

b±
2 (θn) = e±2iθnx

±2iθn

+
e±2iθnx − 1

4xθ2
n

.

Consequently, putting all the pieces together,

�[1](x) = ϕ1(x)
(
xM1 + b+

2 (θn)M2 + b−
2 (θn)M3

)
(34)

or equivalently

�[1](x) = ϕ1(x)




cos 2θnx

θ2
n

− sin 2θnx

2θ3
nx

− x

θ2
n

+
sin 2θnx

θ3
n

− 1 − cos 2θnx

2θ4
nx

x +
sin 2θnx

θn

− 1 − cos 2θnx

2θ2
nx

−cos 2θnx

θ2
n

+
sin 2θnx

2θ3
nx


 .

For �[2](x) = ∫ x

0 B
(
τ, e�[1](τ )yn

)
dτ one gets the same expression (34), but now ϕ1(x) has to

be replaced by

ϕ2(x) ≡ 1
4

(
θ2
n − θ2

2 (x)
)
, where θ2

2 (x) = a
(
tn + x, F (x) e�[1](x)yn

)
.
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Similar considerations apply to higher-order terms, although the analysis is obviously more
involved. If the truncated Magnus solution of (30) is z(x) = exp(�[k](x))yn, the approximation
obtained in this way has the form

yn+1 = ehA(tn,yn) e�[k](h)yn, n ∈ Z.

For the particular case of the Emden–Fowler equation, one has θn = √
tnyn and

θ2
1 (h) = (tn + h)[(F (h)yn)1]2, θ2

2 (h) = (tn + h)
[
(F (h) e�[1](h)yn)1

]2
.

5. Conclusions

The nonlinear Magnus expansion we propose in this paper can be considered as a natural
generalization of the usual expansion for linear problems. As well as this, it provides
explicit integrators in terms of integrals of nested commutators and it is amenable to standard
procedures to reduce the total number of commutators. Although only methods up to order 4
have been presented here, the same strategy can in principle be applied to construct higher-
order schemes preserving the main qualitative properties of the exact solution. The new
integrators require in general more computational effort per time step than other well-known
Lie-group methods, both in function evaluations and in computations of matrix exponentials.
Nevertheless, for particular types of problems, such as isospectral flows, it is possible to adapt
appropriately the procedure and reduce the computational cost per step. In fact, when applied
to specific isospectral problems, their efficiency is similar to the Runge–Kutta–Munthe-Kaas
class of Lie-group integrators. They also provide the correct asymptotic description when
applied to solve the inverse eigenvalue problem of Toeplitz symmetric matrices.

The numerical schemes obtained from the Magnus expansion can be written in the
same format as the RKMK explicit methods when the integrals are replaced by appropriate
quadratures. Given a method of order p, its internal stages provide approximations to the exact
solution from order 1 up to order p − 1, and so their computational complexity is generally
higher for equations defined on Lie groups.

In any case, one should be aware that RKMK integrators, like all Runge–Kutta methods,
are implicitly based on quadrature of interpolatory kind (e.g. Gauss, Lobatto, Radau, etc) and,
as such, they are not very appropriate for highly oscillatory equations. With schemes based
on the nonlinear Magnus expansion, however, one can use any quadrature rule one may wish,
including Filon-type methods, and thus they constitute a natural option to integrate highly
oscillatory differential equations.

We can conclude that the nonlinear Magnus expansion introduced here is a very flexible
tool to analyse nonlinear equations defined on Lie groups and/or homogeneous spaces acted
upon by Lie groups. It allows us to use different quadrature rules and even in some cases to
work with exact integrals. At the same time, the procedure can be modified to cope with highly
oscillatory systems of nonlinear ODEs in conjunction with especially adapted quadratures.

Although only numerical aspects of the expansion have been considered in this paper,
the Magnus expansion could also be useful in perturbative analysis of nonlinear differential
equations as a device providing continuous approximations depending on the parameters of
the problem and even for certain delay-differential equations.
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Appendix

In this appendix we present a fourth-order algorithm for the numerical integration of the general
Lie equation Y ′ = A(t, Y )Y based on the nonlinear Magnus expansion (5) for tn+1 = tn + h:

u1 = 0

k1 = hA(tn, Yn), Q1 = k1

u2 = 1

2
Q1

k2 = hA

(
tn +

h

2
, eu2Y0

)
, Q2 = k2 − k1

u3 = 1

2
Q1 +

1

4
Q2

k3 = hA

(
tn +

h

2
, eu3Y0

)
, Q3 = k3 − k2

u4 = Q1 + Q2 (A.1)

k4 = hA(tn + h, eu4Y0), Q4 = k4 − 2k2 + k1

u5 = 1

2
Q1 +

1

4
Q2 +

1

3
Q3 − 1

24
Q4 − 1

48
[Q1,Q2]

k5 = hA

(
tn +

h

2
, eu5Y0

)
, Q5 = k5 − k2

u6 = Q1 + Q2 +
2

3
Q3 +

1

6
Q4 − 1

6
[Q1,Q2]

k6 = hA(tn + h, eu6Y0), Q6 = k6 − 2k2 + k1

v = Q1 + Q2 +
2

3
Q5 +

1

6
Q6 − 1

6

[
Q1,Q2 − Q3 + Q5 +

1

2
Q6

]

Yn+1 = evYn.

Remarks

(i) The computation of u5, k5 is independent of u6, k6 and it is required only to obtain v

(which differs from �[4](tn + h) only in O(h5) terms that have no effect on the order).
(ii) The above algorithm comprises also lower-order methods: if we take v = k1 we have a

first-order scheme; if v = k2 then a second-order method results; finally, by computing
only up to u6 (but not u5, k5,Q5) we recover the third-order method (22). It might be
therefore implemented so that not only the step size but also the order can be changed at
each step, similarly to extrapolation methods [15, p 233].

(iii) This algorithm can also be directly applied to the isospectral flow Y ′ = [A(t, Y ), Y ] with
the replacement of eui Yn by the action eui Yn e−ui in the computation of ki and finally
Yn+1 = evYn e−v .
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