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Geometricfactorsin the adiabaticevolutionof classicalsystems
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Theadiabaticevolutionoftheclassicaltime-dependentgeneralizedharmonicoscillatorin onedimensionis analyzedin detail.
In particular,wedefinetheadiabaticapproximation,obtainanew derivationofHannay’sanglerequiringnoaveragingprinciple
andpointouttheexistenceofa geometricfactoraccompanyingchangesin theadiabaticinvariant.

Thetheoryof adiabaticevolutionin classicalme- They induce changesin the abovementionedap-
chanicshasreceivedconsiderableattentionthrough proximately conservedquantity that are exponen-
theyears [1—7],mainly in connectionwith the sub- tially small [12]. Wefind that, in general,this ex-
jectofadiabaticinvariants.Formalresultshavemet ponentialfactorcontains,besidesthe known terms,
in lineartime-dependentHamiltoniansystemsanes- also a geometriccontribution.This result consti-
peciallywell suitedframe to assesstheir domainof tutes,in turn, theclassicalanalogueto thegeometric
validity [1,2]. Morerecently,increasingattentionto amplitudefactor found [13,14] in adiabaticquan-
thesesystemshasbeenmotivatedby the discovery tum transitionsinherentto two-level systemswhich
of the geometriccontributionto the adiabaticevo- hasrecentlybeenexperimentallymeasured[15].
lution of anglevariables[8,9]. Introducethevector~= (q,p),whosecomponents

In this Letterwe studythe so-calledgeneralized arethe generalizedcoordinateandmomentum.The
harmonicoscillator (GHO) evolving adiabatically trajectoriesin phasespacecanbegeneratedby means
in time. In the first part we definethe adiabaticap- of a symplecticmapA~actingon initial values,
proximationanddeterminethequantitythat is con-
servedalong the evolution in this approximation. ~ =Je’(r, to, ~(t

0)) . (1)
Next for cyclic systems a novel derivation of Here we have introducedthe new variable r= t,

Hannay’sangleis obtained.Unlike the original con- where 1/c fixes the time scale.The aboveequation
struction[8] ourproceduredoesnotrequireanyav- is the startingpoint in formulationsof classicalme-
eragingprinciple [4]. chanicsbasedon Lie transformations[16]. Themap

Sincethe methodfollows closelythe operatorfor- .A’ canbeexpressedasa matrixMwheneveronedeals
mulationof thequantumadiabatictheorem[10] the with linearHamiltoniansystems.The GHO, whose
analogybetweenHannay’sangleandBerry’sphase Hamiltonianreads
[11] is enhanced.Moreover,the formalism avoids

H(q,p, t)= ~[X(r)q
2+2Y(r)qp+Z(r)p2] (2)

explicit introduction of action—anglevanables,a
questionalwaysdelicatewhendealingwith time-de- is a particularone-dimensionalrealization of this
pendentHamiltonians[4]. The price tobe paidfor class.Furthermore,weshall supposeagentledepen-
this gain in the interpretationis that the formalism denceof X, Y, Z on the scaledtime t.

doesnot generalizeeasilyto non-linearsystems. FortheHamiltonianineq.(2) thetimeevolution
In thesecondpart westudynon-adiabaticeffects. of M is governedby the differential equation

M= (l/e)SM, M(’r
0,r0)=I, (3)
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where the dot standsfor derivativewith respectto andsatisfies
the scaledtime x,

MR=SRMR, MR(rO, r0)=I, (8)
S=~(Z—X)a1+~i(Z+X)a2+Ya3, with

in termsof Paulimatricesand I is the 2 x 2 identity
SR_=(l/e)Sd—R

1R
matrix.

The (instantaneous)eigenvectorsof the matrix = E iU)/ E + ~V (ZX— XZ) I 173

S(r) happento belinearly independentfor anyvalue +~~ +i(a—/3)cr
2] , (9)

of iprovided Y
2(t)

5~X(r)Z(r) and hence S(r) can
be rendered diagonal by the time-dependent matrix in terms of the functions
R(r): a=y[(ith+Y)Z—(iw+Y)Z],

S(t)=R(r)Sd(r)R~(r)‘ (4) /3=y[(iw+Y)X— (iw+Y)X]

where Sd(r) standsfor thediagonalmatrix (A±,,U) ~= [2iw(iw+ Y)J~, Sd=iw173.
with A + = —). - = Am ..J Y

2 — XZ, andR canbe writ-
ten as Thereis a crucial differencebetweenthe two terms

in SR. Whereasthe first term doesdependexplicitly
R(r) = 1 on the time scaleof the systemthe secondone de-

2,,,/22( Y+A) pendson ~only throughthescaledtime r andso is
X [(Z—X)a

1 +i(Z+X)a2 +2(Y+A)a3] geometricin character.As a matterof fact, the geo-
metriccharacterhereis not relatedto the parameter

= R— ‘(t) . (5) space,butto the phasespaceitself. In this senseour

At this point it is useful to examinethe character- interpretationresemblesthatof Aharonov—Anandan
isticsof the motionwhenX, Y, Z areheldfixed. For [17] for quantumsystems.
theparametersubspacewhereXZ> Y

2 theorbitsare If 5R werediagonalthe solution to eq. (8) would
closed(elliptic) contoursrepresentingthe foliation be MR= exp(aa

3) where, after integrating exact
differentials,of the phase space in TLtori, A=iw and w=

\/XZ_ Y
2 is the constantrotation frequency.0th- a(r,~ = ~log~ r 1a~ YZ—YZ)

dt
erwise, in the parameterregionwhereXZ< Y2, the Ic(r) \ c 2wZ
orbitsare hyperbolas.ThecaseXZ_—Y2 corresponds (10)
to a bifurcationin parameterspaceandtheorbitsare
straight lines. We point out that schemesbasedon with the following definition:
the averagingprinciple needthe introductionof ac-

k(t)= [(w—iY)X/(w+iY)Z]”2.tion—anglevariableswhichis only possiblein thefor-
mer case.At first, we restrictourselvesto this situ- This suggestsintroducingM’,~by
ation too. However, since our method formally

MR=exp(a17
3)M’R. (11)appliesin bothparameterregionswe shall indicate

thecorrespondingresultsfor thecaseXZ< Y
2 when- Thisnew matrix M~accountsfor thedifferencebe-

ever possible. tweentheexactanddiagonalapproximatesolutions.
Next weconsiderthefollowing factorizationforM: Its matrix elementsm~(i, j= 1, 2) obey

M(r, to)=R(r)MR(t, t
0)R~(r0) . (6) th~_ae_

2am
21=0, rn21 _$e+

2am
11=0, (12)

This is equivalentto making the formal transfor- th22 _J3e+
2~2mi

20, rn12 _ae
212m

22=0. (13)
mation~R (r) R— ‘(r) ~(r), taking usfrom ~(t) to We shall comebackto theseequationslateron.
new variables~R(t) = (qR(t), PR(t)) in terms of Under adiabatic conditions, namely when the
which the new mappingreads

propertime of the systemis much smallerthanthe
~R(t)MR(t, ~o)~R(~o) , (7) timescale (21tc<<w),M’R canbereplacedineq. (11)
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by the identity matrix leadingto the adiabaticap- that (at theAA level) theresultof makingthetrans-
proximation(AA). During evolutioneachcompo- formation Q is just addingan exactdifferential to
nentof ~R changesonly by an exponentialfactor in- the total angle which providesa vanishingcontri-
volving a(r,~ which hasbotha realandimaginary butionwhenthe systemis cyclic.
part. Thus in this approximationthe quantityPR~R This completesthe answerto the first questionis-
is exactly conserved. We note in passing that suedin theintroduction.Theremainderof this Let-
J~— ipRqR = H/w is theusualexpressionfor theadi- ter is devotedto study asymptoticvariationsof J
abaticinvariant [7], providedtheconstraintXZ> Y2 causedby non-adiabaticeffects, i.e. becauseM’R �
is fulfilled. I in thegeneralcase.

For a time-independentsystemwe haveM~= I, Assume that X, Y, Z tendsufficiently fast to def-
andthe quantityw(t—to) is thereby the polarangle mite limits as t—I. ±ccandverifyX(t)Z(t)> Y2(t)
of the trajectoryin thepR—qR plane. This ideamay for all real r. Thus, the limiting valuesof the adi-
beextendedto the moregeneralcaseof a cyclic sys- abaticinvariant J( ±cc) do exist andwe canprop-
tem in parameterspace,i.e. a GHO Hamiltonian erly definethe quantityL~iJ~J( + co)—J( — co).
which at some instant ~i verifies X( t~)= X( To), An asymptoticdeterminationof i~Jwas first ob-
Y(r

1 )= Y(r0), Z(r1) =Z(t0). In this casea(r1, r0) tamedby Dykhne[12] usingtheHamiltonianineq.
is purely imaginary and the first term which survives, (2) with Z= 1, Y= 0, andX dependinganalytically

on t. Hegot&1=O(exp(—c/c)),c=const>0,a be-
— Jw( t) dt, haviourthathasalsobeenfoundin furtheranalyses

[6,18], evenfor non-linear one-dimensionalsys-
tems [19,20]. What we shall seeis that the more

is calledthe dynamicalanglewhereasthe remainder generalHamiltonianin eq. (2) leadsto a geometric

additionalfactor in &1.
0H~J [(Y~—YZ)/2coZ] dt (14) Theexactexpressionfor iS.Jisgivenby

To &1=—i{m
11(+co)m21(+cc)q3~(—cc)

is the Hannayangleandis consideredof geometric +m22 ( + cc)m12 ( + cc)p~( — cc)
character. If XZ< Y

2, anglesbecomeimaginaryand
their corresponding formulae are readily obtainedby + [m

11(+ cc)m22( + cc)

restoringw= —i..~.,AER, in all the aboveexpressions. +m12(+cc)m21(+cc)—1]
The generalizationto GHO with N degreesof free-
domis straightforwardwheneverthecorresponding XqR(_cc)PR(—oO)}. (15)
S(r) matrix canbe diagonalized. Writing

It still remainsapoint to beclarified. As a matter
of fact, the operatorR is not uniquely determined M’ = (l+o11 m12
becauseany non-singulardiagonal transformation \ m~1 1 +ö22
Q( r) leadsto a new matrix R’ RQ that also dia-
gonalizes S. However, neither the dynamical phase with ô~,, m~~ 1, we get to first order in non-adi-
not the Hannay angle are changed by this transfor- abattc corrections
mation. The former cannot change because of the &i~ —1 ~ (+ cc)qj~( — cc)
uniqueness of the instantaneous eigenvalues.
Moreover +m12(+cc)p3~(_cc)] , (16)

(R’’R’)d =(Q~R’RQ)d +Q—’Q, andwe haveto look for the asymptotic form ofm12
andm21.

whencethe difference, Let usassumethatX, Y, Z can be analytically con-

‘R’’R” ~R’R’ ~ tinued into thecomplext-planeandthata complexId ~‘. Id — ~ ~‘ valuer~existsat which co(t~)=0,namely a complex

is just an exactdifferential.Thus,we canconclude point where the two eigenfrequenciesbecomede-
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generate. The crossing or transition point ; is a sin-
gularity of S. For functions X Y Z of a reasonably I . C , , ,\

f—’expi —1 a) (r ) dt j, (21)commontype, we assume that in a neighborhoodof \ J /
for m12—+0, m22—ol. Taking into account eq. (18)

co
2=p(r—r~)’[l +Q(t)] , (17) and dropping terms containing the difference

ó)/co—d)’/w’ (which is of order c) the function f
with real p�O, v>0, Q(r) analytic at ; and obeys the equation
Q(r~)=0. The particular choice Y=0, Z=l, v=l
leads to Dykhne’s singularity model. f+w’2f0. (22)

As already stated before, each eigenvector ac- The asymptotic form (t—~+ cc) of f(t) is
quires dunng its evolution only an exponential fac-
tor and so it corresponds always to the same eigen- / ~
value.However,ifinsteadofintegratingeq.(3) along ~f~AexP(\—i j w’(t’) dr’
the real r-axis we modify the circuit to circle the
crossing then one eigenvector becomes the other /
yielding a non-vanishing contribution to iV. As the +Bexp~i J a’(r’) dr’)~ (23)
difference with respect to AA evolution arises only
from the circling of the singularitywehaveto ana- with A, B constant.Therefore,oncethe coefficients
lyzeeqs.(12), (13) ina neighborhoodof;. Theidea A, B havebeendetermined,comparisonbetweeneqs.
to be developed consists in solvingthereexactlyeqs. (20) and (23) immediatelyyields m

12( + cc).

(12), (13) and then joining this local solutiontothat The mathematicalproblem of finding the first
provided by the AA [21,22]. Owing to the similar- asymptotic approximationto the ratioB/A from eq.
ities between eqs. (12) and (13) we give details only (22) has already been tackled in the literature in
for eq. (13). In the neighborhood of the transition connection with the above-barrier reflection of a
point ;: quasi-classical particle [12,13,18,21—24].The meth-

/ ods are essentially based on the manner in which an-
rn22 + wIt~)exp (~2i Jw’(r’) dr’) m12=0, alyticity of w’ breaks down at thepoint;. If w

2 has
2iw a zero of order v then, owing to the presence of the

geometric term, w’2 has a singularity:

rn
12 — 2iwk(r0) exp (_2i J a)’(r’) dt’) m22=0. w’

2p’(TT)-~[ 1 +Q’(t)], (24)

(18) with definitions for p’, Q’ similar to those in the se-
quelof eq. (17). As a consequence,analysescarried

Wehave denoted out for a particular w2 (whose zero has multiplicity

v) cannotbe trivially extendedto w’2 (which has a
= + 2 Z (19) pole of multiplicity ii). This problem has been in-

C dependentlyanalyzedby Pokrovskii and Khalatni-

Hereafter we set T~—~—cc, k_mk(—cc), w± kov [21], andMeyer [23] yielding equivalentcon-
w(±cc). Furtherwe introduce the function clusions. Here we merely apply their asymptotic

results which allow us to determine the ratio B/A.

f(r)=
7L_~[m22exp(_i$w’dr’) Eventuallyweget

T m12(+cc)=2k: ~

+ik_mi2exp(i$w’dt~)], (20) V

~=$w’(t)dx, (25)wherethelower integrationlimit is irrelevantto our
purposesandits behaviourat t-+ — cc is
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wheret~is any pointon thereal t-axis andIm ~< 0. classical counterpart to the recentlystudied[13,141
Thebarmeanscomplexconjugation.Theplus, mi- geometricfactorcontributingto the quantumtran-
nussignscorrespondto the casesco’=w/c (i.e., no sition probability in two-level systems.
geometric contribution), co’� co/c respectively.

By the sametoken eq. (12) providesm21(+ cc) This work has been partially supported by DGI-
and a similar discussionholds. The result for the CYT (Spain) undergrantnumbersPB88-0064and
change in J is finally given by AEN9O-0049. F. CasasandJ.A. Oteoacknowledge

respectively the Conselleria de Cultura, Educació i

i\J~2Ccos(y~_)exp(2 Im ~) Ciènciade la GeneralitatValenciana,andthe Mm-
isterto de Educación y Ciencia (Spain) for a

C=—i[k_qj~(—cc)+k’p~(—cc)] exp(2i Re ~). fellowship.
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