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Departament de Matemàtiques, Universitat Jaume I, E-12071 Castellón, Spain

E-mail: Fernando.Casas@uji.es

Received 30 July 2007, in final form 30 October 2007
Published 28 November 2007
Online at stacks.iop.org/JPhysA/40/15001

Abstract
Two different sufficient conditions are given for the convergence of the Magnus
expansion arising in the study of the linear differential equation Y ′ = A(t)Y .
The first one provides a bound on the convergence domain based on the norm
of the operator A(t). The second condition links the convergence of the
expansion with the structure of the spectrum of Y (t), thus yielding a more
precise characterization. Several examples are proposed to illustrate the main
issues involved and the information on the convergence domain provided by
both conditions.

PACS numbers: 02.30.Hq, 02.30.Lt, 02.70.−c

1. Introduction

The approach followed by Magnus in [21] to solve the non-autonomous linear differential
equation

dY

dt
= A(t)Y, Y (0) = I, (1.1)

where Y (t) and A(t) are (sufficiently smooth real or complex) n × n matrices, is to express
the solution Y (t) as the exponential of a certain matrix �(t),

Y (t) = exp �(t). (1.2)

By substituting (1.2) into (1.1), one can derive the differential equation satisfied by the
exponent � [15]:

�′ = d exp−1
� (A(t)), �(0) = O, (1.3)

where d exp−1
� is the inverse operator of the power series

d exp� =
∞∑

k=0

1

(k + 1)!
adk

� ≡ exp(ad�) − I

ad�

.
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Specifically, its expression is given by

d exp−1
� (A) ≡

∞∑
k=0

Bk

k!
adk

�(A).

Here {Bk}k∈Z+ are the Bernoulli numbers [1], adk is a shorthand for an iterated commutator,

ad0
�A = A, adk+1

� A = [
�, adk

�A
]
,

and [�,A] = �A − A�. By applying Picard’s iteration on (1.3), one gets an infinite series
for �(t),

�(t) =
∞∑

k=1

�k(t), (1.4)

whose first terms read

�1(t) =
∫ t

0
A(t1)dt1,

�2(t) = 1

2

∫ t

0
dt1

∫ t1

0
dt2 [A(t1), A(t2)] (1.5)

�3(t) = 1

6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]]).

Explicit formulae for �m of all orders have been given in [16], whereas in [19] a recursive
procedure for the generation of any �m was proposed, which presents some advantages from
a computational point of view. When this recursion is worked out explicitly, it is possible to
express �m as a linear combination of m-fold integrals of m−1 nested commutators containing
m operators A,

�m(t) =
m−1∑
j=1

Bj

j !

∑
k1+···+kj =m−1

k1�1,...,kj �1

∫ t

0
ad�k1 (s) ad�k2 (s) · · · ad�kj

(s)A(s) ds m � 2, (1.6)

an expression, however, that becomes increasingly intricate with m, as it should be already
evident from the first terms (1.5).

Equations (1.2) and (1.4) constitute the so-called Magnus expansion for the solution of
(1.1), whereas the infinite series (1.4) with (1.6) is known as the Magnus series.

Since the 1960s, the Magnus expansion has been successfully applied as a perturbative
tool in numerous areas of physics and chemistry, from atomic and molecular physics to
nuclear magnetic resonance and quantum electrodynamics (see [2, 3] for a review and a list
of references). Also, since the work by Iserles and Nørsett [16], it has been used as a tool to
construct practical algorithms for the numerical integration of equation (1.1), while preserving
the main qualitative properties of the exact solution. In this sense, the corresponding schemes
are prototypical examples of geometric numerical integrators [13].

To be more specific, suppose that A(t) belongs to some matrix Lie (sub) algebra g for all t.
Then the exact solution of (1.1) evolves in the matrix Lie group G having g as its corresponding
Lie algebra (the tangent space at the identity of G). Observe now that all terms in the Magnus
series are constructed as sums of multiple integrals of nested commutators, so that � and indeed
any approximation to it obtained by truncation will also be in the same Lie algebra. Finally,
its exponential will be in G. By truncating appropriately the series, approximating efficiently
the multivariate integrals by quadratures and reducing the number of required commutators,
it is possible to design new integrators based on the Magnus expansion which have proved
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to be highly competitive with other, more conventional schemes with respect to accuracy and
computational effort in the numerical integration of (1.1) on matrix Lie groups [4, 5, 15].

Although the Magnus expansion has been formulated here only for n × n matrices, the
same result is also valid (as least formally) in a more general setting. As a matter of fact, it was
originally established assuming only that A(t) is a known function of t in an associative ring
[21]. On the other hand, in order to apply this approach in quantum mechanics, it is tacitly
assumed that the expansion is also valid when A(t) is a linear operator in a Hilbert space.

From a mathematical point of view, it is clear that there are at least two different issues of
paramount importance at the very basis of the Magnus expansion:

• First, for what values of t and for what operators A does equation (1.1) admit a true
exponential solution in the form (1.2) with a certain �(t)? This could be called the
existence problem.

• Second, given a certain operator A(t), for what values of t does the Magnus series (1.4)
converge? In other words, when �(t) in (1.2) can be obtained as the sum of the series
(1.4)? This we describe as the convergence problem.

Of course, given the relevance of the expansion, both problems have been extensively
treated in the literature since Magnus proposed this formalism in 1954 [21]. In section 2,
we review some of the most relevant contributions already available regarding both aspects,
whereas in the rest of the paper we will concentrate ourselves on the convergence issue. Thus,
in section 3 we provide a general result on the convergence of the Magnus series which is
valid for bounded linear operators A(t) in a Hilbert space, and not only for real matrices.
Then, in section 4, we analyze the problem from a different point of view, characterizing the
convergence (or divergence) of the series in terms of the eigenvalues of the matrix Y (t). This
allows us, in some cases, to obtain more accurate estimates and at the same time gives us more
insight into the convergence problem. Several examples are also considered to illustrate the
main issues involved. Finally, section 5 contains a discussion of the results obtained.

2. Existence and convergence of Ω(t): previous results

2.1. On the existence of �(t)

In most cases, one is interested in the case where A(t) belongs to a Lie algebra g under
the commutator product. In this rather general setting, Magnus result can be formulated as
four statements concerning the solution of dY/dt = A(t)Y , each one more stringent than the
preceding [31]. Specifically,

(a) The differential equation dY/dt = A(t)Y has a solution of the form Y (t) = exp �(t).
(b) The exponent �(t) lies in the Lie algebra g.
(c) The exponent �(t) is a continuous differentiable function of A(t) and t, satisfying the

nonlinear differential equation d�/dt = d exp−1
� (A(t)).

(d) The operator �(t) can be computed by a series

�(t) = �1(t) + �2(t) + · · · ,
where every term is a multivariate integral involving a linear combination of nested
commutators of A evaluated at different times (i.e., the Magnus series (1.4) with (1.6)).

We proceed now to analyze in detail the conditions under which statements (A)–(C) hold,
whereas the validity of (D) will be established by examining the convergence problem in the
rest of the paper.
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(A) If A(t) and Y (t) are n×n matrices, from well-known general theorems on differential
equations it is clear that the initial-value problem (1.1) always has a uniquely determined
solution Y (t) which is continuous and has a continuous first derivative in any interval in which
A(t) is continuous [7]. Furthermore, the determinant of Y is always different from zero, since

det Y (t) = exp

(∫ t

0
tr A(s) ds

)
.

On the other hand, any matrix Y can be written in the form exp � if and only if det Y �= 0 [11,
p 239], so that it is always possible to write Y (t) = exp �(t).

In the general context of Lie groups and Lie algebras, it is indeed the regularity of the
exponential map from the Lie algebra g to the Lie group G that determines the global existence
of an �(t) ∈ g [8, 29]: the exponential map of a complex Lie algebra is globally one to one
if and only if the algebra is nilpotent. In general, however, the injectivity of the exponential
map is only assured for ξ ∈ g such that ‖ξ‖ < ρG for a real number ρG > 0 and some norm
in g [25, 26].

(B) Although in principle ρG constitutes a sharp upper bound for the mere existence of
the operator � ∈ g, its practical value in the case of differential equations is less clear. For
instance, the logarithm of Y (t) may be complex even for real A(t) [31]. In such a situation,
the solution of (1.1) cannot be written as the exponential of a matrix belonging to the Lie
algebra over the field of real numbers. One might argue that this is indeed possible over the
field of complex numbers, but (i) the element � cannot be computed by the Magnus series
(D), since it contains only real rational coefficients and (ii) examples exist where the logarithm
of a complex matrix does not lie in the corresponding Lie subalgebra [31].

It is therefore interesting to determine for which range of t a real matrix A(t) in (1.1) leads
to a real logarithm. This issue has been tackled in [26] in the context of a complete normed
(Banach) algebra, proving that if∫ t

0
‖A(s)‖2 ds < π (2.1)

then the solution of (1.1) can be written indeed as Y (t) = exp �(t), where �(t) is in the
Banach algebra. In (2.1), ‖·‖2 stands specifically for the 2-norm (or spectral norm) of A.

(C) In his original paper [21], Magnus was well aware that if the function �(t) is assumed
to be differentiable, it may not exist everywhere. In fact, he related the differentiability issue
to the existence of the right-hand side of equation (1.3) and gave an implicit condition for an
arbitrary A. More specifically, he proved the following result for the case of n × n matrices
(theorem 5 in [21]):

Theorem 2.1. The equation A(t) = d exp�(�′) can be solved by �′ = d exp−1
� A(t) for an

arbitrary A if and only if none of the differences between any two of the eigenvalues of �

equals 2π im, where m = ±1,±2, . . . , (m �= 0).

Unfortunately, such a result has not very much practical application unless we can easily
determine the eigenvalues of � from those of A(t).

2.2. Convergence of the Magnus series

Let us analyze now in some detail statement (D). Magnus considered the question of when the
series (1.4) terminates at some finite index m, thus giving a globally valid � = �1 + · · · + �m.
This happens, for instance, if[

A(t),

∫ t

0
A(s) ds

]
= 0
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identically for all values of t, since then �k = 0 for k > 1. A sufficient (but not necessary)
condition for the vanishing of all terms �k with k > l is that

[A(s1), [A(s2), [A(s3), . . . , [A(sl), A(sl+1)] · · ·]]] = 0

for any choice of s1, . . . , sl+1. In fact, the termination of the series cannot be established solely
by consideration of the commutativity of A(t) with itself, and Magnus considered an example
illustrating this point [21].

In general, however, the Magnus series does not converge unless A is small in a suitable
sense. Several bounds to the actual radius of convergence in terms of A have been obtained
along the years. Most of these results can be stated as follows. If �m(t) denotes the
homogeneous element with m commutators in the Magnus series as given by (1.6), then
�(t) = ∑∞

m=1 �m(t) is absolutely convergent for 0 � t < T , with

T = max

{
t � 0 :

∫ t

0
‖A(s)‖2 ds < rc

}
. (2.2)

Thus, Pechukas and Light [28] and Karasev and Mosolova [17] both obtained rc = log 2 =
0.693 147 . . . , whereas Chacon and Fomenko [6] got rc = 0.57745 . . . . In 1998, Blanes et al
[2] and Moan [24] obtained independently the improved bound

rc = 1

2

∫ 2π

0

1

2 + x
2

(
1 − cot x

2

) dx ≡ ξ = 1.086 868 69 . . . .

Based on the analysis of some selected examples, Moan [26] concluded that, in order to get
convergence for all real matrices A(t), necessarily rc � π , and more recently Moan and
Niesen [27] have been able to prove rigorously that indeed rc = π .

This result shows, in particular, that statement (D) is locally valid, but cannot be used
to compute � in the large. However, as we have seen, the other statements need not depend
on the validity of (D). In particular, if (B) and (C) are globally valid, one can still investigate
many of the properties of � even though one cannot compute it with the aid of (D).

3. A generic result on the convergence of the Magnus series

3.1. General formulation

As we have mentioned before, if A(t) is a real n × n matrix, then (2.1) gives a condition for
Y (t) to have a real logarithm. Moreover, it has been shown that, under the same condition,
the Magnus series (1.4) converges precisely to this logarithm, i.e., its sum �(t) satisfies
e�(t) = Y (t) [27]. Our purpose in this section is provide a different proof of this property
which in fact is also valid in the more general setting of linear operators in a Hilbert space of
arbitrary dimension.

To begin with, let A(t) be a bounded linear operator in a Hilbert space H, with
2 � dimH � ∞. Let us introduce a new parameter ε ∈ C and denote by Y (t; ε) the
solution of the initial-value problem

dY

dt
= εA(t)Y, Y (0) = I, (3.1)

where now I denotes the identity operator in H. It is known that Y (t; ε) is an analytic function
of ε for a fixed value of t. Let us introduce the set Bγ ⊂ C characterized by the real parameter
γ ,

Bγ =
{
ε ∈ C : |ε|

∫ t

0
‖A(s)‖ ds < γ

}
.
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Here ‖·‖ stands for the norm defined by the inner product on H. Our first statement is that,
if t is fixed, the operator function ϕ(ε) = log Y (t; ε) is well defined in Bγ when γ is small
enough, say γ < log 2, as an analytic function of ε.

As a matter of fact, this is a direct consequence of the results collected in section 2.2:
if, in particular, |ε| ∫ t

0 ‖A(s)‖ ds < log 2, the Magnus series corresponding to (3.1) converges
and its sum �(t; ε) satisfies e�(t;ε) = Y (t; ε). In other words, the power series �(t; ε)

coincides with ϕ(ε) when |ε| ∫ t

0 ‖A(s)‖ds < log 2, and so the Magnus series is the power
series expansion of ϕ(ε) around ε = 0.

The following theorem shows that, indeed, γ = π .

Theorem 3.1. The function ϕ(ε) = log Y (t; ε) is an analytic function of ε in the set Bπ , with

Bπ =
{
ε ∈ C : |ε|

∫ t

0
‖A(s)‖ds < π

}
.

If H is infinite dimensional, the statement holds true if Y is a normal operator.

The proof of this theorem is based on some elementary properties of the unit sphere
S1 in a Hilbert space. Let us define the angle between any two vectors x �= 0, y �= 0 in
H, Ang{x, y} = α, 0 � α � π , from

cos α = Re〈x, y〉
‖x‖‖y‖ ,

where 〈·, ·〉 is the inner product on H. This angle is a metric in S1, i.e., the triangle inequality
holds there. A trivial property which will be used in the sequel is the following: if ‖x‖ = 1
and ‖u‖ � 1/2, then Ang{x + u, x} � ‖u‖(1 + ‖u‖2).

The second basic property of the angle we need is given by the following lemma, whose
proof (due to Moan [26]) is included here for completeness.

Lemma 3.2. (Moan). For any x �= 0 in H, Ang{Y (t; ε)x, x} � |ε| ∫ t

0 ‖A(s)‖ ds

Proof of lemma 3.2. Let y0 ≡ x and consider the vector y(t) = Y (t; ε)y0 satisfying the
initial-value problem y ′ = εA(t)y, y(0) = y0. Then, clearly, ‖y ′‖ � |ε|‖A(t)‖‖y‖. Let
ŷ(t) = y(t)

‖y(t)‖ denote the unit vector in the direction of y(t), so that y ′ = d‖y‖
dt

ŷ + ‖y‖ŷ ′. On
the other hand, since 〈ŷ, ŷ〉 = 1, then 〈ŷ ′, ŷ〉 + 〈ŷ, ŷ ′〉 = Re〈ŷ, ŷ ′〉 = 0, i.e., ŷ and ŷ ′ are
orthogonal. In consequence,

〈y ′, y ′〉 = ‖y ′‖2 =
(

d‖y‖
dt

)2

+ ‖y‖2‖ŷ ′‖2,

whence, by discarding the (‖y‖′)2 term, ‖ŷ ′‖2‖y‖2 � ‖y ′‖2, and thus ‖ŷ ′‖‖y‖ � ‖y ′‖ �
|ε|‖A(t)‖‖y‖ or simply ‖ŷ ′‖ � |ε|‖A(t)‖. Integrating this last inequality we get∫ t

0
‖ŷ ′(s)‖ds � |ε|

∫ t

0
‖A(s)‖ ds,

but ∫ t

0
‖ŷ ′(s)‖ ds =

∫ t

0

√
〈ŷ ′(s), ŷ ′(s)〉 ds

is the length (defined through the metric given by the inner product) of the curve traced by
the unit vector ŷ(s) when s ∈ [0, t] on the unit sphere S1, which is greater than or equal to
Ang{y(t), y0}, and this proves the result. �
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Observe that if Y is a normal operator in H, i.e., YY ∗ = Y ∗Y , where Y ∗ denotes the
adjoint operator of Y (in particular, if Y is unitary), then ‖Y ∗x‖ = ‖Yx‖ for all x ∈ H and
therefore Ang{Y ∗x, x} = Ang{Yx, x}.

The following lemma provides useful information on the location of the eigenvalues of a
given bounded linear operator in H [23].

Lemma 3.3. (Mityagin). Let T be a (bounded) operator on H. If Ang{T x, x} � γ and
Ang{T ∗x, x} � γ for any x �= 0, x ∈ H, where T ∗ denotes the adjoint operator of T, then the
spectrum of T , σ (T ), is contained in the set


γ = {z = |z| eiω ∈ C : |ω| � γ }

Proof of lemma 3.3. Without loss of generality, we may assume γ < π (if γ � π , there
is no statement here). If dimH < ∞, only the first requirement on T , Ang{T x, x} � γ is
sufficient, since in that case, if λ = |λ|eiω �= 0,−π < ω � π , is in σ(T ), then there exists
some f �= 0 such that Tf = λf and

Ang{Tf, f } = Ang{λf, f } = |ω| � γ.

If, on the other hand, dimH = ∞ and λ ∈ σ(T ), λ �= 0, then, as is well known, either (i) λ

belongs to the approximate spectrum of T , σap(T ), or (ii) λ is in the residual spectrum, σr(T )

[14].

(i) In the first case, there is a sequence {fn} in H such that ‖fn‖ = 1 for all n and
limn→∞ ‖(T − λI)fn‖ = 0. Equivalently, Tfn = λfn + εn, with ‖εn‖ → 0 when
n → ∞. Then we have

γ � Ang{Tfn, fn} = Ang{λfn + εn, fn} � Ang{λfn, fn} − Ang{λfn, λfn + εn}, (3.2)

since the angle is a metric in S1. Now, as λ = |λ|eiω �= 0,−π < ω � π , it is clear from
(3.2) that

γ � |ω| − Ang

{
fn, fn +

1

λ
εn

}
� |ω| − ‖εn‖

|λ|
(

1 +
‖εn‖2

|λ|2
)

, (3.3)

where the last inequality holds when ‖εn‖
|λ| � 1

2 , i.e., for sufficiently large n. Taking the
limit n → ∞ in (3.3) leads to γ � |ω|.

(ii) If λ ∈ σr(T ), then λ̄ is an eigenvalue of T ∗, i.e., Ker(T ∗ − λ̄I ) �= {0} [14]. Since, by
assumption, Ang{T ∗x, x} � γ for all x �= 0, we can apply again the argument in (i) to
T ∗, λ̄ and conclude that |ω| � γ . �

Now we are ready to prove the main theorem.

Proof of theorem 3.1. Let us introduce the operator T ≡ Y (t; ε), with ε ∈ Bγ , γ < π . Then
by lemma 3.2, Ang{T x, x} � γ for all x �= 0, and thus, by lemma 3.3,

σ(T ) ⊂ 
γ . (3.4)

If dimH = ∞ and we assume that Y (t; ε) is a normal operator, then (3.4) also holds.
From equation (3.1) in integral form,

Y (t; ε) = I + ε

∫ t

0
A(s)Y ds,

one gets ‖Y‖ � 1 + |ε| ∫ t

0 ‖A(s)‖‖Y‖ ds, and application of Gronwall’s lemma [12] leads to

‖Y (t; ε)‖ � exp

(
|ε|

∫ t

0
‖A(s)‖ ds

)
.
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An analogous reasoning for the inverse operator also proves that

‖Y−1(t; ε)‖ � exp

(
|ε|

∫ t

0
‖A(s)‖ ds

)
.

In consequence,

‖T ‖ � eγ and ‖T −1‖ � eγ .

If λ �= 0 ∈ σ(T ), then |λ| � ‖T ‖ [14] and therefore |λ| � eγ . In addition, 1
λ

∈ σ(T −1),
so that |λ| � e−γ . Equivalently,

σ(T ) ⊂ {z ∈ C : e−γ � |z| � eγ } ≡ Gγ . (3.5)

Putting together (3.4) and (3.5), one has

σ(T ) ⊂ Gγ ∩ 
γ ≡ �γ .

Now choose any value γ ′ such that γ < γ ′ < π (e.g., γ ′ = (γ +π)/2) and consider the closed
curve � = ∂�γ ′ . Note that the curve � encloses σ(T ) in its interior, so that it is possible to
define the function ϕ(ε) = log Y (t; ε) by the equation [9]

ϕ(ε) = 1

2π i

∫
�

log z(zI − Y (t; ε))−1 dz, (3.6)

where the integration along � is performed in the counterclockwise direction. As is well
known, (3.6) defines an analytic function of ε in Bγ ′ [9] and the result of the theorem follows.

�

Theorem 3.4. Let us consider the differential equation Y ′ = A(t)Y defined in a Hilbert space
H with Y (0) = I , and let A(t) be a bounded linear operator on H. Then, the Magnus series
�(t) = ∑∞

k=1 �k(t), with �k given by (1.6) converges in the interval t ∈ [0, T ) such that

∫ T

0
‖A(s)‖ ds < π

and the sum �(t) satisfies exp �(t) = Y (t). The statement also holds when H is infinite-
dimensional if Y is a normal operator (in particular, if Y is unitary).

Proof. Theorem 3.1 shows that log Y (t; ε) ≡ ϕ(ε) is a well defined and analytic function of
ε for

|ε|
∫ t

0
‖A(s)‖ ds < π.

It has also been shown that the Magnus series �(t; ε) = ∑∞
k=1 εk�k(t), with �k given by

(1.6), is absolutely convergent when |ε| ∫ t

0 ‖A(s)‖ ds < ξ = 1.0868 . . . and its sum satisfies
exp �(t; ε) = Y (t; ε). Hence, the Magnus series is the power series of the analytic function
ϕ(ε) in the disk |ε| < ξ/

∫ t

0 ‖A(s)‖ ds. But ϕ(ε) is analytic in Bπ ⊃ Bξ and the power series
has to be unique. In consequence, the power series of ϕ(ε) in Bπ has to be same as the power
series of ϕ(ε) in Bξ , which is precisely the Magnus series. Finally, by taking ε = 1 we get the
desired result. �



Sufficient conditions for the convergence of the Magnus expansion 15009

3.2. Examples

Theorem 3.4 thus provides sufficient conditions for the convergence of the Magnus series based
on an estimate by the norm of the operator A. In particular, it guarantees that the operator
�(t) in Y (t) = exp �(t) can safely be obtained with the convergent series

∑
k�1 �k(t) for

0 � t < T when the terms �k(t) are computed with (1.6). A natural question arising here is
the following: is the bound estimate provided by theorem 3.4 sharp or is there still room for
improvement? In order to clarify this issue, we next analyze two simple examples involving
2 × 2 matrices.

Example 1. Moan and Niesen [27] consider the initial-value problem (1.1) with

A(t) =
(

2 t

0 −1

)
. (3.7)

If we introduce, as before, the complex parameter ε in the problem, the corresponding exact
solution Y (t; ε) of (3.1) is given by

Y (t; ε) =
(

e2εt 1
9ε

e2εt − (
1
9ε

+ 1
3 t

)
e−εt

0 e−εt

)
(3.8)

and therefore

log Y (t; ε) =
(

2t g(t; ε)

0 −t

)
, with g(t; ε) = t (1 − e3εt + 3εt)

3(1 − e3εt )
.

The Magnus series can be obtained by computing the Taylor expansion of log Y (t; ε) around
ε = 0. Note that the function g has a singularity when εt = 2π

3 i, and thus, by taking
ε = 1, the Magnus series only converges up to t = 2

3π . On the other hand, the condition∫ T

0 ‖A(s)‖ ds < π leads to T ≈ 1.43205 < 2
3π . In consequence, the actual convergence

domain of the Magnus series is larger than the estimate provided by theorem 3.4.

Example 2. Let us introduce the matrices

X1 =
(

1 0
0 −1

)
, X2 =

(
0 1
0 0

)
(3.9)

and define

A(t) =
{
βX2 0 � t � 1
αX1 t > 1

with α, β complex constants. Then, the solution of equation (1.1) at t = 2 is Y (2) = eαX1 eβX2 ,
so that

�(2) = log(eαX1 eβX2) = αX1 +
2αβ

1 − e−2α
X2, (3.10)

an analytic function if |α| < π with first singularities at α = ± iπ .
On the other hand, a simple calculation with the recurrence (1.6) shows that

�(2) =
∞∑

k=1

�k(2) = αX1 + βX2 +
∞∑

n=2

(−1)n−1 2n−1Bn−1

(n − 1)!
αn−1βX2. (3.11)

Comparing with expression (3.10), it is clear that the Magnus series cannot converge at t = 2
if |α| � π , independently of β �= 0.
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If we take the spectral norm, then ‖X1‖ = ‖X2‖ = 1 and∫ t=2

0
‖A(s)‖ ds = |α| + |β|,

so that the convergence domain provided by theorem 3.4 is |α| + |β| < π for this example.

From the analysis of examples 1 and 2 we can conclude the following. First, the
convergence domain of the Magnus series provided by theorem 3.4 is the best result one
can get for a generic bounded operator A(t) in a Hilbert space, in the sense that one may
consider specific A(t), as in example 2, where the series diverges for any time t such that∫ t

0 ‖A(s)‖ ds > π . Second, there are also situations (as in example 1) where the bound
estimate rc = π is still rather conservative: the Magnus series converges indeed for a larger
time interval than that given by theorem 3.4. This is particularly evident if one considers
equation (3.1) with A(t) a diagonal matrix,

A(t) =
(

a1(t) 0
0 a2(t)

)
. (3.12)

Then, the exact solution Y (t; ε) of (3.1) is a diagonal matrix whose elements are non-vanishing
entire functions of ε, and obviously log Y (t; ε) is also an entire function of ε. In such
circumstances, the convergence domain |ε| ∫ t

0 ‖A(s)‖ ds < π for the Magnus series does not
make much sense.

4. Another characterization of the convergence of the Magnus series

4.1. Main result on convergence

The examples collected in the preceding section (and many more one can build) clearly show
that, although the condition

∫ t

0 ‖A(s)‖ ds < π is sharp (in the sense that the constant π is the
largest number for which theorem 3.4 holds in general), it is certainly not necessary for the
convergence of the Magnus series. Thus, it would be highly desirable to have a more realistic
criterion which give both necessary and sufficient conditions for convergence.

In [27], a conjecture is formulated, relating the convergence of the Magnus series with
the eigenvalues of the exact solution Y (t; ε). Here we state a theorem which, on the one hand,
explains the phenomena observed by Moan and Niesen [27] and, on the other hand, provides a
new tool to determine the actual convergence domain of the Magnus series in some physically
relevant examples and applications.

The main result in this section (theorem 4.2) is valid for complex n × n matrices and is
based on the theory of analytic matrix functions, in particular, in the logarithm of an analytic
matrix function. In fact, it is a direct consequence of the analysis done in ([32], chapter 1,
section 3). Here we shall summarize the most relevant aspects of the formalism and refer the
reader to [32] for a more detailed treatment (including proofs).

Our starting point is again the initial-value problem Y ′ = εA(t)Y, Y (0) = I , where now
A(t) and Y are (complex) n × n matrices and ε ∈ C. If we denote by Yt (ε) the exact solution
for a fixed value of t, Yt (ε) ≡ Y (t; ε), it is clear that Yt (ε) is an analytic function of ε [7],
since the Neumann series

Yt (ε) = I +
∞∑

k=1

εk

∫ t

0
dt1A(t1)

∫ t1

0
dt2A(t2) · · ·

∫ tk−1

0
dtkA(tk)

converges provided that
∫ t

0 ‖A(s)‖ ds < ∞. In addition, det Yt (ε) �= 0 for all ε. Under these
conditions, it has been shown that the matrix �t(ε) = log Yt (ε) is also an analytic function
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of ε at ε = 0. In other words, the series �t(ε) = ∑
k�1 εk�t,k (i.e., the Magnus series)

is convergent for sufficiently small ε. The goal is then to determine the actual radius of
convergence r of this series.

Let us denote by ρ1(ε), . . . , ρn(ε) the eigenvalues of the matrix Yt (ε). Note that Yt (0) = I ,
so that ρ1(0) = · · · = ρn(0) = 1. It is therefore natural to take the principal values of the
logarithm, log ρ1(0) = · · · = log ρn(0) = 0, as this choice is consistent with the series �t(ε).

Let L be a curve on the ε plane in the disk |ε| < r0 < ∞ issuing from the origin. Recall
that the matrix Yt (ε) is analytic in the disk |ε| < r0. On the curve L it is possible to define a
unique function log ρj (ε), j = 1, . . . , n, by continuity, given the values log ρj (0) = 0.

Let ρ0 be a multiple eigenvalue of Yt (ε0) for some ε0 with |ε0| < r0 with multiplicity l.
If we reorder the eigenvalues of Yt (ε0) in such a way that the first l are precisely ρ0, it is clear
that the numbers log ρ1(ε0), log ρ2(ε0), . . . , log ρl(ε0), 1 < l � n, are congruent modulo 2π i
and are such that ρ1(ε0) = · · · = ρl(ε0) = ρ0. Associated with this multiple eigenvalue ρ0

there is a pair of integers (p, q) defined as follows.
The integer p is the greatest number of equal terms in the set of numbers

log ρ1(ε0), log ρ2(ε0), . . . , log ρl(ε0) such that ρk(ε0) = ρ0, k = 1, . . . , l.
The integer q is the maximum degree of the elementary divisors (ρ − ρ0)

k of Yt (ε0), i.e.,
the maximum dimension of the elementary Jordan block corresponding to ρ0.

Note that the numbers l and q depend only on the particular eigenvalue ρ0, whereas the
integer p depends on ρ0 and the curve L.

Under these conditions, it is possible to prove the following lemma [32, p 64] on the
convergence of the series �t(ε).

Lemma 4.1. (Yakubovich–Starzhinskii). Suppose that the series �t(ε) = ∑
k�1 εk�t,k

satisfies that exp �t(ε) = Yt (ε) for sufficiently small |ε|. Then

(a) If r < r0 is the radius of convergence of the series �t(ε), the eigenvalues λ1(ε), . . . , λn(ε)

of the matrix �t(ε), defined for |ε| < r , can be defined by continuity on the circle |ε| = r ,
and there exists a point ε0 such that for some j, k = 1, . . . , n

λj (ε0) − λk(ε0) = 2π im,

where m �= 0 is an integer.
(b) Suppose that ε0 is the value of ε of smallest absolute value (ε0 �= 0, |ε0| < r0) such that

the matrix Yt (ε0) has an eigenvalue ρ0 of multiplicity l > 1. Suppose that there is at least
one such an eigenvalue ρ0 and at least one curve in the disk |ε| < |ε0| joining the origin
ε = 0 with the point ε = ε0 such that p < q, where the integers p and q have been defined
before. Then r = |ε0| is the radius of convergence of the series �t(ε) = ∑

k�1 εk�t,k .

In order to apply this result one first has to solve the equation


(ε) = 0, (4.1)

where 
(ε) denotes the discriminant of the characteristic polynomial det(Yt (ε) − ρI). We
recall here that the discriminant of a polynomial

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

is given by

a2n−2
n

∏
i<j

(ri − rj )
2,

with r1, . . . , rn complex roots of p(x), so that it vanishes if and only if p(x) has one or more
multiple roots [20]. Thus, it can be used to test for the presence of multiple roots, without
having to actually compute the roots of p(x).
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We write the solutions of equation (4.1) in order of non-decreasing absolute value,

ε
(1)
0 , ε

(2)
0 , ε

(3)
0 , . . . (4.2)

and consider the circle |ε| = ∣∣ε(1)
0

∣∣ in the complex ε-plane. Let ρ
(1)
0 denotes an eigenvalue of

Yt (ε
(1)
0 ) with multiplicity l1 > 1. Let ε move along some fixed curve L from ε = 0 to ε = ε

(1)
0

in the circle |ε| � |ε(1)
0 |. Then it is clear that l1 eigenvalues ρj (ε) will tend to ρ

(1)
0 at ε = ε

(1)
0 .

If these points lie at ε = ε
(1)
0 on the same sheet of the Riemann surface of the function log z,

and this is true for all (possible) multiple eigenvalues of Yt (ε) at ε = ε
(1)
0 , then ε

(1)
0 is called a

extraneous root of equation (4.1). Otherwise, ε
(1)
0 is called a non-extraneous root.

Now, by lemma 4.1, when |ε| <
∣∣ε(1)

0

∣∣, the series for �t(ε) is convergent, so that the
numbers log ρj (ε) are uniquely determined up to multiplicity as eigenvalues of the matrix
�t(ε).

If ε
(1)
0 is an extraneous root, there is no obstacle to the convergence of the series and thus

we proceed to the next value in the sequence (4.2). We continue this classification until a
non-extraneous root is obtained. Assume, for simplicity, that ε

(2)
0 is the first non-extraneous

root.
The root ε

(2)
0 will generally correspond to some multiple eigenvalue ρ0 of Yt

(
ε

(2)
0

)
, with

integers (p, q) as before. Then the statement of lemma 4.1 can be formulated as follows.

Theorem 4.2. If r �= ∞ is the radius of convergence of the series

�t(ε) =
∞∑

k=1

εk�t,k, (4.3)

there is at least one non-extraneous root ε0 of the equation 
(ε) = 0 on the circle |ε| = r . If
for this root one has p < q for some corresponding eigenvalue ρ0 of multiplicity l > 1, then
r = |ε0|, i.e., the radius of convergence of the series �t(ε) is precisely |ε0|.

We should remark here that in some cases with p � q, the series (4.3) may well converge at
ε = ε0 and the radius of convergence r is indeed greater than |ε0|. This occurs, for instance,
when A(t) is diagonal. To illustrate this phenomenon, consider again the matrix (3.12) with
a1(t) ≡ a2(t). Then, clearly, ρ1(ε) = ρ2(ε) for all ε, so that l = 2 and q = 1. If we choose
log ρ1(ε) = log ρ2(ε), then p = 2 > q.

Although these cases are in a certain sense exceptional, as explained in [32, p 66], theorem
4.2 is not yet, strictly speaking, a necessary condition for the convergence of the series (4.3).
In any case, the convergence in the diagonal case is compatible with its formulation, as we
have seen.

4.2. Examples

We next illustrate theorem 4.2 on three different examples. We first consider those analyzed in
subsection 3.2 and then we treat in some detail the Magnus expansion applied to the evolution
operator describing a two-level quantum system.

Example 3 (revisited). Given the exact solution (3.8) of example 1 in subsection 3.2, the
corresponding discriminant is given by 
(ε) = (e2εt + e−εt )2 − 4eεt , whose roots are

ε
(1)
0 = 0, and ε

(2)
0 = i

2π

3t
.
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The first value, ε
(1)
0 = 0, is clearly an extraneous root, so we analyze ε

(2)
0 . As ε varies along

the imaginary axis from ε = 0 to ε = ε
(2)
0 , the eigenvalues of the matrix Yt (ε),

ρ1(ε) = e2εt , ρ2(ε) = e−εt

move along the unit circle, one clockwise and the other counterclockwise from

ρ1,2(0) = 1 to ρ1,2
(
ε

(2)
0

) = ei4π/3 = e−i2π/3 = ei(4π/3−2π).

Thus, ρ1
(
ε

(2)
0

)
and ρ2

(
ε

(2)
0

)
lie on different sheets of the Riemann surface of the function log z

and therefore ε
(2)
0 is a non-extraneous root, with p = 1. Since Yt

(
ε

(2)
0

) �= ρI , we have q = 2,
so that, according to theorem 4.2, the radius of convergence of the series (4.3) is precisely

r = ∣∣ε(2)
0

∣∣ = 2π

3t
. (4.4)

To get the actual convergence domain of the corresponding Magnus expansion we have to
take ε = 1, and so, from (4.4), we get 2π/(3t) = 1, or equivalently t = 2π/3, i.e., the result
achieved from the analysis of the exact solution in subsection 3.2.

Example 2 (revisited). Let us obtain the convergence domain for the Magnus expansion of
the solution to the initial-value problem Y ′ = εA(t)Y, Y (0) = I , when A(t) is the piece-wise
continuous matrix defined in example 2 (subsection 3.2). The exact solution for t � 1 is given
by

Y (t; ε) =
(

eεw εβ eεw

0 e−εw

)
,

where w ≡ α(t − 1). Equation (4.1) leads in this case to cosh2(εw) − 1 = 0, with first
solutions

ε = 0, ε = ± i
π

w
.

Again, ε = 0 is an extraneous root, whereas the eigenvalues of the matrix Yt (ε) move along
the unit circle, one clockwise and the other counterclockwise from

ρ1,2(0) = 1 to ρ1,2(iπ/w) = −1,

when ε varies along the imaginary axis from ε = 0 to ε = iπ/w (the same considerations
apply to the case ε = −iπ/w). Then, obviously, p = 1 and q = 2, so that the radius of
convergence of the series (4.3) is

|ε| = π

|w| = π

|α|(t − 1)
.

If we now fix ε = 1, we get the actual t-domain of convergence of the Magnus series (1.4) as

t = 1 +
π

|α| .
Observe that, when t = 2, we get |α| = π and the result of subsection 3.2 is recovered: the
Magnus series converges only for |α| < π .

Example 3. Our final illustration corresponds to the quantum-mechanical treatment of a
two-level system in a rotating field. It is described by the Hamiltonian

H(t) = 1
2h̄ω0σz + β(σx cos ωt + σy sin ωt), (4.5)

where σx, σy, σz are Pauli matrices and β is a coupling constant. In fact, this system constitutes
a truncation in state space of a more general one, namely an atom or freely rotating molecule
in a circularly polarized radiation field [18, 30].
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It has been previously established that when t = 2π/ω the Magnus expansion of the
corresponding evolution operator U(t), solution of the Schrödinger equation

ih̄
dU

dt
= H(t)U, U(0) = I (4.6)

converges for ω > ω0 and diverges otherwise [10, 22, 30]. Several different arguments have
been offered trying to explain this phenomenon [18]. Here we show that this bound can be
directly provided by theorem 4.2.

The exact time-evolution operator can be obtained in closed form by transforming into a
rotating frame. Replacing, as usual, H by εH in (4.6) one has

U(t) = exp

(
−1

2
iωtσz

)
exp

(
−it

(
1

2
(εω0 − ω)σz + ε

β

h̄
σx

))
. (4.7)

From (4.7), a lengthy but straightforward calculation allows us to write the corresponding
matrix Y (t; ε) ≡ U(t) in the form

Yt (ε) =
(

e− 1
2 itω

(
cos ω̃t

2 − i δ
ω̃

sin ω̃t
2

) −i e− 1
2 itω 2εβ

ω̃h̄
sin ω̃t

2

−i e
1
2 itω 2εβ

ω̃h̄
sin ω̃t

2 e
1
2 itω

(
cos ω̃t

2 + i δ
ω̃

sin ω̃t
2

)
)

, (4.8)

with δ = εω0 − ω and ω̃ = (δ2 + 4β2ε2/h̄2)1/2. Denoting

cos χ ≡ cos
ωt

2
cos

ω̃t

2
− δ

ω̃
sin

ωt

2
sin

ω̃t

2

= 1

2

(
1 +

δ

ω̃

)
cos

(ω + ω̃)t

2
+

1

2

(
1 − δ

ω̃

)
cos

(ω − ω̃)t

2
,

the eigenvalues of Yt (ε) can be expressed as

ρ1,2(ε) = cos χ ±
√

cos2 χ − 1, (4.9)

so that U(t) has multiple eigenvalues when cos χ = ±1. This equality is satisfied by ε = 0,
which is clearly an extraneous root. The remaining roots of equation (4.1) are obtained from

arccos

(
cos

ωt

2
cos

ω̃t

2
− δ

ω̃
sin

ωt

2
sin

ω̃t

2

)
= π. (4.10)

To simplify the discussion, let us consider the perturbative approximation β � h̄|δ|/2. Then
ω̃ ≈ |δ| and cos χ ≈ cos(εω0t/2), so that (4.10) reduces to εω0t/2 = π . The solution

ε0 = 2π

ω0t

is a non-extraneous root with p = 1 and q = 2 (ρ1,2(ε0) = −1), and thus the radius of
convergence of the series (4.3) is precisely |ε0|. Taking now ε = 1, we get finally the t-domain
of convergence of the Magnus expansion tc = 2π/ω0. Note that for t = tc and ω < ω0 we are
outside the convergence disk, and thus the Magnus series diverges, just as noted in [18].

5. Discussion

The Magnus expansion was originally designed by requiring only that A(t) be a linear operator
depending on a real variable t in an associative ring and that ‘certain unspecified conditions of
convergence be satisfied’ [21]. The idea was to define, in terms of A, an operator �(t) such
that the solution of the initial-value problem

dY

dt
= A(t)Y, Y (0) = I,
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for a second operator Y is given as Y = exp �. The proposed expression for � was an infinite
series satisfying the condition that ‘its partial sums become Hermitian after multiplication by
i if iA is a Hermitian operator’ [21]. The simplest example of an equation of this type is
given by a finite system of linear differential equations. In this case, A(t) is the coefficients
matrix of the system, and the existence of � is assured ‘for sufficiently small values of t’ [21].
Theorem 2.1 yields an implicit condition in terms of the eigenvalues of the matrix �.

Given the importance of the expansion, it has been rediscovered a number of times in
different settings along the years. Also a particular attention has been paid to its convergence
in the matrix case, and so several bounds on the actual radius of convergence of the form (2.2)
have been obtained with different values of rc. Recently, it has been shown that the optimal
value is rc = π for all n × n real matrices A(t) [27].

In this work, by applying standard techniques of complex analysis and some elementary
properties of the unit sphere, we have generalized this result to bounded linear operators in
a Hilbert space (theorem 3.4), in the spirit of the original Magnus formulation in the context
of quantum mechanics. Obviously, this theorem is also valid for finite-dimensional complex
matrices. In our treatment, a complex parameter ε is introduced in the formalism, so that the
initial-value problem (3.1) is considered instead. Note that the Magnus expansion is trivially
recovered as soon as we fix ε = 1.

Although theorem 3.4 provides the optimal convergence domain, in the sense that π is
the largest constant for which the result holds without any further restrictions on the operator
A(t), one can easily construct examples showing that

∫ T

0 ‖A(s)‖ ds < π is not necessary for
the convergence of the expansion.

With the aim of obtaining a more precise characterization of the convergence, we have
considered in section 4 the case of n × n complex matrices. There, as a straightforward
consequence of the theory of analytic matrix functions, and in particular, of the logarithm
of an analytic matrix function such as is done in [32], we have established a connection
between the convergence of the Magnus series and the existence of multiple eigenvalues of
the fundamental matrix Y (t; ε) for a fixed t, denoted by Yt (ε) (theorem 4.2). In essence, if the
analytic matrix function Yt (ε) has an eigenvalue ρ0(ε0) of multiplicity l > 1 for a certain ε0

such that: (a) there is a curve in the ε-plane joining ε = 0 with ε = ε0, and (b) the number
of equal terms in log ρ1(ε0), log ρ2(ε0), . . . , log ρl(ε0) such that ρk(ε0) = ρ0, k = 1, . . . , l is
less than the maximum dimension of the elementary Jordan block corresponding to ρ0, then
the radius of convergence of the series �t(ε) = ∑

k�1 εk�t,k verifying exp �t(ε) = Yt (ε) is
precisely r = |ε0|.

This value r in general will be different for each particular t considered, so that we can
write r = |ε0| = F(t) for a given function F(t). In particular, for the examples considered in
section 4, F(t) = 2π

3t
, F (t) = π

|α|(t−1)
and F(t) = 2π

ω0t
, respectively. If we fix |ε0| = 1, then

the convergence t-domain of the Magnus expansion is obtained as the solution of F(t) = 1
with the smallest absolute value.

It is interesting at this point to discuss theorem 2.1 on the existence of a differentiable
function �(t) and theorem 3.4 in view of the more precise account on the convergence issue
provided by theorem 4.2. First, note that under the assumptions of theorem 3.4, all the
eigenvalues of Y (t) lie in the region

Gπ = {z = |z| eiω ∈ C : e−π � |z| � eπ , |ω| < π},
so that automatically all the differences between any two of the eigenvalues of �(t) = log Y (t)

is less than 2π i and thus theorem 2.1 holds. Second, if all eigenvalues of Yt (ε) are located in
Gπ , the (possible) multiple eigenvalues take place only at extraneous roots of the parameter ε

and thus, according with theorem 4.2, the convergence of the series is assured.
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One might think that the practical application of theorem 4.2 to realistic problems is
doubtful, since it is necessary to compute in advance the fundamental matrix Y (t; ε). In this
sense, the alternative (but more conservative) estimate provided by theorem 3.4 directly in
terms of the operator A(t) is certainly easier to check in practice. In our opinion, however,
the characterization of the convergence of the Magnus expansion in terms of the multiple
eigenvalues of Y (t; ε) sheds new light on this issue, has a theoretical interest by itself and, in
addition, provides a rigorous justification for the conjecture formulated in [27] on the basis of
the exploration of several examples.
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