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Abstract

We present a practical algorithm to approximate the exponential of skew-Hermitian matrices up to round-off error based on
n efficient computation of Chebyshev polynomials of matrices and the corresponding error analysis. It is based on Chebyshev
olynomials of degrees 2, 4, 8, 12 and 18 which are computed with only 1, 2, 3, 4 and 5 matrix–matrix products, respectively.
or problems of the form exp(−i A), with A a real and symmetric matrix, an improved version is presented that computes

the sine and cosine of A with a reduced computational cost. The theoretical analysis, supported by numerical experiments,
indicates that the new methods are more efficient than schemes based on rational Padé approximants and Taylor polynomials
for all tolerances and time interval lengths. The new procedure is particularly recommended to be used in conjunction with
exponential integrators for the numerical time integration of the Schrödinger equation.
© 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Given a skew-Hermitian matrix, X ∈ CN×N , X H
= −X , we propose in this paper an algorithm to evaluate eX

p to round off accuracy that is more efficient than standard procedures implemented in computing packages for
imensions N up to few hundreds or thousands.

Computing exponentials of skew-Hermitian matrices is very often an intermediate step in the formulation of
umerical schemes used for simulating the evolution of different problems in Quantum Mechanics. Thus, suppose
ne needs to solve numerically the time-dependent Schrödinger equation (h̄ = 1)

i
∂

∂t
ψ(x, t) = Ĥ (t)ψ(x, t), ψ(x, 0) = ψ0(x). (1)
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Here Ĥ (t) is in general a time-dependent Hamiltonian operator, ψ : Rd
×R −→ C is the wave function representing

the state of the system, and ψ0(x) is the initial state.
One possible approach consists in expressing the solution in terms of an orthonormal basis {φk(x)}∞k=1 that is

truncated up to, say, the first N terms. Then, one has

ψ0(x) =

N∑
k=1

ck φk(x), and ψ(t, x) =

N∑
k=1

ck(t)φk(x),

here the coefficients c(t) = (c1(t), . . . , cN (t))T satisfy

i
d
dt

c(t) = H (t) c(t), c(0) = c0 ∈ CN , (2)

nd H (t) is a Hermitian matrix with elements Hℓm = ⟨φℓ|Ĥ (t)|φm⟩, ℓ,m = 1, . . . , N . One then subdivides the
ime integration interval in a number of subintervals of length τ , and finally computes approximations ck ≃ c(tk)
t times tk = kτ , k = 1, 2, 3, . . ..

Exponential integrators can be used to solve this problem (see [9,19] and references therein) and they require
he computation at each time step of one or several matrix exponentials e−i τ Hk , k = 1, 2, . . ., where Hk is a
ermitian matrix depending on H (t) at different times. Although efficient algorithms exist to carry out this task
y diagonalizing the constant matrix Hk , we will show that it is indeed possible to compute the exponential in a
ery efficient way with a different procedure when ∥τ Hk∥ is not too large . This is typically the situation one
ncounters when exponential integrators are applied to this class of problems [5].

The goal of this work is thus to present an efficient algorithm for computing eX , with X a skew-Hermitian
atrix, up to round off accuracy with a minimum number of matrix–matrix products. The algorithm is based on
hebyshev polynomials and an efficient procedure to evaluate polynomials of matrices. If ∥X∥ is large enough,

his technique can be combined with scaling-and-squaring. Even then, diagonalizing is only superior when a large
umber of squarings is necessary.

Since the algorithm can also be used to compute e−i A when A is a Hermitian matrix, just by taking A = i X , in
he sequel and without loss of generality we address this problem.

Our approach for computing e−i A is based on approximations of the form

e−i A
≈ Pm(A), (3)

here Pm(y) is a polynomial in y that approximates the exponential e−i y . Different choices for such Pm(y) are
vailable, namely truncated Taylor or Chebyshev series expansions in an appropriate real interval of y. Rational
pproximations, like Padé approximants, are also a standard technique to compute the exponential in combination
ith scaling and squaring [16,18]. In the autonomous case, when H (t) is constant, this is basically equivalent to

olve (2) using a Gauss–Legendre–Runge–Kutta method [13] or a Cayley transform [14].
Specifically, the scaling and squaring technique is based on the property

e−i A
=

(
e−i A/2s

)2s

, s ∈ N. (4)

he exponential e−i A/2s
is then replaced by a polynomial (or rational) approximation Pm(A/2s). Both parameters, s

nd m, are determined in such a way that full machine accuracy is achieved with the minimal computational cost.
An important ingredient in our procedure consists in designing an efficient way to evaluate the approximation Pm .

n this respect, the technique we propose can be considered as a direct descent of the procedure presented in [10] for
educing the number of commutators appearing in different exponential integrators. It was later generalized in [6]
o reduce the number of products necessary to compute the Taylor polynomials for approximating the exponential
f a generic matrix (see also [7,26] for a more detailed treatment).

In fact, the theoretical analysis carried out here and supported by numerical experiments performed for different
ermitian matrices A, indicates that our new schemes are more efficient than those based on rational Padé

pproximants (as used e.g. in MATLAB) or on Taylor polynomials for all tolerances. The algorithm computes the
arameter
β = ∥A∥1
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as an upper bound to the spectrum of A. As an optional choice, the user can provide upper and lower bounds for
the eigenvalues of the matrix A, Emin and Emax, and this allows one to consider a shift for reducing the overall
cost. Then, the algorithm automatically selects the most efficient polynomial approximation for a prescribed error
tolerance.

Although the algorithms based on Taylor polynomial approximations and the use of scaling-and-squaring
constructed in [7,26] can of course be applied also here, it turns out that in the particular case of skew-Hermitian
matrices (with purely imaginary eigenvalues) it is more convenient instead to apply a similar procedure based on
Chebyshev polynomials. Here only polynomials of degree m = 2, 4, 8, 12 and 18 are considered, since the number
of matrix-matrix products is minimized in those particular cases. Although higher degrees could in principle be
taken, it turns out that applying the scaling-and-squaring technique to lower degree polynomials renders a similar
or higher performance.

In many cases, when solving different quantum mechanical or quantum control problems [5] one ends up with
a real and symmetric matrix, AT

= A ∈ RN×N , so that

e−i A
= cos(A) − i sin(A),

nd we also provide an algorithm for computing cos(A) and sin(A) simultaneously only involving products of real
ymmetric matrices. This new algorithm is more efficient than the approach (3) since that scheme usually requires
roducts of complex matrices, and other existing algorithms for the simultaneous computation of the matrix sine
nd cosine [3,27]. The squaring (4) (also involving products of complex matrices) is then replaced by the double
ngle formulae

cos(2A) = 2 cos2(A) − I = I − 2 sin2(A), sin(2A) = 2 sin(A) cos(A),

o that only two products of real symmetric matrices per squaring are required.
In [8] an algorithm for approximating e−i Av for any real symmetric matrix A and any complex vector v was

roposed. It is based on the idea of splitting and only requires matrix–vector products Av in such a way that the real
nd imaginary parts of e−i Av are approximated in a different way, with a considerable saving in the computational
ost with respect to the usual Chebyshev approximation. Here, by contrast, we focus on problems where the actual
omputation of e−i A for any Hermitian matrix is required.

The plan of the paper is the following. In Section 2 we analyze the approximation of the exponential by Taylor and
hebyshev polynomials and by Padé approximants as well as their error bounds. In Section 3 we obtain explicitly

he Chebyshev polynomials of the degree previously chosen and for the parameters that ensure the error bound
reviously studied, and next we present the algorithms to evaluate these polynomials with a reduced number of
roducts. The algorithm for the case of a real-symmetric matrix A is also considered. Section 4 contains numerical
xperiments illustrating the performance of the new methods and some future lines of research are enumerated in
he final Section 5.

. Polynomial approximations

Assume that Pm(y) is a mth degree polynomial (or a rational function) approximating the function e−i y . Then,
he error is bounded (in Euclidean norm) as

∥Pm(A) − e−i A
∥ ≤ max

j=0,1,...,N−1
|Pm(E j ) − e−i E j |

n terms of the real eigenvalues E0, . . . , EN−1 of the Hermitian matrix A. If the spectrum σ (A) = {E0, . . . , EN−1}

s contained in an interval of the form [Emin, Emax], then

∥Pm(A) − e−i A
∥ ≤ sup

Emin≤y≤Emax

|Pm(y) − e−i y
|.

he quantities Emax and Emin can be estimated in different ways depending on the particular problem (see e.g. [20]).
nce they have been determined, by introducing the quantities

α =
Emax + Emin

, β =
Emax − Emin

, and A = A − α I, (5)

2 2
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Table 1
θ values for Taylor and Chebyshev polynomials of degree m that can be computed with π matrix–matrix products to approximate e−i A

with A skew-Hermitian and guaranteeing that ϵm (θ ) ≤ u = 2−53. The θ value in the column m = 15+ corresponds to the polynomial of
degree 16 built in [26] that approximates the Taylor expansion up to order 15 with 4 products (see Section 5 for details).

m: 2 4 8 12 15+ 18
π : 1 2 3 4 4 5

Taylor pol.: 8.73E−6 1.67E−3 0.0699 0.336 0.709 1.147
Chebyshev pol.: 1.38E−5 2.92E−3 0.1295 0.636 2.212

it is clear that the spectrum of the shifted operator A is contained in an interval centered at the origin, namely
σ (A) = {E0 − α, . . . , EN−1 − α} ⊂ [−β, β], so that

e−i A
= e−i α e−i β(A/β), (6)

with σ (A/β) ⊂ [−1, 1].
If the bounds Emin and Emax cannot be estimated in a convenient way, one can always take β = ∥A∥1, so that

(A) ≤ β, and no shift is considered.
In any event, and without loss of generality, our problem consists now in approximating e−i A for a Hermitian

atrix A with σ (A) ⊂ [−β, β] by means of Pm(A). In that case,

∥Pm(A) − e−i A
∥

∥e−i A∥
= ∥Pm(A) − e−i A

∥ ≤ ϵm(β), (7)

here

ϵm(θ ) := sup
−θ≤y≤θ

|Pm(y) − e−i y
| (8)

and ∥e−i A
∥ = 1.

.1. Taylor polynomial approximation

An upper bound for the error estimate (8) of the mth degree Taylor polynomial

PT
m (y) ≡

m∑
k=0

(−i)k

k!
yk (9)

pproximating e−i y can be obtained by computing the Lagrange form of the remainder in the Taylor series
xpansion:

|PT
m (y) − e−i y

| =
1

(m + 1)!
|e−iξ (−iy)m+1

| =
1

(m + 1)!
|y|

m+1

for ξ ∈ (0, y) so that, from Eq. (8),

ϵT
m (θ ) :=

θm+1

(m + 1)!
. (10)

herefore, PT
m (A) is guaranteed to approximate e−i A up to round-off error as long as β ≤ θ with θ such that

T
m (θ ) ≤ u = 2−53. We collect in Table 1 the largest θ verifying this restriction for the values of m considered in
his work. As stated before, only polynomials of degree m ≤ 18 will be employed in practice.

Remark: Notice that we can write the polynomial function in the exponential form PT
m (θ ) = e−i (θ+∆θ ) where

∆θ = O(θm+1), so condition |PT
m (θ ) − e−i θ

| ≤ 2−53 for θ ∼ O(1) implies that |∆θ | ∼ 2−53. However, when
backward error analysis is considered one looks for the largest value of θ such that ∆θ

θ
≤ 2−53 so different values

for θ are obtained (smaller values when θ < 1 and greater values when θ > 1).
386
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2.2. Chebyshev Polynomial approximation

The mth degree truncation of the Chebyshev series expansion of e−i y in the interval y ∈ [−θ, θ] reads

PC
m,θ (y) := J0(θ ) + 2

m∑
k=1

(−i)k Jk(θ ) Tk(y/θ ), (11)

n terms of the Bessel function of the first kind Jk(t) [2, formula 9.1.21] and the kth Chebyshev polynomial Tk(x)
generated from the recursion [23, section 3.11]

Tk+1(x) = 2xTk(x) − Tk−1(x), k ≥ 1 (12)

with T0(x) = 1, T1(x) = x .
At least three estimates for ϵm(θ ) may be considered when dealing with Chebyshev polynomial approximations.

According with the analysis in [22, section III.2.1], one can take

ϵC1
m (θ ) := 4

(
e1−θ2/(2m+2)2 θ

2m + 2

)m+1

. (13)

On the other hand, in [29, Theorem 8.2] it is shown that

max
|y|≤1

⏐⏐eθy
− PC

m,θ (y)
⏐⏐ ≤

2M
ρn(ρ − 1)

= ϵC2
m (θ ), (14)

here M = max
z∈Eρ

⏐⏐eθ z
⏐⏐ = e

θ
2 (ρ+1/ρ), and Eρ denotes the Bernstein ellipse in the complex plane [29, chapter 8],

Eρ =

{
z ∈ C

⏐⏐⏐ z =
1
2

(r + r−1), r = ρ eiφ, −π ≤ φ ≤ π

}
.

ere, ρ is any positive number with ρ > 1, and the optimal value that minimizes the right hand side of (14) has
o be computed numerically for each choice of θ .

Finally, one can also take the tail of the whole Chebyshev series expansion as an upper bound of the error, i.e.,

∥PC
m,θ (A) − e−i A

∥ ≤


∞∑

k=m+1

2(−i)k Jk(θ ) Tk(y/θ )

 ≤

∞∑
k=m+1

2 |Jk(θ )| ≡ ϵC3
m (θ ). (15)

e have evaluated the three estimates (13)–(15) for the relevant degrees m and compared with the observed behavior
f the corresponding polynomials. From these computations we conclude that the bound (15) exhibits the sharpest
esult, i.e., larger values of θ for all m considered. Thus, in particular, for m = 18 bound (13) leads to θ = 1.8843,
ound (14) gives θ = 1.939, whereas bound (15) provides the largest value θ = 2.212. The corresponding values
or θ obtained with (15) are also collected in Table 1. Notice that these values are almost twice larger than those
ssociated to Taylor approximations.

In practice, we have constructed the Chebyshev polynomial approximations for each pair (m, θ) specified in
able 1 as in [15] (which is in fact equivalent to Eq. (11))

PC
m,θ (y) =

1
2

c0 +

m∑
k=1

ck Tk(y/θ ), (16)

ith

ck =
2
π

∫ 1

−1

e−iθy Tk(y)√
1 − y2

dx (17)

and all the calculations have been carried out with 30 digits of accuracy. In Fig. 1 we show both the absolute error
|PC

m,θ (y) − e−iy
| for (m = 18, θ = 2.212) and the value of u ≈ 1.11E − 16. Notice how the error is always smaller
han u for the whole interval y ∈ [−θ, θ].
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Fig. 1. Absolute error |PC
m,θ (y) − e−iy

| for (m = 18, θ = 2.212) (blue) and the value of u ≈ 1.11E − 16 (black). The error is always smaller
than u for y ∈ [−θ, θ]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

2.3. Padé approximations

Most popular computing packages such as MATLAB (expm) and Mathematica (MatrixExp) use Padé ap-
roximants (in combination with scaling-and-squaring) to compute numerically the exponential of a generic
atrix [16,18].
Diagonal [m/m] Padé approximants are of the form

rm(−i A) = pm(−i A)
[

pm(i A)
]−1
, (18)

here

pm(x) =

m∑
j=0

(2 m − j)!m!

(2 m)!(m − j)!
x j

j !
, (19)

and they verify that rm(−i A) = e−i A
+ O(A2m+1). In practice, the evaluation of pm(−i A) and pm(i A) is carried

out so as to keep the number of matrix products at a minimum. The previous notation O(An) is defined next, since
it will be helpful in the sequel.

Definition 1. We say that a given function f (A) of the matrix A satisfies f (A) = O(An) if it can be written as a
convergent Taylor expansion, f (A) =

∑
∞

k=n ck Ak , for ∥A∥ < α, with α a positive constant.

For skew-Hermitian matrices, we can use, instead of the generic backward error bounds obtained e.g. in [17],
an error estimate of the form (7) with ϵm(θ ) in (8) replaced by its upper bound:

∥rm(−i A) − e−i A
∥ ≤

⏐⏐⏐⏐⏐
∞∑

k=2m+1

dkθ
k

⏐⏐⏐⏐⏐ ≤

∞∑
k=2m+1

|dk | θ
k

≡ ϵP
m (θ ). (20)

In practice, for a given m, we have computed s ≡
∑2000

k=2m+1 |dk |yk and determined the largest y for which
s ≤ u = 2−53. This value is taken then as the bound θ . The values for θ are collected in Table 2 for those m
for which the diagonal Padé approximant can be computed with the minimum number of products. The function
expm in MATLAB uses the corresponding bound θ obtained from relative backward error with a cost of 2, 3, 4, 5
and 6 products, respectively, in addition to one matrix inverse (we take the cost of one inverse as 4/3 products1).

1 For a N × N matrix, it requires one LU factorization at the cost of 1/3 products plus N solutions of upper and lower triangular systems
y forward and backward substitution at the cost of one product.
388
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Table 2
Values of θ for diagonal Padé approximants of the highest order 2m that are computed with π products (we take the computation of the
nverse of a matrix as 4/3 products).

m: 2 3 5 7 9 13
π : 2 +

1
3 3 +

1
3 4 +

1
3 5 +

1
3 6 +

1
3 7 +

1
3

Padé 2.4007E−3 2.715E−2 2.803E−1 0.8983 1.833 4.316

In order to compare with our methods under the same conditions, we have used the function expm from MATLAB

but taking the θ values from Table 2. One should notice that the corresponding backward error bounds are smaller
up to m = 7.

3. Evaluating Chebyshev polynomial approximations with a reduced number of products

Our next goal is to reproduce the Chebyshev polynomial approximations considered in Section 2.2 with a
reduced number of matrix products in comparison with the de facto standard Paterson–Stockmeyer method for
polynomial evaluation. Since the technique has been already explained in detail in the context of Taylor polynomials
approximating the exponential of a generic matrix in [7] (see also [25] for a closely related procedure), here we
only collect its most salient features and refer to [7] for a comprehensive treatment.

Essentially, the idea is a modification of a procedure designed in [10] to reduce the number of commutators
appearing in exponential integrators, and consists in taking a sequence of products of the form

A0 := I, A1 := A

A2 := z0 A0 + z1 A1 +
(
x1 A0 + x2 A1

)(
x3 A0 + x4 A1

)
(21)

A4 := z2 A0 + z3 A1 + z4 A2 +
(
x5 A0 + x6 A1 + x7 A2

)(
x8 A0 + x9 A1 + x10 A2

)
A8 := z5 A0 + · · · + z8 A4 +

(
x11 A0 + · · · + x14 A4

)(
x15 A0 + · · · + x18 A4

)
,

...

to rewrite any polynomial Pm(A) as Pm(A) =
∑

k≥0 αk Ak . Proceeding in this way there might be both redundancies
in the coefficients (for instance, it suffices to take A2 = A1 A1 since any polynomial of degree two can be written
in terms of A0, A1 and A2) and also not enough parameters to reproduce some powers in A (e.g. to compute
P7(A) = A7). For this reason, one includes new terms of the form, say,

(w0 A0 + w1 A1)(w3 A0 + w4 A1 + w5 A2),

in the procedure for computing Ak , k > 2, so that one has additional parameters. The price to be paid is of course
that it is necessary to evaluate some extra products.

Concerning the particular class of polynomials and degrees we are interested in, Pm(A) with m = 2, 4 can be
obtained with just 1 and 2 matrix products, in a similar way as the Paterson–Stockmeyer technique.

Degree m = 2. The quadratic Chebyshev polynomial with θ = 1.38E − 5 can be trivially computed with one
product, and is given by

A2 = A2, PC
2,θ (A) = α0 I + α1 A + α2 A2,

with

α0 = 0.9999999999999999999998, α1 = −0.9999999999761950000001 i

α2 = −0.4999999999920650000000.

Degree m = 4. The Chebyshev polynomial of degree four with θ = 2.92E − 3 can be computed with two products
as follows:

A2 = A2, A4 = A2(x1 A + x2 A2),
C
P4,θ (A) = α0 I + α1 A + α2 A2 + A4,

389
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with

α0 = 0.99999999999999999997, α1 = −0.99999999999981067844 i
α2 = −0.49999999999994320353, x1 = 0.16666657785001893215 i
x2 = 0.04166664890333648869.

Although we report here 20 digits for the coefficients, they can be in fact determined with arbitrary accuracy.
The situation is more involved, however, for higher degrees. We next collect the results for the Chebyshev

polynomial approximations to the exponential of degrees m = 8, 12 and 18. Although more values of m could be
considered, it turns out that these polynomials can be constructed with only 3, 4 and 5 products, respectively.

Degree m = 8. As is the case with Taylor polynomials [7], the following sequence allows one to evaluate
P8(A) ≡ PC

8,θ (A), with θ = 0.1295:

A2 = A2, A4 = A2(x1 A + x2 A2),
A8 = (x3 A2 + A4)(x4 I + x5 A + x6 A2 + x7 A4),

PC
8,0.1295(A) = α0 I + α1 A + α2 A2 + A8.

(22)

Notice that this is a particular example of the sequence (21) with some of the coefficients fixed to zero to avoid
redundancies. The parameters xi , αi are determined such that PC

8,0.1295(A) agrees with the corresponding expression
(16). One has 10 parameters to solve 9 nonlinear equations and this results in two families of solutions depending
on a free parameter, x1. All solutions provide the same polynomial (if exact arithmetic is considered), and we have
chosen x1 to (approximately) minimize the 1-norm of the vector of parameters. The corresponding coefficients in
(22) for the Chebyshev polynomial are given by

x1 = 431/4000, x2 = −0.02693906873598870733 i,
x3 = 0.66321004441662438593 i, x4 = 0.54960853911436015786 i,
x5 = 0.16200952846773660904, x6 = −0.01417981805211804396 i,
x7 = −0.03415953916892111403, α0 = 0.99999999999999999928,
α1 = −0.99999999999999233987 i, α2 = −0.13549409636220703066.

Degree m = 12. Here the situation is identical to what happens with Taylor polynomials approximating eX for
a generic matrix [7]: although polynomials up to degree 16 could in principle be constructed with 4 products by
applying the sequence (21), in practice the highest degree we are able to get is m = 12 with the following sequence:

A2 = A2, A3 = A2 A,
B1 = a0,1 I + a1,1 A + a2,1 A2 + a3,1 A3, B2 = a0,2 I + a1,2 A + a2,2 A2 + a3,2 A3,

B3 = a0,3 I + a1,3 A + a2,3 A2 + a3,3 A3, B4 = a0,4 I + a1,4 A + a2,4 A2 + a3,4 A3,

A6 = B3 + B2
4

PC
12,0.636(A) = B1 + (B2 + A6)A6.

(23)

his ansatz has four families of solutions with three free parameters. A judicious choice leading to a small value
or

∑
i, j |ai, j | is:

a0,1 = −6.26756985350202252845, a1,1 = 2.52179694712098096140 i,
a2,1 = 0.05786296656487001838, a3,1 = −0.07766686408071870344 i,
a0,2 = 0, a1,2 = 1.41183797496250375498 i,
a2,2 = 0, a3,2 = −0.00866935318616372016 i,
a0,3 = 2.69584306915332564689, a1,3 = −1.35910926168869260391 i,
a2,3 = −0.09896214548845831754, a3,3 = 0.01596479463299466666 i,
a0,4 = 0, a1,4 = 0.13340427306445612526 i,
a2,4 = 0.02022602029818310774, a3,4 = −0.00674638241111650999 i.

egree m = 18. We have been able to write the Chebyshev polynomial approximation of degree m = 18 with 5
C
roducts. This is done by expressing P18,2.212(A) as the product of two polynomials of degree 9, that are further

390



P. Bader, S. Blanes, F. Casas et al. Mathematics and Computers in Simulation 194 (2022) 383–400

3

a
s

w

c
p

w
c
v
ϑ

a

s

decomposed into polynomials of lower degree. The polynomial is evaluated through the following sequence:

A2 = A2, A3 = A2 A, A6 = A2
3,

B1 = a0,1 I + a1,1 A + a2,1 A2 + a3,1 A3,

B2 = b0,1 I + b1,1 A + b2,1 A2 + b3,1 A3 + b6,1 A6,

B3 = b0,2 I + b1,2 A + b2,2 A2 + b3,2 A3 + b6,2 A6,

B4 = b0,3 I + b1,3 A + b2,3 A2 + b3,3 A3 + b6,3 A6,

B5 = b0,4 I + b1,4 A + b2,4 A2 + b3,4 A3 + b6,4 A6,

A9 = B1 B5 + B4,

PC
18,2.212(A) = B2 + (B3 + A9)A9,

(24)

with coefficients
a0,1 = 0, a1,1 = 3/25,
a2,1 = −0.00877476096879703859 i, a3,1 = −0.00097848453523780954,
b0,1 = 0, b1,1 = −0.66040840760771318751 i,
b2,1 = −1.09302278471564897987, b3,1 = 0.25377155817710873323 i,
b6,1 = 0.00054374267434731225, b0,2 = −2.58175430371188142440,
b1,2 = −1.73033278310812419209 i, b2,2 = −0.07673476833423340755,
b3,2 = −0.00261502969893897079 i, b6,2 = −0.00003400011993049304,
b0,3 = 2.92377758396553673559, b1,3 = 1.44513300347488268510 i,
b2,3 = 0.12408183566550450221, b3,3 = −0.01957157093642723948 i,
b6,3 = 0.00002425253007433925, b0,4 = 0,
b1,4 = 0, b2,4 = −0.123953695858283131480 i,
b3,4 = −0.011202694841085592373, b6,4 = −0.000012367240538259896 i.

.1. The case of real symmetric matrices

In the particular case when A is a real symmetric matrix, we can write

e−i A
= cos(A) − i sin(A) (25)

nd it is possible to construct algorithms for approximating the real symmetric matrices cos(A) and sin(A)
imultaneously by means of a reduced number of products of real symmetric matrices, as shown in [3,27].

The polynomial (16) can be decomposed into real and imaginary parts,

PC
m,θ (A) = cC

m,θ (A) − isC
m,θ (A),

ith

cC
m,θ (A) = Re(PC

m,θ (A)), sC
m,θ (A) = −Im(PC

m,θ (A))

and the goal is to compute exactly cC
m,θ (A) with a reduced number of products. Then, by using all computations

arried out in this process, one also obtain approximations SC
m,θ (A) to the imaginary part in such a way that it is a

olynomial of degree k > m such that SC
m,θ (A) = sC

m,θ (A) + O(Am+1). Taking into account that

∥

(
cC

m,θ (A) + i SC
m,θ (A)

)
− e−i A

∥ ≤ ∥PC
m,θ (A) − e−i A

∥ + ∥sC
m,θ (A) − SC

m,θ (A)∥

≤ ϵC3
m (θ ) + ∥sC

m,θ (A) − SC
m,θ (A)∥ (26)

e need to check if ∥sC
m,θ (A) − SC

m,θ (A)∥ ≤
∑k

ℓ=m+1 |cℓ| |θ |ℓ ≤ 2−53 for these values of m and θ . If this is not the
ase, one has to find the maximum value of ϑ such that ∥sC

m,θ (ϑ) − SC
m,θ (ϑ)∥ ≤ 2−53 and to take this value as the

alue for θ , i.e. the largest value of ∥A∥ that guarantees an error smaller that roundoff. If the value obtained for
is considerably smaller than the value of θ obtained for the cosine function, we will look for a new and more

ccurate approximation to sC
m,θ (A) by taking e.g. one extra product in the numerical scheme.

For example, we can compute simultaneously cC
4,θ (A) and sC

4,θ (A), i.e. PC
4,θ (A), with three products of real

C C C
ymmetric matrices. However, with the same number of products we can also compute c5,θ (A), s5,θ (A), i.e. P5,θ (A)
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that has a larger value of θ , so that we only consider this last case which is evaluated as follows (in this case
SC

m,θ (A) = sC
m,θ (A)).

Degree m = 5. The polynomial cC
5,θ (A), θ = 1.17E-2, is computed with 2 products by taking B = A2 as

cC
5,θ (A) = α0 I + α1 B + α2 B2,

with
α0 = 0.99999999999999988866, α1 = −0.49999999998536031183
α2 = 0.04166638147997997916,

whereas for evaluating sC
5,θ (A) only one additional product is required:

sC
5,θ (A) = A(z0 I + z1 B + z2 B2)

with
z0 = 0.99999999999999994433, z1 = −0.16666666666341340086
z2 = 0.00833328580219952161.

Degree m = 8. The polynomial cC
8,θ (A), θ = 0.1295, is computed with 3 products as:

B = A2, B2 = B2, B4 = B2(x1 B + x2 B2),

cC
8,θ (A) = α0 I + α1 B + α2 B2 + B4,

with
α0 = 0.99999999999999999928, α1 = −0.49999999999999787210,
α2 = 0.04166666666565156615, x1 = −0.00138888871939942118,
x2 = 0.00002479003614491668,

and sC
8,θ (A) is approximated with error O(A9) with one additional product by

SC
8,θ (A) = A(z0 I + z1 B + z2 B2 + z3cC

8,θ (A))

with
z0 = 0.85721768947064012466, z1 = −0.09527551139590047256,
z2 = 0.00238406908730568850, z3 = 0.14278231052935221530.

Notice that the condition

|sC
8,θ (ϑ) − SC

8,θ (ϑ)| = x2 z3 ϑ
9

≤ 2−53

is satisfied only for ϑ ≤ 0.06807. This is a significant reduction with respect to θ and for this reason we look for
an approximation which involves one extra product. With five products, however, it is possible to exactly compute
the polynomials for m = 9, with θ = 0.2143.

Degree m = 9. The polynomial cC
9,θ (A), θ = 0.2143, is computed with 4 products in the same way:

B = A2, B2 = B2, B3 = B2 B, B4 = B3 B,

cC
9,θ (A) = α0 I + α1 B + α2 B2 + α3 B3 + α4 B4,

with
α0 = 0.99999999999999989168, α1 = −0.49999999999988173685,
α2 = 0.04166666664600636231, α3 = −0.00138888762558264513,
α4 = 0.00002477005498155486,

and sC
9,θ (A) can be computed with one additional product:

sC
9,θ (A) = A(z0 I + z1 B + z2 B2 + z3 B3 + z4 B4),

with
z0 = −0.999999999999999945837, z1 = 0.166666666666643012068,
z2 = −0.008333333330440664914, z3 = 0.000198412554024823435,

−6
z4 = −2.75257852630876250884 · 10 .
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Degree m = 16. We can compute cC
16,θ (A), θ = 1.5867, with only four products as follows. We first take B = A2,

o that cC
16,θ is indeed a polynomial of degree eight in B, that can be computed with only three products in a similar

ay to PC
8,0.1295(A) with the sequence

B = A2, B2 = B2, B4 = B2(x1 B + x2 B2),
B8 = (x3 B2 + B4)(x4 I + x5 B + x6 B2 + x7 B4),

cC
16,θ (A) = α0 I + α1 B + α2 B2 + B8,

(27)

where

x1 = 1/100, x2 = −0.00008035854055477845,
x3 = −0.10743065643419630630, x4 = −0.12491372919298427513,
x5 = 0.00130085397953037838, x6 = −0.00001633763177694857,
x7 = 7.13215089463286614820 · 10−6, α0 = 0.99999999999999999530,
α1 = −0.49999999999999969795, α2 = 0.028247102741817734721.

With two extra products we can approximate the matrix sC
16,θ (A):

C24 = (z5 I + z5 B + z6 B2 + z7 B4 + z8 c16,θ (A))B4,

SC
16,θ (A) = A

(
z0 I + z1 B + z2 B2 + z3 B4 + z4 c16,θ (A) + C24

)
,

(28)

with

z0 = 33/50, z1 = 0.00333333333335438849,
z2 = −0.00583333333345309522, z3 = 0.02773310749258735833,
z4 = 0.33999999999999886261, z5 = −0.00034915267907803119,
z6 = 4.19573036995827807213 · 10−6, z7 = −2.63931697420854364428 · 10−6,

z8 = −3.00240279002259730782 · 10−6.

In this way SC
16,θ (A) is a polynomial of degree 25 in A where the condition

∥sC
16,θ (ϑ) − SC

16,θ (ϑ)∥ ≤ 2−53

s satisfied for ϑ ≤ 0.7563. One extra product (7 products in total) suffices to exactly compute sC
16,θ (A) (and then

o keep the value of θ ). We do not show this scheme because, as we will see, with 7 products one can find an
mproved approximation.

egree m = 24. The same strategy can be applied to the polynomials cC
24,θ (A) and sC

24,θ (A), with θ = 4.5743.
hus, cC

24,θ (A) is computed by taking B = A2 and computing the corresponding polynomial of degree 12 with only
our additional products as previously:

D = A2, D2 = D2 D3 = D2 D,
B1 = a0,1 I + a1,1 D + a2,1 D2 + a3,1 D3, B2 = a0,2 I + a1,2 D + a2,2 D2 + a3,2 D3,

B3 = a0,3 I + a1,3 D + a2,3 D2 + a3,3 D3, B4 = a0,4 I + a1,4 D + a2,4 D2 + a3,4 D3,

D6 = B3 + B2
4

cC
24,θ (A) = B1 + (B2 + D6)D6,

(29)

ith

a0,1 = 0.39272620931352327385, a1,1 = −0.08760637124112618048,
a2,1 = 0.01962064507143601071, a3,1 = −0.00013421604022829771,
a0,2 = 1/5, a1,2 = −0.54235659842328961975,
a2,2 = 679/100000, a3,2 = −0.00002902999756981724,
a0,3 = 0.68566773555140770915, a1,3 = −0.02578520551577453856,
a2,3 = 0.00019815665089300452, a3,3 = −1.10083330495602029332 · 10−6,

a0,4 = 0, a1,4 = −0.03931944346958836562,
−6

(30)
a2,4 = 0.00017839382197658767, a3,4 = −1.06908694221941432625 · 10 ,
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Table 3
θ values for Chebyshev polynomials of degree m that can be computed with π products of symmetric real matrices to simultaneously
ompute the sine and cosine matrix functions to approximate e−i A with A a real symmetric matrix (in parenthesis it is indicated the cost
nd maximum value of ∥A∥ when the Chebyshev polynomial for the sine function is approximated with a higher degree polynomial).

m: 5 8 9 16 24
π : 3 4 5 (6)7 (7)8

Chebyshev pol.: 1.17E−2 0.068 0.214 (0.7563)1.587 (2.1556)4.574

whereas with two extra products the following approximation to sC
24,θ (A) is obtained

C48 = (z6 I + z7 D + z8 D2 + z9 D3 + z10 D6 + z11 c24,θ (A))c24,θ (A),

SC
24,θ (A) = A

(
z0 I + z1 D + z2 D2 + z3 D3 + z4 D6 + z5 c24,θ (A) + C48

) (31)

with

z0 = −0.01238438326981811663, z1 = −0.06180067679127220638,
z2 = 0.00046275599640408615, z3 = −9.92990416300441584763 · 10−6,

z4 = 1.26307934615308708610, z5 = 9.10439014880980346565 · 10−15,

z6 = 0.14610549096048524519, z7 = 0.00087697762149660844,
z8 = 4.12092186281469998191 · 10−6, z9 = 2.23743615053828476204 · 10−8,

z10 = 0.00033015662857238333, z11 = −2.405371071766852323329 · 10−7.

The approximation SC
24,θ (A) given by (31) is a polynomial of degree 48 in A verifying the condition

∥sC
24,θ (ϑ) − SC

24,θ (ϑ)∥ ≤ 2−53

for ϑ ≤ 2.1556, which is smaller than the value of θ for this case but larger than the value of θ for m = 16 that
requires the same number of products, and for this reason the previous scheme is not considered in practice.

One extra product suffices to exactly compute sC
24,θ (A) (and then to keep the value of θ ) as follows

D5 = D2(z11 D2 + z12 D3),
C24 = (z6 I + z7 D + z8 D2 + z9 D3 + D5 + z13 D6)(D6 + z10 D),

sC
24,θ (A) = A

(
z0 I + z1 D + z2 D2 + z3 D3 + z4 D5 + z5 c24,θ (A) + C24

) (32)

In this case we can solve all the equations (including the corresponding to A25). We have now one free parameter
and one solution is:

z0 = 2.85247650396873609664, z1 = −0.23838922984354509797,
z2 = 0.01254735251131974478, z3 = −0.00003184984233834954,
z4 = −7.91411934357932811110, z5 = −0.45584956828766694538,
z6 = −2.34944723110594310069, z7 = −0.34315650534099675485,
z8 = 0.00379529409295014610, z9 = −0.00001509312002244718,
z10 = −17/1000, z11 = 7.68145795118100472945 · 10−9,

z12 = −2.71896175810263278764 · 10−11 z13 = 0.45584956828766694538

Table 3 collects the values of θ for the selected approximations to the sine and cosine functions and their cost
in terms of products of real symmetric matrices.

3.2. The algorithm

In previous sections we have computed a number of Chebyshev polynomials of different degrees for some values
of θ that provide errors below roundoff when approximating e−iy for y ∈ [−θ, θ]. These polynomials are computed
by applying a particular sequence in order to reduce the number of products. To approximate e−i A one has to select
the most appropriate polynomial that leads to an error below the prescribed tolerance at the smallest computational
cost.
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The user has to provide the matrix A and, as an optional input, the values for Emin and Emax. The algorithm then
omputes β and determines the normalized matrix A. If Emin and Emax are not given, the algorithm takes β = ∥A∥1
s an upper bound to |Emin| and |Emax| and no shift is considered.

Next, the algorithm determines the most efficient method (among the list of available schemes) leading to the
esired result: it chooses the cheapest method with error bounds below round off error.

If none of the methods provides an error below tolerance, then the scaling and squaring technique is used. In
hat case, the value of θ for the polynomial of the highest degree 18 (or 24 for the trigonometric matrix functions)
s taken to obtain the number of squarings that will be necessary.

As an illustration, suppose one is interested in computing e−i A, where A is a complex Hermitian matrix such
hat Emin, Emax are not known and, in addition

1. ∥A∥1 = 8. (i) With Padé one checks that ∥A/2∥1 = 4 < 4.316 and the exponential is computed with one
scaling and the approximant with m = 13 that involves 6 products and one inverse (8 + 1/3 products in
total). (ii) With Taylor we have ∥A/23

∥1 = 1 < 1.1468, the exponential is computed with three scalings and
the polynomial with m = 18, requiring 5 products (for a total of 8 products). Finally, (iii) with Chebyshev,
since ∥A/22

∥1 = 2 < 2.212, the exponential is computed with two scalings and 5 products (for a total of 7
products).

2. ∥A∥1 = 0.1. (i) With Padé, the exponential is computed with 3 products and one inverse; (ii) Taylor requires
4 products, and (iii) Chebyshev needs only 3 products.

3. ∥A∥1 = 0.0025. (i) With Padé, the exponential is computed with 2 products and one inverse; (ii) Taylor
requires 3 products, and (iii) Chebyshev needs 2 products.

otice that, whereas the reduction in computation is roughly the same in all cases, the relative saving increases as
he norm of the matrix is smaller.

This strategy has been implemented as a MATLAB code which is freely available for download at the website [1],
ogether with some notes and examples illustrating the whole procedure.

. Numerical examples

In this section we report on two numerical experiments carried out by applying the previous algorithm based on
hebyshev polynomials. We also compare their main features with Taylor polynomials and Padé approximants.

xample 1: A high dimensional Rosen–Zener model. This is a generalization of the well known Rosen–Zener model
or a quantum system of two levels [24] which is closely related to the problem analyzed in [21]. The corresponding
chrödinger Eq. (2) for the evolution operator (in the interaction picture) is{

U ′(t) = − i H (t) U (t) , t ∈ (t0, t f ) ,
U (t0) = I,

(33a)

here the time-dependent Hamiltonian reads, after normalization,

H (t) = f1(t) σ1 ⊗ I + f2(t) σ2 ⊗ R ∈ Cd×d , d = 2 k , (33b)

ith the identity matrix I ∈ Rk×k , Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, (33c)

nd

R = tridiag
(
1, 0, 1

)
∈ Rk×k . (33d)

e take in particular

f1(t) = V0 cos(ω t)
(
cosh

( t
T0

))−1
, f2(t) = − V0 sin(ω t)

(
cosh

( t
T0

))−1
, (33e)

ith ω = 5, d = 20, V0 = 2. We then integrate from t0 = −4T0 until the final time t f = 4 T0 for T0 = 1 and
etermine numerical approximations, Uapp(t f , t0) at t = t f for different time step sizes τ =

t f −t0
M ; (a reference

solution U (t , t ) is computed numerically to high accuracy).
ref f 0
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In this example we illustrate the performance of the new algorithm as applied to two different exponential
ntegrators: (i) the well-known 2nd-order exponential midpoint rule

Un+1 = exp
(
−iτH (tn +

τ

2
)
)
, n = 0, 1, 2, . . . ,M − 1

nd (ii) the 4th-order commutator-free Magnus integrator given by

Un+1 = exp
(
−iτ (βH1 + αH2)

)
exp

(
−iτ (αH1 + βH2)

)
,

here Hi = H (tn + ciτ ), i = 1, 2, and

c1 =
1
2

−

√
3

6
, c2 =

1
2

+

√
3

6
, α =

1
4

+

√
3

6
, β =

1
4

−

√
3

6
.

See [4,11,12] for more details of this scheme as for other higher order methods of the same class). The exponential
atrix is computed in all cases with Padé approximants and the new algorithm based on Chebyshev polynomials.
ince the results obtained with Taylor polynomials lie in between both of them, they are not shown in the figures
or clarity). We compute

Ũh = UM UM−1 · · · U2U1,

nd measure the 2-norm of the error, ∥Ũh −Uref(t f , t0)∥ for different values of τ . The total cost is taken as the sum
f the number of the matrix–matrix products that are required for the calculation of U1, . . . ,UM , and we depict
he error as a function of this total number of matrix–matrix product evaluated by each procedure. Fig. 2 shows the
orresponding results obtained by new procedure based on Chebyshev (expmC) and Padé approximants (expmP)
or the exponential mid-point rule (top) and the 4th-order commutator-free Magnus integrator (bottom). We see that
he relative saving in the computational cost is similar in both cases but the improvement in the accuracy increases
ith the order of the method.
Notice that the accuracy improves when the time step τ decreases so, the number of exponentials increases, but

he cost to compute each exponential can decrease because ∥τHk∥ takes smaller values. The slope of the curves is
hen higher than expected from the order of the numerical integrator used.

xample 2: The Walker–Preston model. This constitutes a standard model for a diatomic molecule in a strong laser
eld [30]. The system is described by the one-dimensional Schrödinger equation (in units such that h̄ = 1)

i
∂

∂t
ψ(x, t) =

(
−

1
2µ

∂2

∂x2 + V (x) + f (t)x
)
ψ(x, t), (34)

with ψ(x, 0) = ψ0(x). Here V (x) = D
(
1 − e−αx

)2 is the Morse potential and f (t)x = A cos(ω(t))x accounts for
he laser field. As an initial condition, we take the ground state of the Morse potential

ψ0(x) = σ exp
(

−(γ −
1
2

)αx
)

exp(−γ e−αx ), (35)

here γ = 2D/ω0, ω0 = α
√

2D/µ, and σ is a normalizing constant.
We define the wave function ψ in a certain domain x ∈ [x0, xN ] that is subdivided into N parts of length

∆x = (xN −x0)/N with xi = x0+i∆x , and then the vector u(t) ∈ CN with components ui = (∆x)1/2ψ(xi−1, t), i =

, . . . , N , is formed.
If second-order central differences are applied to discretize the equation in space and periodic boundary

onditions are considered, one ends up with the differential equation

i
du
dt

= H (t)u = (T + B(t))u, u(0) = u0

ith

T =
N 2

2µ(xN − x0)2

⎛⎜⎜⎜⎜⎜⎝
2 −1 1

−1 2 −1
. . .

− 1 2 −1

⎞⎟⎟⎟⎟⎟⎠

1 −1 2
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Fig. 2. 2-norm error in the unitary matrix evolution at the final time versus the cost (measured as the number of matrix–matrix products
equired to compute the exponentials at each step) for Example 1: (top) results for the second order exponential midpoint rule and (bottom)
esults for the fourth order commutator-free exponential Magnus integrator.

nd B(t) = diag
(
V (x1)+ f (t)x1, . . . , V (xN )+ f (t)xN

)
. Notice that H is a real symmetric matrix, H T

= H ∈ RN×N ,
so that

exp (−iτH (tn + τ/2)) = cos (τH (tn + τ/2))− i sin (τH (tn + τ/2)) . (36)

Moreover, we can take

Emin = min
1≤ j≤N

B(t) j j , Emax =
2N 2

µ(xN − x0)2 + max
1≤ j≤N

B(t) j j

and so we shift the original matrix according with Eq. (6). For our experiments we take x ∈ [−0.8, 4.32], the
interval is subdivided into N = 64 parts of length ∆x = 0.08, and the parameters are chosen as follows (in atomic

nits): µ = 1745, D = 0.2251 and α = 1.1741 (corresponding to the HF molecule). Concerning the interaction
ith the laser field, we take A = 0.011025 and the laser frequency ω = 0.01787.
As before, to check the performance of the different procedures, we compute the 2-norm error in the evolution

2π . To do that, we compare with a reference solution computed with high
atrix solution at the final time t f =
ω
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r

Fig. 3. 2-norm error in the unitary matrix evolution at the final time versus the cost (measured as the number of matrix–matrix products
equired to compute the exponentials at each step) for the real symmetric matrix H of Example 2: (top) results for the second order

exponential mid-point rule and (bottom) results for the fourth order commutator-free exponential Magnus integrator.

accuracy. The total cost of each procedure is measured as the total number of matrix–matrix products required to
approximate the matrix cosine and sine for the total integration interval. In this way we get Fig. 3, where the results
achieved by Chebyshev approximations (denoted by ‘cosmsinmC’) and Padé approximants (‘cosmsinmP’, obtained
with the algorithm of [3]) are collected. The top diagram corresponds to the 2nd-order exponential mid-point rule and
the bottom graph is obtained with the 4th-order commutator-free Magnus integrator. Here again, the new algorithm
based on Chebyshev polynomials leads to more accurate results with a reduced computational cost.

5. Conclusions and future work

We have presented an algorithm to approximate the exponential of skew-Hermitian matrices based on an
improved computation of Chebyshev polynomials of matrices and the corresponding error analysis. For problems
of the form exp(−i A), when A is a real and symmetric matrix, an improved version is presented that computes the
sine and cosine of A with a reduced number of products of real and symmetric matrices. In both cases, the new
procedures turn out to be more efficient than schemes based on rational Padé approximants or Taylor polynomials

for all tolerances and time interval lengths.
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The Chebyshev methods presented in this paper can be further improved along different lines that will be explored

n our future work:
• As we have seen, with only three products it is possible to evaluate most polynomials to order eight (this is,

in fact, the highest degree one can reach with three products). With four products one can build polynomials
of degree sixteen, but there are not enough free parameters to obtain the Taylor and Chebyshev polynomials
approximating the exponential. For this reason, we have limited ourselves here to polynomials of order twelve,
which can be obtained with four products. On the other hand, in [26] a polynomial of degree 16 is presented
in terms of only 4 products that coincides with the Taylor expansion up to order 15 (this method is denoted in
Table 1 as m = 15+). In this way, with the computational cost as the method of degree m = 12, it provides
a larger value for θ that is even slightly larger that the value of the Chebyshev polynomial of degree 12. The
same procedure can of course be carried out with Chebyshev polynomials: one could construct a polynomial
of degree 16 that coincides with the Chebyshev polynomial up to degree 15 and analyze whether this new
polynomial has a larger value of θ . Notice that the procedure is largely similar to the search of polynomials
SC

m,θ that coincide with sC
m,θ . With five products it is also possible to build a polynomial of degree 24 that

approximates the Chebyshev polynomial up to order 21, and we expect an improvement with respect to the
result obtained for m = 18, in the same way as in [26] for the Taylor polynomial.

• One could also build a new set of methods aimed to be used with different accuracies, and in particular in
single precision. From the error bound formulas for the chosen values of m, the new values for θ have to be
obtained and then the corresponding Chebyshev polynomials of degree m have to be obtained that will be
then computed with a reduced number of products.

• When lower accuracies are desired then the preservation of unitarity is also lost to such accuracy. It is well
known that diagonal Padé methods preserve unitarity unconditionally and one can look for similar rational
Chebyshev approximations to analyze the preservation of unitarity as well as to reduce the cost of these
schemes. Rational Chebyshev approximations have been successfully used in [28] to compute the action of
the exponential of skew-Hermitian matrices on vectors.

• Finally, there are of course a number of efficient procedures for the diagonalization of Hermitian or skew-
Hermitian matrices that might be also employed for evaluating the matrix exponentials required for the
application to exponential integrators to certain classes of differential equations. In that case the norm of
the matrices involved is usually quite small (since they involve the step size of the integrator) and thus our
algorithms are particularly well suited for this purpose. In any case, a future line of research consists in
determining precisely under which circumstances related with the size and norm of the matrix the algorithms
presented here are competitive with other procedures based on direct diagonalization.
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