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Geometric factors in the adiabatic evolution of classical systems
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The adiabatic evolution of the classical time-dependent generalized harmonic oscillator in one dimension is analyzed in detail.
In particular, we define the adiabatic approximation, obtain a new derivation of Hannay’s angle requiring no averaging principle
and point out the existence of a geometric factor accompanying changes in the adiabatic invariant.

The theory of adiabatic evolution in classical me-
chanics has received considerable attention through
the years [1-7], mainly in connection with the sub-
ject of adiabatic invariants. Formal results have met
in linear time-dependent Hamiltonian systems an es-
pecially well suited frame to assess their domain of
validity [1,2]. More recently, increasing attention to
these systems has been motivated by the discovery
of the geometric contribution to the adiabatic evo-
lution of angle variables [8,9].

In this Letter we study the so-called generalized
harmonic oscillator (GHO) evolving adiabatically
in time. In the first part we define the adiabatic ap-
proximation and determine the quantity that is con-
served along the evolution in this approximation.
Next for cyclic systems a novel derivation of
Hannay’s angle is obtained. Unlike the original con-
struction [8] our procedure does not require any av-
eraging principle [4].

Since the method follows closely the operator for-
mulation of the quantum adiabatic theorem [10] the
analogy between Hannay’s angle and Berry’s phase
[11] is enhanced. Moreover, the formalism avoids
explicit introduction of action-angle variables, a
question always delicate when dealing with time-de-
pendent Hamiltonians [4]. The price to be paid for
this gain in the interpretation is that the formalism
does not generalize easily to non-linear systems.

In the second part we study non-adiabatic effects.
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They induce changes in the abovementioned ap-
proximately conserved quantity that are exponen-
tially small [12]. We find that, in general, this ex-
ponential factor contains, besides the known terms,
also a geometric contribution. This result consti-
tutes, in turn, the classical analogue to the geometric
amplitude factor found [13,14] in adiabatic quan-
tum transitions inherent to two-level systems which
has recently been experimentally measured [15].

Introduce the vector = (g, p), whose components
are the generalized coordinate and momentum. The
trajectories in phase space can be generated by means
of a symplectic map .4 acting on initial values,

$(1)=AM(7, 10,5(%0)) . (1)

Here we have introduced the new variable T=et,
where 1/¢ fixes the time scale. The above equation
is the starting point in formulations of classical me-
chanics based on Lie transformations[16]. The map
# can be expressed as a matrix M whenever one deals
with linear Hamiltonian systems. The GHO, whose
Hamiltonian reads

H(q,p,7)=4[X(1)g*+2Y(1)gp+Z(T)P*], (2)

is a particular one-dimensional realization of this
class. Furthermore, we shall suppose a gentle depen-
dence of X, Y, Z on the scaled time 7.

For the Hamiltonian in eq. (2) the time evolution
of M is governed by the differential equation

M= (1/€)SM, M(15,7,)=I, (3)
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where the dot stands for derivative with respect to
the scaled time 7,

S=4(Z-X)o, +3i(Z+X)o, + Yo,

in terms of Pauli matrices and I is the 2 X 2 identity
matrix.

The (instantaneous) eigenvectors of the matrix
S(1) happen to be linearly independent for any value
of t provided Y?(t) # X(7)Z(7) and hence S(t) can
be rendered diagonal by the time-dependent matrix
R(1):

S(1)=R(1)S4(T)R (1), (4)

where S4( 1) stands for the diagonal matrix (4,,4_)
with A, =—4_=A=_/Y?>—XZ, and R can be writ-
ten as

i
R = S rcven

X[(Z-X)o, +i1(Z+ X))o, +2(Y+ 1) 03]
=R"(1). (5)

At this point it is useful to examine the character-
istics of the motion when X, Y, Z are held fixed. For
the parameter subspace where XZ> Y? the orbits are
closed (elliptic) contours representing the foliation
of the phase space in 7 '-tori, A=iw and w=
:;XZ —Y? is the constant rotation frequency. Oth-
erwise, in the parameter region where XZ< Y?, the
orbits are hyperbolas. The case XZ= Y corresponds
to a bifurcation in parameter space and the orbits are
straight lines. We point out that schemes based on
the averaging principle need the introduction of ac-
tion—angle variables which is only possible in the for-
mer case. At first, we restrict ourselves to this situ-
ation too. However, since our method formally
applies in both parameter regions we shall indicate
the corresponding results for the case XZ < Y? when-
ever possible.

Next we consider the following factorization for AM:

M(1,7)=R(T)Mr(1, 70)R~'(7) . (6)

This is equivalent to making the formal transfor-
mation &z (7)=R ~!(7)&(1), taking us from &(7) to
new variables &r(7) = (gr(7), Pr(7)) in terms of
which the new mapping reads

$r (1) =Mr(7, 70)¢r (T0) » (7)
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and satisfies
Mr=SgMzp, Mz(t0,1)=1, (8)
with
Sk=(1/€)S4—R'R

=[iw/e+p(ZX-XZ) 0,

+il(a+B)o, +i(a—-p)a], %)
in terms of the functions
a=y[(io+Y)Z- (iw+Y)Z],
B=7[(io+Y)X- (iw+Y)X],
y=[Riw(iw+Y)]!, Si=iws;.

There is a crucial difference between the two terms
in Sk. Whereas the first term does depend explicitly
on the time scale of the system the second one de-
pends on € only through the scaled time 7 and so is
geometric in character. As a matter of fact, the geo-
metric character here is not related to the parameter
space, but to the phase space itself. In this sense our
interpretation resembles that of Aharonov-Anandan
[17] for quantum systems.

If Sk were diagonal the solution to eq. (8) would
be Mgz=exp(ao;) where, after integrating exact
differentials,

T

YZ-YZ
a(t, 1) =1 logw+i _[ (—(2+ ——) dr,

k(t) € 2wZ
70
(10)
with the following definition:
k(D) =[(w-1)X/(w+iY)Z]'/?.
This suggests introducing M, by
Mg =exp(aog;)M% . (11)

This new matrix M% accounts for the difference be-
tween the exact and diagonal approximate solutions.
Its matrix elements m; (i, j=1, 2) obey

My —oe~2my, =0, #y —fe*m,, =0, (12)
'hzz—ﬂe+2am|2=0, ’hlz—ae-zam22=0. (13)

We shall come back to these equations later on.
Under adiabatic conditions, namely when the

proper time of the system is much smaller than the

time scale (2ne<< ), M canbe replacedineq. (11)
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by the identity matrix leading to the adiabatic ap-
proximation (AA). During evolution each compo-
nent of &, changes only by an exponential factor in-
volving a(1, 7,), which has both a real and imaginary
part. Thus in this approximation the quantity prxgz
is exactly conserved. We note in passing that

= —ipgrgr=H/w is the usual expression for the adi-
abatic invariant [7], provided the constraint XZ> Y?
is fulfilled.

For a time-independent system we have Mz =1,
and the quantity w(f—1,) is thereby the polar angle
of the trajectory in the pg—qx plane. This idea may
be extended to the more general case of a cyclic sys-
tem in parameter space, i.. a GHO Hamiltonian
which at some instant 1, verifies X(7,)=X(1),
Y(1,)=Y (1), Z(1,) =Z(7,). In this case a(t,, 7o)
is purely imaginary and the first term which survives,

Tt
]
. w(t) dr,
T0
is called the dynamical angle whereas the remainder

O = f ((YZ-YZ)/2wZ) dt (14)

is the Hannay angle and is considered of geometric
character. If XZ < Y?, angles become imaginary and
their corresponding formulae are readily obtained by
restoring w= —i4, AR, in all the above expressions.
The generalization to GHO with N degrees of free-
dom is straightforward whenever the corresponding
S(t) matrix can be diagonalized.

It still remains a point to be clarified. As a matter
of fact, the operator R is not uniquely determined
because any non-singular diagonal transformation
Q(7) leads to a new matrix R'=RQ that also dia-
gonalizes S. However, neither the dynamical phase
not the Hannay angle are changed by this transfor-
mation. The former cannot change because of the
uniqueness of the instantaneous eigenvalues.
Moreover

(R-'R")4=(Q"'R™'RQ)4+0"'Q,
whence the difference,
(R"-'R")g—(R™'R)4=0"'0Q,

is just an exact differential. Thus, we can conclude
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that (at the AA level) the result of making the trans-
formation Q is just adding an exact differential to
the total angle which provides a vanishing contri-
bution when the system is cyclic.

This completes the answer to the first question is-
sued in the introduction.The remainder of this Let-
ter is devoted to study asymptotic variations of J
caused by non-adiabatic effects, i.e. because M #
I in the general case.

Assume that X, Y, Z tend sufficiently fast to def-
inite limits as 7— * oo and verify X(t)Z(7)> Y2 (1)
for all real 1. Thus, the limiting values of the adi-
abatic invariant J( £ co) do exist and we can prop-
erly define the quantity AJ=J(+o0) —J(—00).

An asymptotic determination of AJ was first ob-
tained by Dykhne [12] using the Hamiltonian in eq.
(2) with Z=1, Y=0, and X depending analytically
on 7. He got AJ=0(exp(—c/€)), c=const>0, a be-
haviour that has also been found in further analyses
[6,18], even for non-linear one-dimensional sys-
tems [19,20]. What we shall see is that the more
general Hamiltonian in eq. (2) leads to a geometric
additional factor in AJ.

The exact expression for AJ is given by

AJ=—i{m,,(+00)my (+0)gk(—o0)
+may (+00)my(+00)pi(—o0)
+ [my1(+o0)my(+o0)
+my(+oo)my(+o0)—1]

X gr(—00)pr(—o0)}. (15)
Writing

o 146, my )
MR—( ma, 1405/

with J,, m;<< 1, we get to first order in non-adi-
abatic corrections

AT~ —i[my (+00)gk(—00)
+m(+00)pi(—o0)], (16)

and we have to look for the asymptotic form of m,,
and m,,.

Let us assume that X, Y, Z can be analytically con-
tinued into the complex t-plane and that a complex
value 7. exists at which w(t.) =0, namely a complex
point where the two eigenfrequencies become de-
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generate. The crossing or transition point 7, is a sin-
gularity of S. For functions X, Y, Z of a reasonably
common type, we assume that in a neighborhood of
Te

w?=p(1-1)"[1+0(1) ], (17)

with real p#0, >0, Q(t) analytic at 7. and
Q(1.)=0. The particular choice Y=0, Z=1, v=1
leads to Dykhne’s singularity model.

As already stated before, each eigenvector ac-
quires during its evolution only an exponential fac-
tor and so it corresponds always to the same eigen-
value. However, if instead of integrating eq. (3) along
the real 7-axis we modify the circuit to circle the
crossing then one eigenvector becomes the other
yielding a non-vanishing contribution to AJ. As the
difference with respect to AA evolution arises only
from the circling of the singularity we have to ana-
lyze egs. (12), (13) in a neighborhood of 7.. The idea
to be developed consists in solving there exactly eqgs.
(12), (13) and then joining this local solution to that
provided by the AA [21,22]. Owing to the similar-
ities between egs. (12) and (13) we give details only
for eq. (13). In the neighborhood of the transition
point 7.

C()k( To )
2iw

77-122“" €Xp (Zijw,(fl)dfl) mia =O,
70

my, — k(1) exp(—Zl I w' (1) dr)mzz_o.

(18)
We have denoted
, @ YZ-YZ
_€+ 2oz (19)

Hereafter we set 1,—» —o0, k_=k(—0), w.=
w( £ o). Further we introduce the function

A= ﬁ[mzz exp (—i J w’dt’)

+ik_my, exp(ij w’dr’):I, (20)

where the lower integration limit is irrelevant to our
purposes and its behaviour at 7— — oo is
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f~exp(—ijw’(r’)d‘r'>, 21)

for m;,-0, m,,—1. Taking into account eq. (18)
and dropping terms containing the difference
w/w—w'/w' (which is of order €) the function f
obeys the equation

f+w?=0. (22)
The asymptotic form (71— +co) of f(1) is

f~4 exp(—i J w' (1) dr’)

+Bexp(ijw’(‘r’) dr'), (23)

with 4, B constant. Therefore, once the coefficients
A, B have been determined, comparison between egs.
(20) and (23) immediately yields m,,(+c0).

The mathematical problem of finding the first
asymptotic approximation to the ratio B/A from eq.
(22) has already been tackled in the literature in
connection with the above-barrier reflection of a
quasi-classical particle [12,13,18,21-24]. The meth-
ods are essentially based on the manner in which an-
alyticity of w’ breaks down at the point 1. If w2 has
a zero of order » then, owing to the presence of the
geometric term, @' has a singularity:

w?=p'(t—1)""[1+Q'(1)], (24)

with definitions for p’, Q’ similar to those in the se-
quel of eq. (17). As a consequence, analyses carried
out for a particular w? (whose zero has multiplicity
v) cannot be trivially extended to w’? (which has a
pole of multiplicity »). This problem has been in-
dependently analyzed by Pokrovskii and Khalatni-
kov [21], and Meyer [23] yielding equivalent con-
clusions. Here we merely apply their asymptotic
results which allow us to determine the ratio B/A.
Eventually we get

b

M (+oo)=2k_! cos(m) exp(2if) ,

Tc

{= '[w'(‘r) dr, (25)

Tr
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where 7, is any point on the real 7-axis and Im {<0.
The bar means complex conjugation. The plus, mi-
nus signs correspond to the cases w'=w/¢ (i.e., no
geometric contribution), w’# w/e respectively.

By the same token eq. (12) provides m,,(+oco0)
and a similar discussion holds. The result for the
change in J is finally given by

T
A~ 2Ccos(m) exp(2Im¢{),

C=—i[k_qk(—o0)+k='pi(—c0)]exp(2iRe().
(26)

This expression for AJ has the same structure as the
one obtained by Dykhne [12] by we want to em-
phasize that here { includes a geometric contribution
besides the known dynamical one. This is so for both
the “amplitude” factor (exp(2Im{)) and the “pre-
exponential” factor (C).

When w has several complex zeroes {7} the pre-
scription consists in selecting the zero that leads to
the least value of

Te,i

’Im I w’'drt

>

Tr

which might be not the closest one to the real t-axis.
If various values 7., fulfill the above condition then
a summation extended to all of them has to be per-
formed. Of course, when no crossing occurs the
method does not apply.

In summary, we have developed a formalism that
enables one to define clearly the adiabatic approxi-
mation for the GHO providing at the same time a
simple derivation of Hannay’s angle. Methods based
on the averaging principle apply only in the param-
eter space region where XZ> Y? but are not valid if
XZ < Y2. On the contrary, our approach holds in both
regimes. Finally, we have analyzed the exponentially
small variations of the adiabatic invariant due to non-
adiabatic effects. An analytic continuation proce-
dure into the complex time plane generalizes some
previous results and exhibits the appearance of a new
factor, geometric in character. This constitutes the
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classical counterpart to the recently studied [13,14]
geometric factor contributing to the quantum tran-
sition probability in two-level systems.
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