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We analyse composition and polynomial extrapolation as procedures to raise the order of
a geometric integrator for solving numerically differential equations. Methods up to order
sixteen are constructed starting with basic symmetric schemes of order six and eight. If these
are geometric integrators, then the new methods obtained by extrapolation preserve the geo-
metric properties up to a higher order than the order of the method itself. We show that, for
a number of problems, this is a very efficient procedure to obtain high accuracy. The relative
performance of the different algorithms is examined on several numerical experiments.
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1. Introduction

In this paper we analyse several procedures to build high order one-step numerical
integrators for the ordinary differential equation

y ′ = f (y), y(0) = y0 ∈ R
d, (1)

with f : R
d → R

d and associated vector field (or Lie operator associated with f )

F =
d∑

i=1

fi(y)
∂

∂yi

. (2)

We focus our attention, in particular, on integration methods which preserve some geo-
metric properties of the vector field F , the so-called geometric integrators (for example,
symplectic integrators). It is widely recognized that this class of discretization algo-
rithms provide a better description of the original systems, even with respect to the ac-
cumulation of numerical errors along the integration process [14,21,25].

Generally speaking, the vector field F of each family of differential equations aris-
ing in different branches of physics, chemistry, biology, etc., has a very specific geomet-
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ric structure which is advantageous to preserve under discretization. Thus, geometric
integrators of moderate order for several families of problems have been constructed
during the last few years. However, building up efficient high order algorithms for prob-
lems where high accuracy is required is a task whose complexity grows enormously
with the order. For this reason, a widely used technique in geometric integration is to
compose one or more low order basic methods (usually first or second order) with ap-
propriately chosen weights to achieve a higher order scheme. For instance, if the map
S [2]

h : R
d → R

d denotes a self-adjoint (or time-symmetric) second order method in the
time step h, an integrator of order q > 2 can be obtained with the composition

S [q]
h ≡ S [2]

αkh
◦ S [2]

αk−1h
◦ · · · ◦ S [2]

α1h
, (3)

where k has to be sufficiently large and the coefficients αi , i = 1, . . . , k, must satisfy
a system of nonlinear equations (the order conditions). In this way S [q]

h inherits the
relevant geometric properties the basic scheme S [2]

h shares with the exact flow. In par-
ticular, if S [2]

h is a symplectic integrator then S [q]
h is also a symplectic integrator. This

procedure has several drawbacks, however: (i) low order methods rarely take advantage
of the simplifying conditions that the specific structure of the vector field F introduces
in some particular problems; (ii) the number and complexity of the order conditions
grow very rapidly with the order and it is difficult to find all their possible solutions and
eventually determine the optimal one; (iii) the methods constructed in this way usually
involve a large number of function evaluations and thus the balance between accuracy
and computational cost is not very good when high accuracy is desired.

Alternatively, one could also consider a basic method of moderate order (typically
four or six) and construct higher order schemes by composition. As we will show, this
can turn into very efficient algorithms for a number of problems.

On the other hand, the processing technique has proved to be very useful in this
context. In essence, it consists in taking a composition of the form

Ŝh ≡ πh ◦ Sh ◦ π−1
h . (4)

Here Sh is referred to as the kernel and the map πh : R
d → R

d as the post-processor
or corrector. The method Sh is said to be of effective order q if a post-processor πh

exists for which Ŝh is of (conventional) order q. Application of Ŝh over p steps with
constant time step h leads to Ŝp

h = πh ◦ Sp

h ◦ π−1
h : the computation of the pre-processor

π−1
h is done once at the beginning of the integration, then the kernel Sh acts once per

step and finally πh is evaluated only when output is desired. The analysis of the order
conditions of the processed method Ŝh has shown that many of them can be satisfied by
using πh and so Sh must fulfill a much reduced set of restrictions. Thus one may consider
kernels of effective order q involving less evaluations than conventional integrators of
order q. This has allowed, in particular, to construct highly efficient processed geometric
integrators when both the kernel and the post-processor are taken as compositions of low
order basic schemes [2–7].
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Composition is not the only way, however, to achieve high order numerical inte-
grators starting from a low order basic scheme. For instance, the extrapolation technique
can also be used with this purpose. As it is well known, in extrapolation one starts with
a basic low order method of order n (typically, a time-symmetric 2nd order integrator,
n = 2) which is applied with different values of h. Then, by an appropriate combina-
tion of the results, one obtains a new method which approximates the exact solution to a
higher order. This procedure has the advantage that not only the step size can be changed
at each step, but also the order of the method itself [15].

Recently, the question of what happens when the basic method used in extrap-
olation is a geometric integrator of order n has been analysed [6,10]. The answer is
that, although the resulting scheme of order q > n is no longer geometric in charac-
ter, still preserves geometric properties of the system up to an order higher than q. If
n < q < 2n then it is possible to preserve the geometric properties up to order 2q + 1,
with 2n + 1 < 2q + 1 < 4n + 1. Thus, the undesired effects of non-geometric schemes
will finally show up but, in general, this will happen at very long times, and its effect
can be neglected in most cases if the order n of the basic method is taken sufficiently
high. In practice, extrapolation is used in geometric integration starting with a basic
time-symmetric method of order six or eight, at variance with the situation in standard
numerical integration of ODEs.

It is the purpose of this paper to construct high order geometric integrators (up to
order 14 or 16) to carry out very accurate numerical calculations starting with a basic
time-symmetric method of order 6 or 8 and applying composition with processing and
polynomial extrapolation. The basic methods considered preserve the geometric struc-
ture of the exact solution and in some cases they are especially adapted to the particular
structure of F . The interest of the integration schemes thus constructed is illustrated on
the important class of differential equations y ′′ = g(y, t) and the Schrödinger equation.
Finally, several numerical examples show the performance on some problems such that
very efficient geometric integrators up to order 8 are known.

2. Composition methods

2.1. Standard technique

If ϕh denotes the exact h-flow of the system (1), i.e., y(h) = ϕh(y0), then for each
inifinitely differentiable map g : R

d → R, g(ϕh(y)) admits an expansion of the form

g
(
ϕh(y)

) = exp(hF )[g](y) = g(y) +
∑

k�1

hk

k! F
k[g](y), y ∈ R

d,

where F is the vector field (2). Let us consider a time-symmetric integrator of order 2n,
S [2n]

h , such that there exists a series of differential operators S
[2n]
h verifying g◦S [2n]

h (y) =
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S
[2n]
h [g](y) for any function g and y ∈ R

d . This series can be written as S
[2n]
h = exp(Yh),

with

Yh = hY1 + h2n+1Y2n+1 + h2n+3Y2n+3 + · · · (5)

and, for consistency, Y1 = F . In other words, S [2n]
h is formally the exact 1-flow of the

vector field Yh. As it is well known, by composition of this basic method one can build
integration methods of arbitrarily high order. For instance, the composition [12,27]

S [2n+2]
h ≡ (

S [2n]
α1h

)p ◦ S [2n]
α0h

◦ (
S [2n]

α1h

)p
, (6)

with (S [2n]
h )p = S [2n]

h ◦ · · · ◦ S [2n]
h p-times, provides a time-symmetric method of order

2(n + 1) if α1 = 1/(2p − (2p)1/(2n+1)), α0 = 1 − 2pα1. Since S [2n+2]
h is again a time-

symmetric scheme, it can be used as the basic method in the composition (6) to get a
new integrator of order 2n + 4 and so on. A method of order 2(n + m) obtained in this
way requires (1 + 2p)m evaluations of the basic scheme S [2n]

h , and this number grows
too fast with m and p to be competitive for m > 1.

One could also consider the more general composition [2,22]

ψ
[2(n+m)]
h ≡ S [2n]

αsh
◦ S [2n]

αs−1h
◦ · · · ◦ S [2n]

α2h
◦ S [2n]

α1h
(7)

with appropriately chosen weights αi and a sufficiently large s. With (7) the number of
stages to attain a given order grows more slowly and therefore more efficient integrators
can be obtained. Similarly to the basic method S [2n]

h , for the map ψ
[2(n+m)]
h one has

g
(
ψ

[2(n+m)]
h (y)

) = exp(Fh)[g](y),

i.e., ψ
[2(n+m)]
h is formally the exact 1-flow of the series of vector fields Fh and

exp(Fh) = exp(Yhα1) exp(Yhα2) · · · exp(Yhαs−1) exp(Yhαs
). (8)

Now Fh can be obtained by repeated application of the Baker–Campbell–Hausdorff for-
mula [29], which shows that Fh = hF1 + h2n+1F2n+1 + h2n+2F2n+2 + · · · belongs to
the graded free Lie algebra L generated by {hY1, h

2n+1Y2n+1, h
2n+3Y2n+3, . . .}. In fact,

L = L1 ⊕ L2n+1 ⊕ L2n+2 ⊕ · · · is such that hY1 = hF ∈ L1, hkFk ∈ Lk for k � 2n + 1
and [Lk,Lm] ⊂ Lk+m. Each Lk is the subspace of L of vector fields affected by a kth
power of h, and we denote lk = dimLk. Since the grade corresponds to the power of h,
we will usually refer to it as the order.

In this work we choose in Lk the particular basis {Ek,i}lki=1 collected in table 1.
Observe that, in particular, the element [Y2n+1, [Y1, Y2n+1]] ∈ L4n+3 is not included
because for 2n � 6 it is true that 4n+ 3 > 2n+ 8, which is the highest order considered
here. Then, from (8) we get explicitly

Fh = hf1,1E1,1 +
∑

k�2n+1

hk

lk∑

i=1

fk,iEk,i,
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Table 1
Basis of Lk (k = 1, 2n + 1 � k � 2(n + 4) and 2n � 6).

Li Basis of Li

L1 E1,1 = Y1 = F

L2n+1 E2n+1,1 = Y2n+1
L2n+2 E2(n+1),1 = [F, E2n+1,1]
L2n+3 E2(n+1)+1,1 = Y2n+3, E2(n+1)+1,2 = [F, E2(n+1),1]
L2n+4 E2(n+2),i = [F, E2(n+1)+1,i ], i = 1, 2
L2n+5 E2(n+2)+1,1 = Y2n+5, E2(n+2)+1,1+i = [F, E2(n+2),i ], i = 1, 2
L2n+6 E2(n+3),i+1 = [F, E2(n+2)+1,i ], i = 1, 2, 3
L2n+7 E2(n+3)+1,1 = Y2n+7, E2(n+3)+1,i+1 = [F, E2(n+3),i ], i = 1, 2, 3
L2n+8 E2(n+4),i = [F, E2(n+3)+1,j ], j = 1, . . . , 4

where the fk,i are homogeneous polynomials of degree k in the coefficients αj , j =
1, . . . , s. In particular,

f1,1 =
s∑

i=1

αi, f2j+1,1 =
s∑

i=1

α
2j+1
i , j � n.

Since we are considering a graded free Lie algebra, the number of order conditions
N2(n+m) to be satisfied by the coefficients αj in the composition (7) to get an integrator
of order 2(n + m) out of a basic method of order 2n is just

N2(n+m) = 1 +
2(n+m)∑

k=2n+1

lk. (9)

If the composition (7) is symmetric, i.e., αs+1−i = αi for i = 1, . . . , s, those conditions
at even orders are automatically satisfied. In addition, time-symmetry is an important
feature to be preserved for many problems and efficient methods are also obtained by
imposing this symmetry, so that usually only symmetric compositions are considered in
the literature. For instance, methods up to orden 10 have been constructed starting with
a basic method of order 2 [14,16,19,27,30], whereas in [22] new composition schemes
up to order 12, 14 and 16 have been proposed starting with basic methods of order 4, 6
and 8 (n = 2, 3, 4), respectively.

2.2. Composition with processing

As we pointed out in the introduction, one could also consider constructing inte-
gration methods of order 2(n + m) of the form

ψ̂
[2(n+m)]
h = πh ◦ ψ

[2(n+m)]
h,K ◦ π−1

h ,

where both the post-processor πh and the kernel ψ
[2(n+m)]
h,K are themselves compositions

of the basic scheme S [2n]
h , as in (7). The computational cost of the method corresponds

essentially to the cost of the kernel and the coefficients of the post-processor can be used
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to solve a number of order conditions. As a result, highly efficient processed integrators
up to order 10 and 12 have been presented in [4] by taking compositions of S [2n]

h with
n = 1, 2.

In the following, by applying similar techniques, we propose new composition
methods up to order 2(n + m) = 14, 16 by taking basic integrators of order 6 and 8,
respectively. Specifically, we consider a kernel of the form

ψ
[2(n+m)]
h,K = S [2n]

βsh
◦ S [2n]

βs−1h
◦ · · · ◦ S [2n]

β2h
◦ S [2n]

β1h
(10)

so that, as before, it can be seen as the exact 1-flow of a vector field Gh such that

Gh = hg1,1E1,1 +
∑

k�2n+1

hk

lk∑

i=1

gk,iEk,i, (11)

where now the gk,i are homogeneous polynomials of degree k in the βj , j = 1, . . . , s.
The number of effective order conditions, i.e., the number of equations to be satisfied by
the βj so that the kernel has effective order 2(n + m), is precisely [4]

N̂ 2(n+m) = 1 + l2(n+m). (12)

In fact, all the terms gk,i in (11) such that their corresponding basis element in
table 1 is of the form Ek,i = [F, Ek−1,j ] can be cancelled out with the processor. There-
fore, if m � 4 and 2n � 6, the kernel has only to satisfy the order conditions associated
with the coefficients of E1,1 and E2(n+j)−1,1, j = 1, . . . , m, which in explicit form are

g1,1 ≡
s∑

i=1

βi = 1, g2(n+j)−1,1 ≡
s∑

i=1

β
2(n+j)−1
i = 0, (13)

j = 1, . . . , m, m � 4. Due to their very simple structure, these equations can be solved
numerically in a trivial way with all the desired accuracy. In contrast with standard
composition schemes now it is quite easy to find and analyse all the possible numerical
solutions for the kernel and select the most appropriate one to get an efficient scheme,
even if some free parameters are included in the composition.

The remaining order conditions take a much more complicated form, but they can
be solved by using the post-processor. The search of numerical solutions of these equa-
tions is more difficult and the resulting composition for πh requires typically at least as
many basic integrators as the kernel. On the other hand, most of the real solutions found
are valid, since their differences only contribute to higher order error terms.

Notice that if the kernel ψ
[2(n+m)]
h,K is a symmetric composition of S [2n]

h with 2n � 6
and m � 4 there is no reduction in the number of effective order conditions: it has to
solve exactly the same equations (13). Even so, this number is significantly smaller than
the corresponding to symmetric non-processed schemes. For the sake of illustration, in
table 2 we show these numbers when 2n = 2, 4, 6, 8 and several values of m. The results
for S [6]

h and S [8]
h follow readily from table 1 and the preceding discussion, whereas for

S [2]
h and S [4]

h we refer to [4], where these cases are treated in detail.
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Table 2
Number of order conditions for symmetric standard composition meth-

ods, N (s)
q , and number of effective order conditions for processed com-

position methods of order q = 2(n + m), N̂ (s)
q , if the basic method is

S[2n]
h

with n = 1, 2, 3, 4.

S[2]
h

S[4]
h

S[6]
h

S[8]
h

q N (s)
q N̂ (s)

q N (s)
q N̂ (s)

q N (s)
q N̂ (s)

q N (s)
q N̂ (s)

q

4 2 2 – – – – – –
6 4 3 2 2 – – – –
8 8 5 4 3 2 2 – –

10 16 8 7 4 4 3 2 2
12 12 6 7 4 4 3
14 11 5 7 4
16 11 5

Among the different solutions obtained for the effective order conditions, one is
interested in those that minimize the non-correctable terms at order 2(n+m)+1 accord-
ing to some criterion previously adopted, such as the minimization of a certain objective
function. Unfortunately there is not a universal measure of the performance of integra-
tion methods of this class, since for different problems the dominant error terms are not
necessarily the same. Here, as in [4], we consider two different objective functions:

E1(β) =
s∑

i=1

|βi | and E2(β) = s|g2(n+m)+1,1|1/(2n+2m). (14)

Here s is the number of stages, which can be considered as a measure of the cost and thus
E2 may be seen as an effective error, since g2(n+m)+1,1 is the only non-vanishing error
term at order 2(n+m)+1 for 2n � 6 and m < 4. A method whose coefficients lead to a
small value of E1 usually has good stability properties and small error terms, whereas E2

is the dominant error term in the limit h → 0. Both of them contain obvious limitations,
however. E1 is not useful to compare the efficiency of schemes with different number
of stages. For instance, one can find a family of solutions for different values of s with
values E

(s)

1 such that E
(s+1)

1 < E
(s)

1 and lims→∞ E
(s)

1 = 1. This is the case, in particular,
for the composition (6) with s = 2p + 1. On the other hand, if one considers E2 as
the only objective function to be minimized and some free parameters are incorporated
in the composition, then it is possible to attain the global minimum E2 = 0. This is
not necessarily the optimal solution, however, because then the higher order error terms
are dominant and they can take very large values. For these reasons we try to find local
minima of both E1(β) and E2(β) which in this particular problem it is possible, as shown
in [20].

As it was mentioned before, to get efficient methods one usually considers symmet-
ric compositions with more stages than the number of effective order conditions, so that
there are l free parameters, say β1, β2, . . . , βl . Recently, McLachlan [20] has proposed
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as a rule of thumb to choose these free parameters equal to the first (and last) coeffi-
cient βl+1 of the symmetric composition with the minimum number of stages necessary
to satisfy the order conditions. This gives, in a simple way, isolated solutions which
correspond to simultaneous local minima of E1 and E2 [20], being just the case we are
looking for. To construct specific kernels by following this approach, we take different
values of l and analyse all the numerical solutions obtained. We stop when, increasing
the value of l, the values of E1 and E2 are not significantly reduced. This stopping crite-
rion is adopted to avoid methods with too many stages which in some cases could lead
to stability problems.

The new schemes are denoted by ψ̂
[2(n+m)]
h (2n; s): a processed method of order

2n + 2m built with an s-stage symmetric kernel composition of a basic method of or-
der 2n. In other words,

ψ̂
[2(n+m)]
h (2n; s) = πh ◦ ψ

[2(n+m)]
h,K ◦ π−1

h

with

ψ
[2(n+m)]
h,K = S [2n]

β1h
◦ · · · ◦ S [2n]

βr−1h
◦ S [2n]

βrh
◦ S [2n]

βr−1h
◦ · · · ◦ S [2n]

β1h
(15)

and s = 2r − 1. The best solutions obtained from 2n = 6, 8 are presented in table 3.
In a similar way as for the post-processor, we take a similar composition, so that the

algorithm employed to compute the kernel can also be used. In particular, we construct
πh as a composition of the form πh = wh ◦ w−h, with [4]

wh = S [2n]
γ1h

◦ · · · ◦ S [2n]
γph (16)

because with this special structure several order conditions at odd orders are automati-
cally satisfied. For m = 2, 3 the post-processor is built with additional stages to cancel
the non-correctable terms at order 2(n+m)+1. This is not done for m = 4, because the
number of stages required to solve the equations increases drastically and the improve-
ment in the accuracy of the resulting method is not so clear [4].

Contrarily to the kernel, for the processor it is not necessary to carry out a rigorous
numerical search of all the solutions and, as mentioned, only one solution with moder-
ately small coefficients is required. Nevertheless, as it can be observed in table 3, the
post-processor usually involves as many stages as the kernel, so that its computational
cost could decrease the performance of the overall method when output is frequently
required. In those cases it can be safely replaced by an approximated post-processor
obtained at essentially cost free from intermediate values in the computation of the ker-
nel following the procedure presented in [4]. Thus the cost of the processed method
corresponds essentially to the cost of the kernel.

3. Extrapolation of geometric integrators

Extrapolation constitutes a very useful technique for raising the order of an inte-
grator. Nevertheless, if the basic scheme S [2n]

h is a geometric integrator, the final method
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Table 3
Coefficients for the most efficient kernels obtained (15) and one solution for their post-processor πh =
wh ◦ w−h with wh given by (16) when the time-symmetric basic method is of order 2n = 6 (S[6]

h
) and

2n = 8 (S[8]
h

).

ψ
[10]
h,K

(6; 9) ψ
[12]
h,K

(6; 13) ψ
[14]
h,K

(6; 15)

β1 = β2 = β3 β1 = β2 = β3 = β4 β1 = β2 = β3 = β4
β3 = 0.2157264116709669 β4 = 0.1530960766803307 β4 = 0.1536532739869463
β4 = −0.3157867596148055 β5 = −0.2489473170424535 β5 = −0.3335622906088959
β5 = 1 − 2(3β3 + β4) β6 = 0.2847405643878192 β6 = 0.3057149938043347

β7 = 1 − 2(4β4 + β5 + β6) β7 = −0.2581741612607714
β8 = 1 − 2(4β4 + β5 + β6 + β7)

πh πh πh

γ5 = 0.1 γ7 = −0.1633802595635479 γ7 = 0.1006758986148266
γ4 = 0.1295705841112265 γ6 = −0.2444257593717152 γ6 = −0.3297793266038176
γ3 = 0.2303276447320048 γ5 = 0.1936296323692213 γ5 = 0.2808380505843029
γ2 = −0.2156727681577507 γ4 = −0.04498272119682715 γ4 = 0.2934568294346022
γ1 = −(γ2 + γ3 + γ4 + γ5) γ3 = −0.2212625977608340 γ3 = 0.1420049625018795

γ2 = 0.2389306909257556 γ2 = −0.1700510812262375
γ1 = −(γ2 + · · · + γ7) γ1 = −(γ2 + · · · + γ7)

ψ
[12]
h,K

(8; 11) ψ
[14]
h,K

(8; 13) ψ
[16]
h,K

(8; 17)

β1 = β2 = β3 = β4 β1 = β2 = β3 = β4 β1 = β2 = β3 = β4 = β5
β4 = 0.1498593540118365 β4 = 0.1506611476621996 β5 = 0.1166307052906320
β5 = −0.2105425094814418 β5 = −0.2228762186169689 β6 = −0.1834320793720009
β6 = 1 − 2(4β4 + β5) β6 = 0.2487696922765247 β7 = 0.2113185016765999

β7 = 1 − 2(4β4 + β5 + β6) β8 = −0.2273787494663681
β9 = 1 − 2(5β5 + β6 + β7 + β8)

πh πh πh

γ5 = 0.1 γ7 = 0.1821172669208845 γ7 = −0.1555359247536682
γ4 = 0.0751545688344758 γ6 = 0.2104488571749604 γ6 = −0.1787323715816782
γ3 = 0.1780626762617966 γ5 = 0.2233377718718366 γ5 = −0.1865310629258911
γ2 = −0.1691819618963899 γ4 = −0.2239174891060533 γ4 = 0.1872216121810449
γ1 = −(γ2 + γ3 + γ4 + γ5) γ3 = −0.2017261987431234 γ3 = 0.1700937755102425

γ2 = 0.01913915279278383 γ2 = −0.01559173224766973
γ1 = −(γ2 + · · · + γ7) γ1 = −(γ2 + · · · + γ7)

obtained by polynomial extrapolation does not preserve, in general, the geometric prop-
erties of the exact solution, so that this procedure does not generate geometric integra-
tors. In spite of this situation, it has been proved that, under certain conditions, it is in fact
possible to build by extrapolation high order schemes which nearly preserve the main
qualitative properties of the exact flow [6,10]. Usually these methods possess very small
error terms and, for most practical purposes, the preservation of the geometric properties
they provide is sufficiently accurate. In this sense extrapolation could be considered as
an alternative procedure to composition.

We summarize next the main features of the polynomial extrapolation technique
in the geometric integration setting and refer the reader to [6,10], where it is treated in
more detail.
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In a similar way as for composition, we start with a time-symmetric integrator
of order 2n, S [2n]

h , with associated vector field Yh given by (5). If the time step h is
divided in k substeps and the method is applied k times, then the resulting map (S [2n]

h/k )k

is formally the exact 1-flow of the series of vector fields

kYh/k = hF + h

(
h

k

)2n
( ∞∑

i=0

(
h

k

)2i

Y2n+1+2i

)
∈ L.

Taking different values of k we get different approximate solutions after one step. Now
we consider a linear combination of all of them,

ψE,h =
l∑

j=1

αj

(
S [2n]

h/kj

)kj (17)

where we fix the l integers kj and determine the coefficients αj so as to eliminate the
lowest order terms in the corresponding asymptotic expansion of the local error and thus
obtain a higher order integrator. This procedure involves s = k1 + · · · + kl evaluations
of S [2n]

h . In terms of the corresponding series of differential operators one has

�E,h =
l∑

j=1

αj

(
S

[2n]
h/kj

)kj

and S
[2n]
h/kj

= exp(Yh/kj
), so that formally g ◦ ψE,h = �E,h[g].

Observe that ψE,h cannot be interpreted as the exact 1-flow of a formal vector
field in the Lie algebra L, that is, log(�E,h) /∈ L, since �E,h is a linear combination of
exponentials of vector fields in L. This being the case, however, it is not difficult to show
that we can still write the formal series �E,h with m = 1, . . . , n, as [6]

�E,h = exp

(
h

2
F

)
Y exp

(
h

2
F

)
, (18)

where

Y = exp
(
h2(n+m)+1Z

) + 1

2
h4n+2

(
r4nR1 + h2r4n+2R2 + · · ·

+ h4m
(
r4n+4mR3 − r2

2n+2mR4
) + O

(
h4m+2

)) + O
(
h6n+3

)
, (19)

if l = m + 1 and the coefficients αj satisfy the linear system of equations

r0 ≡
l∑

j=1

αj = 1,

(20)

r2(n+p) ≡
l∑

j=1

αj

k
2(n+p)

j

= 0 for p = 0, . . . , m − 1.

In (19), Z = ∑∞
j=0 h2jZ2(n+m)+2j+1 ∈ L and Rj /∈ L (in particular, R1 = Y 2

2n+1 /∈ L).
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Notice that the resulting method ψE,h is of order 2(n + m) and, according to (19),
it can be considered as the flow of a vector field in L up to order r = 4n + 1. Ob-
serve also that the lowest error term, R1, which does not belong to L appears at order
4n + 2. If, for instance, S [2n]

h is a symplectic integrator, then ψE,h is a pseudo-symplectic
method [1]. We will denote this class of methods as ψ

[2(n+m)]
E,h (2n; s; r): an integrator of

order 2(n + m) obtained by extrapolation from a basic scheme of order 2n, evaluated s

times, and which preserves the geometric character of the solution up to order r . In fact,
it is possible to build methods of order 2(n+m) which preserve geometric properties up
to order 4(n + m) + 1 simply by canceling r4n+2j for j = 0, 1, . . . , 2m − 1. One could
try to rise even more the value of r , but then the condition r2

2n+2m = 0 has to be satisfied
so the order of consistency of the method increases and efficiency could be degraded.
Obviously, l has to be larger to solve all the necessary equations.

According to this result, if the order 2n of the basic method is sufficiently high
(2n � 6), with a proper choice of the coefficients it is possible to construct integra-
tors such that their ‘non-geometric’ error terms Rj do not contribute significantly to the
global error, even for very long time integrations. For instance, if 2n = 6 it is possible
to build a 10th-order (m = 2) integrator which preserves the geometric properties up to
order h21 (4(n + m) + 1 = 21).

Example. Let us consider equation (1) with f (y) = A(y)y, where A(y) is a skew-
symmetric matrix. Then the exact flow is given by an orthogonal transformation. Sup-
pose that S [2n]

h is a (matrix) map preserving orthogonality and consider the linear com-
bination (17) with k1 = 1, k2 = 2 and coefficients α1 = −1/(22n − 1), α2 = 1 − α1.
Then the resulting extrapolation scheme

ψE,h = 1

22n − 1

[
22n

(
S [2n]

h/2

)2 − S [2n]
h

]
(21)

is of order 2n + 2, requires three evaluations of the basic method per step and verifies

(ψE,h)
T ◦ ψE,h = I + O

(
h4n+2

)
,

where I is the identity matrix. In other words, it preserves orthonogality up to order
4n + 1, so that we can denote it by ψ

[2n+2]
E,h (2n; 3; 4n + 1). In this sense it could be

considered as a pseudo-orthogonal integrator.

Several sequences {kj } are used in the literature (see [15] and references therein).
The choice of a particular sequence does not affect the values of 2(n + m) and r which
can be attained. Nevertheless, the computational cost of the algorithm as well as the
magnitude of the leading error terms Z2(n+m)+1 and the coefficients multiplying Rj de-
pend on that particular election. We have analysed different sequences and observed that
for large values of l in (17) the ‘harmonic sequence’ kj = j is the most economic one.
This is in fact the case if a symmetric second order method is taken as basic integrator
and a high order (12 or higher) is desired but the sensitivity to round-off increases with
the order. However, since we are mainly interested in methods with 2n � 6, we only
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Table 4
Coefficients αj in (17) for different values of m, r and s using as basic integrators symmetric
compositions of order six and eight and the sequence kj = j . For simplicity it is written

Dαi , where D = ∑
i Dαi because

∑
i αi = 1.

Dα5 Dα4 Dα3 Dα2 Dα1

ψ
[8]
E,h

(6; 3; 13) 26 −1

ψ
[10]
E,h

(6; 6; 13) 19683 −2048 5

ψ
[12]
E,h

(6; 10; 13) 2097152 −531441 14336 −7

ψ
[14]
E,h

(6; 15; 15) 1220703125 −536870912 43046721 −393216 42

ψ
[10]
E,h

(8; 3; 17) 28 −1

ψ
[12]
E,h

(8; 6; 17) 177147 −8192 5

ψ
[14]
E,h

(8; 10; 17) 33554432 −4782969 57344 −7

ψ
[16]
E,h

(8; 15; 17) 30517578125 −8589934592 387420489 −1572864 42

require moderately small values of l and thus both the specific sequence and this source
of round-off error are not particularly relevant.

In table 4 we collect the coefficients αj in (17) for different values of m, s and r

with symmetric basic integrators of order 2n = 6, 8 and the harmonic sequence. These
are the solutions of the linear equations (20).

From this table it is clear that, with respect to the preservation of geometric proper-
ties, methods ψ

[12]
E,h (6; 10; 13), ψ

[14]
E,h (6; 15; 15) and ψ

[16]
E,h (8; 15; 17) behave as standard

extrapolation schemes, whereas the value r of the remaining methods can be increased
by considering larger values of l. For instance, a method ψ

[12]
E,h (8; s; 21) can be con-

structed with l = 5 (i.e., s = 15 using the harmonic sequence).

4. Particular classes of problems

To illustrate the interest of the new procedures to raise the order of integrators
we analyse two families of problems which frequently appear in classical and quantum
mechanics. For those particular problems, highly efficient (geometric) integrators exist
in the literature up to moderate orders (fourth, sixth and eighth-order).

4.1. The equation x ′′ = g(x, t)

Let us consider the second order differential equation

x ′′ = g(x, t), x(0) = x0 ∈ R
D, x ′(0) = x ′

0 ∈ R
D, (22)

which is suitable to be integrated with Runge–Kutta–Nyström (RKN) methods. If we de-
note y = (x, x ′, yt ), where the time is considered as a new coordinate, yt = t , then (22)
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can be written as the first order system

d

dt






x

x ′
yt




 =





x ′
0
1





︸ ︷︷ ︸
fA(y)

+





0
g(x, yt )

0





︸ ︷︷ ︸

fB(y)

, (23)

with associated vector fields

FA ≡
D∑

i=1

x ′
i

∂

∂xi

+ ∂

∂yt

, FB ≡
D∑

i=1

gi(x, yt )
∂

∂x ′
i

, (24)

and flows associated to each part

ϕ
[A]
h (y) =






x + hx ′
x ′

yt + h




 , ϕ
[B]
h (y) =






x

x ′ + hg(x, yt )

yt




 . (25)

This system is separable and the time-symmetric second order Störmer/leapfrog/
Verlet integrator

S [2]
h = ϕ

[A]
h/2 ◦ ϕ

[B]
h ◦ ϕ

[A]
h/2 (26)

can be used. As mentioned, methods up to order ten obtained by composition of (26)
are available in the literature (see [14,21] and references therein). This method is essen-
tially equivalent to the basic method proposed by Gragg (see [15, p. 294]) to be used
with extrapolation for this problem. This method, in our notation, would correspond to
n evaluations with time-step 2h of the basic method S̄ [2]

h = ϕ
[B]
h/2 ◦ϕ

[A]
h ◦ϕ

[B]
h/2. But, for the

numerical examples carried out in this paper, the basic method S [2]
h in (26) gave more

accurate results being the method used.
However, this problem has a very specific structure (not fully exploited by (26))

which could allow to build more efficient integrators. For instance:

1. It is easy to check that [FB, [FB, [FB, FA]]] = 0, simplifying the Lie algebra of this
problem. Then it seems more convenient to consider instead the composition

S [r]
h = ϕ

[B]
bsh

◦ ϕ
[A]
ash

◦ · · · ◦ ϕ
[B]
b1h

◦ ϕ
[A]
a1h

(27)

with a proper choice of s and coefficients ai, bi . In [8] symmetric methods up to
order six are obtained which clearly outperform composition methods (3) of similar
order and using (26).

2. For this problem we have that

FC = [
FB, [FA, FB]] =

D∑

i=1

2
(
gT · ∇xg

)
i

∂

∂x ′
i

. (28)
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We will refer to FC as a modified vector field. We then observe that the flow asso-
ciated to FB and FC can be computed together. For this reason, we can consider the
more general composition

S [r]
h = ϕ

[B̂]
bsh,csh3 ◦ ϕ

[A]
ash

◦ · · · ◦ ϕ
[B̂]
b1h,c1h

3 ◦ ϕ
[A]
a1h

(29)

with

ϕ
[B̂]
bih,cih

3(y) =





x

x ′ + h
(
biI + 2cih

2∇xg
T
)
g

yt




 (30)

and I is the identity matrix. Methods up to order eight with a relatively small number
of stages and low error terms are given in [5,7,11,17,18,22–24,28]. These methods
can be used as basic integrators to obtain higher order methods. They are interesting
in several situations:

• Each stage requires also the computation of ∇xg which, in general, is computa-
tionally expensive. However, in some cases, the evaluations done for the compu-
tation of g can be reused to compute the most expensive parts of ∇xg, making the
additional cost not significant.

• For some problems with a different splitting but similar Lie algebra structure, the
most costly part of the method comes from the evaluation of ϕ

[A]
h (y). Then, the

extra cost due to the modified vector fields does not contribute considerably to the
overall cost of the method.

• It is possible to find especially well suited solutions for the coefficients {ai, bi, ci};
for instance, contrarily to the composition (27), there exists fourth order methods
with all coefficients {ai, bi, ci} positive. Then, schemes with very small error
terms can be found which compensate the additional cost.

4.2. The Schrödinger equation

Let us consider the time-dependent Schrödinger equation

i
∂

∂t
ψ = −1

2
∇2ψ + V (x, t)ψ, ψ(x, 0) = φ(x), (31)

where ψ(x, t) is the wave function associated with the system.
For numerically solving this equation, it is usual to consider a spatial semidiscreti-

sation. Suppose the system is one-dimensional, defined in the interval x ∈ [x0, xN ],
and we split this interval in N parts of length 
x = (xN − x0)/N . Next, consider
un = ψ(xn, t), where xn = x0 + n
x, n = 1, . . . , N , thus obtaining the finite-
dimensional linear equation

i
d

dt
u = (

A + B(t)
)
u, u(0) = u0, (32)
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where u = (u1, . . . , uN)T ∈ C
N and A, B ∈ C

N×N are Hermitian matrices. The
potential energy B is a diagonal matrix with diagonal elements V (xi, t) and the ki-
netic energy A is a full matrix which can be diagonalised using Fourier transforms,
A = F−1DAF , where F and F−1 correspond to the forward and backward Fourier
transform and DA is a diagonal matrix. Then the computations of e−itAu0 and e−itBu0

can be done using fast Fourier transforms (FFTs) and splitting methods can be used
efficiently.

On the other hand, it is easy to check that [B, [B, [B, A]]] = 0. It has the same
algebraic structure as the previous second order differential equation and the same split-
ting Nyström integrators in the form (27) can be used. In addition, C = [B, [A, B]] is
a diagonal matrix with diagonal elements Ci = −(V ′(xi, t))

2, where V ′ is the deriva-
tive with respect to x. Then the composition with modified potentials (29) can be used.
The FFTs are usually the most time consuming part and the additional computational
cost due to the modified potentials can be neglected. This is therefore another impor-
tant problem for which highly efficient geometric integrators up to moderate order are
available.

5. Numerical examples

In the following we test numerically the main properties of the new high-order
methods based on the extrapolation of geometric integrators. We also check their effi-
ciency in comparison with strictly geometric composition methods, both standard and
processed, when they are implemented with constant step size. We use the following
basic integrators for the comparisons:

• Sixth order. M6 (the 9-stage scheme (3) of [19]); BM6 (the 11-stage RKN
scheme (27) of [8]); OMF6 (the 5-stage RKN scheme (29) of [22]).

• Eighth order. M8 (the 17-stage scheme (3) of [19]); OMF8 (the 11-stage RKN
scheme (29) of [22]).

• Tenth order. G10 (the 33-stage scheme (3) of [14]).

For the standard extrapolation we consider as the basic second order symmetric
integrator the composition (26).

Reduction of round-off errors. In this paper we consider high order methods to obtain
very accurate results and then round-off errors can be significant, so it seems appropriate
to consider some techniques to reduce those rounding errors. Given yn, the numerical
solution at tn, the intermediate stages for most integrators take the form (for an m-stage
method)

y(i) = yn + δ(i), i = 1, . . . , m, (33)

with δ(i) = O(h) and yn+1 = y(m). If we define the increments 
y(i) = y(i) − yn, with

y(0) = 0, this equation can be written in the more convenient form


y(i) = 
y(i−1) + δ(i), i = 1, . . . , m, (34)
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where 
y(i) = O(h) and yn+1 = yn + 
y(m). In general, working with increments
reduces round-off errors. This technique can also be used with extrapolation [13]. There
each integration with a substep hi = h/ki can be written as (33) and we can extrapolate
for the increments δ(i) to get δextr, where yn+1 = yn + δextr.

In addition, each full time step by composition as well as by extrapolation takes
the form yn+1 = yn + 
yn and compensated summation can be used. This corresponds
to the following algorithm for N steps (see [26] and references therein):

yerr = 0
for n = 1 to N


y = 
yn + yerr

ynew = yn + 
y

yerr = (yn − ynew) + 
y

yn+1 = ynew.

Numerical experiments carried out by us in double precision indicate that the
round-off errors are reduced, approximately, between one and two orders of magnitude
using the previous techniques. They can be considered as computational cost free since
no additional evaluations of the vector field are required and then they are recommended
to be used in general.

Example 1. Let us consider the equation studied in [9]

x ′′ + x = −ε

k∑

j=1

sin(x − ωj t), x ∈ R. (35)

It describes the motion of a charged particle in a constant magnetic field perturbed by
k electrostatic plane waves, each with the same wavenumber and amplitude, but with
different temporal frequencies ωj . This equation can be derived from the Hamiltonian

H(q, p, t) = 1

2

(
p2 + q2

) + ε cos(q)g1(t) + ε sin(q)g2(t) (36)

with g1(t) = ∑k
j=1 cos(wj t), g2(t) = ∑k

j=1 sin(wj t). We take the following values for
the initial conditions and parameters [9]: q0 = 0, p0 = 11.2075, ε = 1, ωj = jω0, with
ω0 = 7 and k = 3.

The system is separable in different ways. We consider the splitting (harmonic
oscillator)–(perturbation), where Nyström methods can also be used. Notice that mod-
ified potentials are evaluated at essentially cost free because the most expensive com-
putations can be reused, and this problem is suitable to be integrated with the composi-
tion (29).

To illustrate the strong influence of the choice of the basic method in the perfor-
mance of the final integrator, we consider three different sixth-order methods: M6, BM6
and OMF6. We compare their performances as sixth-order methods as well as when
used as basic methods to get pseudo-symplectic 8th-, 10th- and 12th-order integrators
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Figure 1. Work-accuracy curves for methods of order six, eight, ten and twelve obtained by extrapolation
with the harmonic sequence and using as basic methods the symmetric second order scheme (dotted lines)
and the sixth-order schemes: M6 (dotted broken lines), BMF6 (broken lines) and OMF6 (solid lines). For
illustration, the eighth- and tenth-order symmetric–symmetric schemes M8 and G10 are also included as

thin solid lines in their corresponding figures.

as given in table 4. We also consider integrators of the same order, but obtained using
standard extrapolation with (26) as the basic method. In the figures for the 8th- and
10th-order methods we also include the symplectic integrators M8 and G10. We inte-
grate the system up to tf = 100 · 2π and measured the average error in (q, p) during the
last period. The exact solution was obtained taking a very small time step.

Figure 1 shows the results obtained. We observe significant differences in the per-
formance of the integrators as well as the fact that it is possible to outperform standard
extrapolation using an efficient sixth-order method, but this superiority is reduced as the
order increases. Notice that OMF6 is not necessarily the most efficient sixth-order inte-
grator for this problem (more efficient methods could exist). We then conclude that for
some problems it is possible to build high-order pseudo-symplectic integrators which
can be competitive with standard extrapolation (considered as one of the most efficient
integrators to attain very high accuracies). Then, contrarily to what is usually claimed,
for some problems geometric integrators can also be competitive for relatively short in-
tegrations and high accuracies.
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Example 2. We consider now the two-body problem of classical mechanics, defined by
the equations

x ′′
i = − xi

(x2
1 + x2

2)
3/2

, i = 1, 2, (37)

which can be rephrased as (1) with y = (x1, x2, x
′
1, x

′
2), and is generated by the Hami-

tonian function

H = T (p) + V (q) = 1

2
‖p‖2 − 1

‖q‖ . (38)

Here q = (x1, x2), p = (x ′
1, x

′
2) are the coordinates and momenta, respectively.

Now the flows ϕ
[A]
ah and ϕ

[B̂]
bh,ch3 are given by (G ≡ h/(x2

1 + x2
2)

3/2)

ϕ
[A]
ah (xi) = xi + ahx ′

i , ϕ
[B̂]
bh,ch3(x

′
i) = x ′

i − xiG(b + 4chG), i = 1, 2, (39)

where the extra cost due to the modified potential can be neglected. In all the numerical
experiments we take as initial condition x1(0) = 1 − e, x2(0) = x ′

1(0) = 0, x ′
2(0) =

[(1 + e)/(1 − e)]1/2, which produces an orbit with eccentricity e.

On the preservation of symplecticity. To illustrate the different behaviour of inte-
gration methods built by polynomial extrapolation with respect to the preservation of
the symplectic character of the exact solution, we consider two 10th-order integra-
tors obtained with the harmonic sequence from S2 and OMF6. Specifically, we take
kj = 1, 2, 3, 4, 5 for S2 to construct ψ

[10]
E,h (2; 15; 11) (requiring 15 force evaluations per

step) and kj = 1, 2, 3 for OMF6 to build ψ
[10]
E,h (6; 6; 13) (which requires 6 evaluations

of OMF6, i.e., 30 force evaluations per step). Clearly, it is more economical to start
with S2, but one has also to analyse the magnitude of the error and how it is propagated
along the integration. With this goal in mind, we compute the average relative error in
position Er for T = 10 and T = 1000 periods. Let us denote by Ne the number of force
evaluations. It is know that the average error in positions for this problem grows linearly
when using symplectic integrators, instead of quadratically for standard integrators [25].
Then, if we plot Er/T as a function of Ne/T we should find:

(i) if the integrator is symplectic then the same curve has to be obtained with indepen-
dence of the number of periods, i.e., it has to be essentially invariant;

(ii) if the integrator is not symplectic, the error will grow linearly with the number of
periods.

Figure 2 shows the results achieved with ψ
[10]
E,h (2; 15; 11) (broken lines) and

ψ
[10]
E,h (6; 6; 13) (solid lines) when T = 10 (thick curves) and T = 1000 (thin curves).

As a reference, we also include the results obtained with the symplectic integrator G10
(dash-dotted lines). The effect of preserving symplecticity at higher orders than the or-
der of the method itself is clear in this example: ψ

[10]
E,h (2; 15; 11) is more efficient, but
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Figure 2. Average relative error in position vs. number of evaluations per period for two 10th order extrap-
olation methods using as basic integrators: S2 (broken lines) and OMF6 (solid lines), and the 10th-order
symplectic integrator G10 (dash-dotted lines). We compare the average error per period vs. the number of

evaluations per period after 10 periods (thick lines) and after 1000 periods (thin lines).

only for the first few periods. For large values of h we can observe in the figure that
the non-symplectic error terms in ψ

[10]
E,h (6; 6; 13) (of order O(h14)) start to be significant

after a long number of periods. Nevertheless, we should remark that these high-order
integrators are employed typically when one requires very accurate results and so only
moderately small time steps are used, otherwise lower order integrators are more effi-
cient. On the other hand, it is known that round-off can be an important problem for
extrapolation. However, if we consider both extrapolation for the increments and com-
pensated summation as previously mentioned, the round-off error for all extrapolated
and composition methods are of similar magnitude. We repeated the computation with
the 12th- and 14th-order methods obtained with OMF6 and also a round-off error of
similar magnitude for this problem was found.

Several additional remarks are in order. First, as we mentioned in section 3, it is,
in fact, possible to build methods ψ

[10]
E,h (6; s; r) with r > 13 simply by taking l > 3

in (17), i.e., s > 6, and then the harmonic sequence is more appropriate. Second, it can
be shown that if we start with a 6th order basic scheme, the highest order method we
can achieve with r > 2(n + m) + 1 is precisely 10 (i.e., m = 2, where the symplecticity
can be preserved up to order r = 21). Therefore, methods of order 12 and higher
possess the same qualitative properties as the standard extrapolation methods. Third,
similar results are obtained if we repeat the same experiment taking OMF8 as the basic
integrators. The main difference is that symplecticity is now preserved at a considerably
higher order because we are starting with a higher order symplectic integrator.

Extrapolation versus standard and processed composition. Finally, we compare the
relative performance of high-order integrators obtained by composition (both standard
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Figure 3. Work-accuracy curves taking a sixth-order and an eighth-order method as the basic integrators to
get methods up to order fourteen and sixteen, respectively.

and processed) and extrapolation starting from the basic methods OMF6 and OMF8.
In particular, with OMF6 we analyse schemes of order 10, 12 and 14, whereas for the
basic integrator OMF8 we test methods of order 12, 14 and 16. In all cases we inte-
grate for 10 periods an orbit with eccentricity e = 1/2 and measure the average error
in position versus the number of potential evaluations (the computations are done with
quadruple precision). Figure 3 shows the results obtained. There, for simplicity, the fol-
lowing notation has been used: the recently obtained [22] standard composition meth-
ods ψ

[2(n+m)]
h (2n; s) are denoted by C2(n+m)

2n ; P[2(n+m)]
2n stands for the processed method

ψ̂
[2(n+m)]
h (2n; s) and E2(n+m)

2n corresponds to the extrapolation scheme ψ
[2(n+m)]
E,h (2n; s; r),

with r = max{13, 2(n + m) + 1} for 2n = 6 (OMF6) and r = 17 for 2n = 8 (OMF8).
In all cases, extrapolation methods seem to be slightly more efficient than

processed composition schemes, and both of them are clearly superior to standard com-
position algorithms for this example. Nevertheless, one has also to take into account the
pseudo-symplectic property of extrapolation schemes: according to figure 2, the error
of E12

6 , E14
6 and E16

8 will grow always faster than for composition methods of the same
order.

6. Concluding remarks

We have analysed composition and polynomial extrapolation as procedures to raise
the order of geometric integrators. From basic integrators of order six or eight we have
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presented new processed composition and extrapolation methods up to order sixteen.
The results achieved by all these methods on the numerical examples analysed allow
us to conclude that geometric and pseudo-geometric integrators can also be competitive
with standard integrators for high accuracies and short time integrations for certain prob-
lems. Notice that it is usually claimed that the interest of geometric integrators is only
for low accuracies and very long time integrations. This result is in our opinion worth to
be emphasized and it leaves the following open questions with respect to the final choice
of an efficient integrator for a given problem:

• Which basic integrator of a given order will produce the most efficient integrator?

• Given several integrators of different orders, which one will produce the most effi-
cient integrator by composition and/or extrapolation (taking into account the order at
which the geometric properties are lost in the last case)?

• How to build basic integrators which produce efficient high order integrators?

• Is it reasonable to build a variable order and variable step algorithm using a high
order basic integrator in spite of the loose of the nice pseudo-geometric properties?

These questions are at present under investigation for the Schrödinger equation as
well as for some other second order differential equations.
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