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We formulate a unitary perturbation theory for quantum mechanics inspired by the Lie-
Deprit formulation of canonical transformations. The original Hamiltonian is converted
into a solvable one by a transformation obtained through a Magnus expansion. This
ensures unitarity at every order in a small parameter. A comparison with the standard
perturbation theory is provided. We work out the scheme up to order ten with some
simple examples.
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1. Introduction

Historically, classical mechanics played a crucial role in the early formulation of
quantum mechanics. Afterwards, the new ideas led to a quantum formalism that
loosened contact with the classical language. But nevertheless, every now and
then, mutual relationships between them have been profitably considered.

Fixing our attention on the treatment of the effect of a perturbation on a
solvable physical system, matrix mechanics adapted, with daring modifications
and reinterpretations, the classical lore of canonical transformations, generating
functions, action and angle variables and the like. This is apparent, e.g. in the
famous paper by Born et al. (1926). Nowadays, both time-independent and time-
dependent quantum perturbation theories are presented in the Hilbert space
formalism and make no mention of their classical counterparts.

Suppose one is interested in a system with Hamiltonian H (t, e) = H0 +
H ′(t, e), where H0 is time-independent and H ′(t, e) is a time-dependent
perturbation, depending on a small parameter e that controls the intensity
of the perturbation in such a way that H ′(t, e = 0) = 0. The aim is then to
determine the quantum time-evolution operator U (t, t0), which takes the state of
the system from time t0 to time t. One of its most salient features is its unitary
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character. The evolution operator satisfies the Schrödinger equation which, in
the conventional approach, is solved by series expansion in e. After truncation
at a given order, it allows approximation of the different observable magnitudes
of physical interest. The main drawback of the method is that any finite order
approximation of U (t, t0) ceases to be unitary.

By contrast, the procedure followed in the founding years of quantum
mechanics and directly inherited from the classical perturbation theory was more
geometric in character. The power series expansions were also the basic tool,
but the goal was to construct a geometric (unitary) transformation that renders
solvable the Hamiltonian H (t, e) (e.g. Birtwistle 1928). The reader acquitted
with the Hamilton–Jacobi equation will recognize the idea of finding a canonical
transformation (namely, a change of phase space coordinates) that transforms a
Hamiltonian H into a Hamiltonian K easily solvable in the new coordinates. The
problem is then translated to the search of the corresponding generating function.

The original canonical transformations theory used in classical mechanics relies
on the effective use of generating functions expressed in terms of mixed, old and
new, variables (e.g. Arnold et al. 2006). It means that, once the equations of
motion have been integrated, one has to solve implicit functional equations so as
to express the results in terms of either the old or the new variables. In general,
this is difficult to do.

This classical canonical theory, however, fitted in the late 1960s into a Lie-
algebraic setting, mainly in connection with problems of celestial mechanics. In
that respect, the paper (Deprit 1969) Canonical transformations depending on a
small parameter played a seminal role by introducing what it is known nowadays
as the Lie-Deprit perturbation method. Essentially, a canonical transformation is
generated by a new ‘Hamiltonian’ W in such a way that the shift by ‘time’ e along
the trajectories of W produces the required transformation. In this way, no mixed
variables appear in the formalism. The algorithm can be readily implemented in
a computer, thus allowing carrying out of perturbative analysis up to high order.

Since then, techniques and procedures of classical perturbation theory have
been used in a quantum mechanical context from time to time (e.g. Kummer 1971;
Eckhardt 1986; Scherer 1994; Daems et al. 2004). In fact, this is quite natural,
given the existing parallelism between perturbation theory in classical and
quantum systems when both are formulated in terms of geometric transformations
(canonical maps and unitary transformations, respectively). The common formal
setting is indeed provided by the language of Lie algebras. From this perspective,
the perturbation problem defined by H0 + H ′(t, e) can be solved by changing
through a (canonical or unitary) transformation to a Hamiltonian K whose
dynamics is easier to solve, at least up to a certain order in the e parameter.
When the perturbation expansion converges, the original problem is completely
solved. Even when the convergence problem is not settled, the procedure very
often provides very accurate results.

The purpose of the present paper consists in adapting and developing
an implementation of the Lie-Deprit method that gives results amenable to
analyse time-dependent problems in quantum mechanics. For this reason, we
have adapted the title of the 1969 Deprit paper. The procedure leads to
operator linear differential equations, which we solve by use of the Magnus
expansion. This will ensure unitarity at any order of truncation in e. This is
an important feature of the algorithm proposed here. Thus, it is guaranteed
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that the constructed approximation shares several important qualitative features
with the exact solution. In addition, in this formalism, several approximation
schemes are possible, better suited to the mathematical nature of the problem
at hand. We will explain how to take advantage of this. The connection with
the standard time-dependent perturbation theory will also be provided. Here,
we will proceed at a purely formal level, keeping the technical requisites to
a minimum.

The plan of the paper is the following: in §2, we briefly summarize the standard
time-dependent perturbation theory in quantum mechanics in the interaction
picture defined by H0. In §3, we develop the new unitary formalism, paying special
attention to the construction of the transformation and the derivation of the
basic equation. The procedure is highly flexible in the sense that several possible
choices of the new Hamiltonian K are possible. Also the time-independent case
fits naturally into the algorithm. These issues are analysed in §4, whereas §5
is devoted to a pair of examples to illustrate the main features of the scheme.
Finally, §6 contains an additional discussion and further comparisons with the
so-called quantum averaging approach.

2. Time-dependent perturbation theory in quantum mechanics

Let us consider the dynamics governed by the Hamiltonian

H (t, e) = H0 + H ′(t, e) ≡ H0 +
∞∑

n=1

enHn(t), (2.1)

where we have assumed that H ′(t, e) is analytic in e. In most situations, the power
series expansion of H ′(t, e) collapses to the first term: H ′(t, e) = eH1(t).

The corresponding time-evolution operator U (t, t0) is unitary, i.e. U (t, t0)
U †(t, t0) = U †(t, t0)U (t, t0) = I , where the dagger means adjoint. This property
guarantees, in physical terms, probability conservation. Although for simplicity
we have not shown it explicitly, U (t, t0) depends also on e. In turn, it obeys the
Schrödinger equation

ih̄
v

vt
U (t, t0) = H (t)U (t, t0), U (t0, t0) = I . (2.2)

When the Hamiltonian is independent of time, i.e. H (t) = H0, the solution of
(2.2) reads U (t, t0) = exp(−i(t − t0)H0/h̄). Otherwise, the solution is by no means
so simple, unless

∫
H (t)dt and H (t) do commute.

For the Hamiltonian (2.1), the problem can be approximately solved by the
conventional time-dependent perturbation theory, yielding the solution of (2.2)
in power series of e. In this setting, it is very important to isolate the piece
of the problem to be treated approximately and allow the solvable part of the
Hamiltonian to be exactly integrated. A way to deal with this question consists
in transforming the problem into the interaction picture, i.e. we factorize

U (t, t0) = exp
(−i(t − t0)H0

h̄

)
UI (t, t0), (2.3)
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where the unknown operator UI obeys the Schrödinger equation

ih̄
v

vt
UI (t, t0) = HI (t, e)UI (t, t0), UI (t0, t0) = I , (2.4)

with the new Hamiltonian given by

HI (t, e) = exp
(−i(t − t0)H0

h̄

)
H ′(t, e) exp

(
i(t − t0)H0

h̄

)
≡

∞∑
n=1

enH I
n (t). (2.5)

In this way, the interaction picture defined in (2.3) provides a unitary
transformation that allows the mathematical integration of the solvable piece H0
in H (t, e) and focuses the approximations just on H ′(t, e). Explicitly, one deals
with the expansion

UI (t, t0) =
∞∑

n=0

enUn(t, t0), (2.6)

where Un(t, t0) stands for the contribution of order n.
Substitution of (2.6) in (2.4) and then equating terms of the same power en

yields the successive terms Un . In particular, the first two read

U0(t, t0) = I , U1(t, t0) =
∫ t

t0
dsH I

1 (s). (2.7)

Unfortunately, neither the approximant UI � I + U1 nor any of higher finite
order are unitary. This, of course, has undesirable consequences in practice.
For instance, the computed transition probability between different quantum
states may exceed unity. Only when the infinite series is summed up, the unitary
character is restored.

3. Unitary time-dependent perturbation theory

(a) The formalism

We will start by rephrasing, in modern quantum mechanics language, the main
idea of perturbation theory such as it was first formulated in matrix mechanics.
It will help us to introduce the central issue of the present article.

Suppose we have a hard time-independent quantum problem defined by
the Hamiltonian H (e) = H0 + eH1 + e2H2 + · · · , and assume the mathematical
problem defined by H0 has been solved. This is equivalent to finding a basis
of the Hilbert space such that H0 is diagonal. Then the idea is to look for
a unitary transformation T (e) (or ‘canonical transformation’ in the language
of matrix mechanics) such that the new Hamiltonian K = T †HT is diagonal.
The transformation T can be obtained recursively as a power series in the
perturbation parameter e. Notice that the starting point of the method is rather
geometric in nature, in clear contrast with time-dependent perturbation theory
that is algebraic from the very beginning. Of course, an appropriate choice of
K is essential.
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In the following, we consider the more general, time-dependent problem defined
by (2.1). Assume that the dynamics corresponding to H0 has been solved, i.e.
we have determined

UH0(t, t0) = exp
(−i(t − t0)H0

h̄

)
.

Let us now define

UK (t, t0) = T †(t, e)U (t, t0)T (t0, e), (3.1)

where T (t, e) is a unitary transformation we want to construct in order to solve
our problem.

The Schrödinger equation for UK (t, t0) reads

ih̄
v

vt
UK (t, t0) = K (t, e)UK (t, t0), UK (t0, t0) = I , (3.2)

where the new Hamiltonian is

K (t, e) = T †(t, e)H (t, e)T (t, e) + ih̄
vT †(t, e)

vt
T (t, e). (3.3)

Our goal is to determine T (t, e) in such a way that (3.2) is easier to solve than
the original equation (2.2). Notice that the factorization (3.1) may be considered
as a generalization of (2.3). Very often we will take T (t0, e) = I in (3.1) and t0 = 0.

In perturbation theory, the perturbed and the non-perturbed Hamiltonians are
always very close to each other in some mathematical sense. It is right that what
makes meaningful perturbative computations. It is then natural to determine
T (t, e) as a unitary near-identity transformation

T †(t, e) = T−1(t, e), T (t, e) = I + O(e).

Two different ways of guaranteeing these features are the following:

— Introduce a skew-Hermitian operator S(t, e) = O(e) such that T (t, e) =
exp(S(t, e)).

— Alternatively, introduce a skew-Hermitian operator L(t, e) such that T (t, e)
is the solution of the operator differential equation

v

ve
T (t, e) = −T (t, e)L(t, e), T (t, 0) = I . (3.4)

This second prescription is precisely the approach proposed by Deprit in
classical mechanics, and the one we follow here. Somehow, the perturbed
Hamiltonian may be regarded as the evolution, with respect to the parameter e, of
the non-perturbed Hamiltonian (which may be thought of as an initial condition).
Deprit’s idea consists in materializing such an abstract e-evolution in a manner
similar to the usual t-evolution, since this way the unitary character of T is
ensured. To this end, an evolution law similar to the one in (2.2) is introduced.
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In (3.4), L(t, e) is the (unknown) generator of the transformation T , namely, of
the e-evolution. Equivalently, one has

v

ve
T †(t, e) = L(t, e)T †(t, e), T †(t, 0) = I , (3.5)

The assessment of the situation is the following. Initially, we are given a
time-dependent Hamiltonian H (t, e) = H0 + H ′(t, e), and the problem is to solve
the Schrödinger equation. However, we are only able to solve the piece H0.
Then we introduce the idea of an e-evolution in such a way that a (unknown)
continuous transformation T (t, e) takes H (t, e) to a new Hamiltonian K (t, e) to
be determined in such a way that the corresponding Schrödinger equation (3.2)
can be solved. The inverse transformation T †(t, e) may be used then to transform
the solution of K (t, e) into the one for H (t, e). However, by introducing the
law of the e-evolution, we have added a further unknown: the generator L(t, e).
Thus, the situation may now appear worse than at the beginning: neither T nor
L are known!

This apparently adverse scheme will provide, however, an excellent starting
point to deal with power series expansions and preserve the unitary character
even if the series are truncated.

We first notice that L and T † are related by the linear differential
equation (3.5). Thus, once L has been determined, we can obtain T and T †

by formally applying the Magnus expansion (Magnus 1954) to (3.5). As is well
known, his proposal is to solve a generic operator linear equation dY (t)/dt =
A(t)Y (t) with Y (0) = I in the form

Y (t) = exp U(t), U(0) = O.

The exponent U(t) is given by an infinite series U(t) = ∑∞
m=1 Um(t) of terms that

are linear combinations of integrals and nested commutators involving m-fold
products of the operator A at different times (Blanes et al. 2009).

Although explicit formulae for Um exist, it is sometimes more convenient to
generate them by a recursive procedure. The one proposed in Klarsfeld & Oteo
(1989) is particularly well suited from a computational point of view (Blanes
et al. 2009):

S (1)
m = [Um−1, A], S (j)

m =
m−j∑
n=1

[Un , S (j−1)
m−n ], 2 ≤ j ≤ m − 1

and

U1 =
∫ t

0
A(t1)dt1, Um =

m−1∑
j=1

Bj

j !
∫ t

0
S (j)

m (t1)dt1, m ≥ 2, (3.6)

where Bj stand for Bernoulli numbers and [·, ·] represents the commutator,
[A, B] ≡ AB − BA. Notice that this approach can be directly applied to obtain
approximate formal solutions of equation (3.5), so that we can write

T †(t, e) = T−1(t, e) = exp U(t, e), (3.7)

where U is a skew-Hermitian operator. Thus, the two above enumerated
alternatives to render T unitary are, in fact, equivalent.
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Next, we derive equation (3.3) with respect to e,

vK
ve

= [L, K ] + T † vH
ve

T + ih̄
vL
vt

. (3.8)

Since this expression involves both the operators T and L, it is convenient to
insert (3.7) here. In fact, it is straightforward to show that

T † vH
ve

T = eU vH
ve

e−U = eadU
vH
ve

=
∞∑

n=0

1
n!adn

U

vH
ve

. (3.9)

Here we have defined the operator adUB ≡ [U, B], with adn
UB ≡ [U, adn−1

U B].
In consequence, we have

vK
ve

= [L, K ] + eadU
vH
ve

+ ih̄
vL
vt

, (3.10)

an equation formulated only in terms of L, H and K that is easier to handle
than (3.8).

In the present formalism, then, three different problems have to be studied:

1. Choose the new Hamiltonian K such that equation (3.2) is easy to solve.
2. Compute the skew-Hermitian generator L of the required transformation

to the new picture.
3. Construct the unitary transformation T from the generator L, or

equivalently, the operator U in T = exp(−U).

The first two problems enumerated earlier can be solved perturbatively with
equation (3.10), whereas the third one can be tackled independently. We treat
these problems in reverse order.

(b) Determining T

We next proceed to compute U, once L has been fixed. To do that, we introduce,
in addition to the expression (2.1) for the Hamiltonian H , the following series
expansions:

K (t, e) =
∞∑

n=0

enKn(t), (3.11)

and

L(t, e) =
∞∑

n=0

enLn+1(t). (3.12)

It turns out that U(t, e) in (3.7) can also be determined as a power series in e:

U(t, e) =
∞∑

n=1

envn(t), (3.13)

with vn(t) expressed in terms of Lj(t). This can be done algorithmically
with the Magnus expansion up to any given order. In fact, the procedure
already used to construct numerical integrators based on Magnus expansion
Proc. R. Soc. A
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(Blanes et al. 2009) is of use here also. Specifically, if the series (3.12) is inserted
into the recurrence (3.6), we get up to order e5

U1 = eL1 + 1
2e2L2 + 1

3e3L3 + 1
4e4L4 + 1

5e5L5,

U2 = − 1
12e3[L1, L2] − 1

12e4[L1, L3] − e5 ( 3
40 [L1, L4] + 1

60 [L2, L3]
)
,

U3 = e5 ( 1
360 [L1, [L1, L3]] − 1

240 [L2, [L1, L2]]
)

and U4 = e5 1
720 [L1, [L1, [L1, L2]]].

Reordering according with the power of e, we have the following expressions for
the first terms in the series (3.13):

v1 = L1,

v2 = 1
2L2,

v3 = 1
3L3 − 1

12 [L1, L2],
v4 = 1

4L4 − 1
12 [L1, L3]

and v5 = 1
5L5 − 3

40 [L1, L4] − 1
60 [L2, L3] + 1

360 [L1, [L1, L3]]
− 1

240 [L2, [L1, L2]] + 1
720 [L1, [L1, [L1, L2]]]. (3.14)

This procedure can be carried out for higher orders with a symbolic algebra
package. On the other hand, if the series (3.13) is inserted into (3.9), then

eadU
vH
ve

=
∞∑

n=0

enwn(t), (3.15)

and, again, this series can be determined algorithmically. The first terms read

w0 = H1,

w1 = 2H2 + [L1, H1],
w2 = 3H3 + 2[L1, H2] + 1

2 [L2, H1] + 1
2 [L1, [L1, H1]]

and w3 = 4H4 + 1
12([H1, [L1, L2]] + 2[L1, [L1, [L1, H1]]]

+ 12[L1, [L1, H2]] + 3[L1, [L2, H1]] + 36[L1, H3]
+ 3[L2, [L1, H1]] + 12[L2, H2] + 4[L3, H1]). (3.16)

It is worth stressing here that the series (3.13) and (3.15) have to be determined
only once. In fact, computing these series up to n = 10 takes only a few minutes
on a personal computer. Terms up to n = 10 and n = 9, respectively, can be
found at the website (http://www.gicas.uji.es/Research/Perturbation.html) as
Mathematica files.

(c) Determining L

When the series expansions for K , L and (3.15) are substituted into (3.10),
collecting terms of the same power in e yields a system of recurrence equations.
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Specifically, we arrive at K0 = H0 and

ih̄
vLn

vt
+ [Ln , H0] = nKn − F̃ n , n = 1, 2, . . . , (3.17)

with

F̃1 = w0, F̃n =
n−1∑
j=1

[Ln−j , Kj ] + wn−1, n > 1. (3.18)

The next step in the procedure is to propose a suitable Kn and solve (3.17) to
determine Ln and finally the transformation T , which is unitary at any order by
construction.

Equation (3.17) has the following formal solution:

Ln(t) = exp
(−itH0

h̄

)
Ln(0) exp

(
itH0

h̄

)
− i

h̄

∫ t

0
du exp

(−i(t − u)H0

h̄

)

× (nKn(u) − F̃n(u)) exp
(

i(t − u)H0

h̄

)
, (3.19)

where n > 0, and we have taken t0 = 0 for simplicity. Very often we will fix Ln(0) =
0, so that

Ln(t) = − i
h̄

∫ t

0
du e−i(t−u)H0/h̄(nKn(u) − F̃ n(u))ei(t−u)H0/h̄ . (3.20)

4. On the choice of K

The choice of a particular K is a degree of freedom of the method but it may
also constitute a nuisance. It might be the case that two particular H and K are
associated in a natural way. Here we will comment about a number of possible
choices of K in the general case.

(a) K = H0

Perhaps, this is the most immediate option. It means that systematically

Kn = 0 for n ≥ 1.

Equivalently, one tries to construct a unitary transformation in such a way
that in the new picture there is no perturbation at all. In that case, UK (t) =
exp(−iH0t/h̄) and

U (t) = T (t, e)UK (t) = e−U(t,e)e−(i/h̄)H0t . (4.1)

Notice that with this choice, the whole e dependency is contained in T .

(b) K diagonal

Suppose that H0 has a pure non-degenerate point spectrum. In that case, we
can choose Kn to be diagonal. In other words, we perturbatively construct a
Proc. R. Soc. A
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unitary transformation to a new picture where the Hamiltonian K is diagonal
and therefore equation (3.2) is easy to solve. Specifically,

UK (t) = exp

(
−i
h̄

∑
n≥0

en
∫ t

0
Kn(u)du

)

and finally
U (t) = e−U(t,e)UK (t).

(c) Time-independent case

The formalism developed earlier works also when H ′ is time-independent. In
that case, it makes sense to construct a time-independent unitary transformation
T (e) so that

K (e) = T †(e)H (e)T (e) = eU(e)H (e)e−U(e).

A natural choice is then to take the new Hamiltonian so that [H0, K ] = 0. This
is analogous to the standard procedure of constructing the Birkhoff–Gustavson
normal form, both in the classical and quantum setting (Ali 1985; Eckhardt 1986).
From (3.17), the equations to solve read then

[Ln , H0] = nKn − F̃ n , [Kn , H0] = 0. (4.2)

It has been shown in Jauslin et al. (2000) that if these equations are defined in
the space of bounded skew-Hermitian multiplication operators, then the formal
solution can be written in terms of averages as

Kn = 1
n

lim
t→∞

1
t

∫ t

0
du e−(i/h̄)H0uF̃ne(i/h̄)H0u ,

and

Ln = i
h̄

lim
t→∞

1
t

∫ t

0
dt

∫ t

0
ds(e−(i/h̄)H0sF̃ ne(i/h̄)H0s − nKn),

even if H0 has degenerate eigenvalues. As a matter of fact, these expressions
reproduce the standard results (Birtwistle 1928; Wu 1986). If |n, j〉 denotes an
eigenbasis of H0, where n labels the distinct eigenvalues E0

n and j distinguishes
different basis vectors of the degeneracy subspace, then

Kn = 1
n

∑
n,j ,j ′

|n, j〉〈n, j |F̃n |n, j ′〉〈n, j ′|,

whereas

Ln = i
h̄

∑
n,j ,j ′,n′ �=n

|n, j〉〈n, j |F̃n |n′, j ′〉〈n′, j ′|
E0

n − E0
n′

.

The operator evolution in this setting reads

U (t) = exp(−U(e)) exp
(−i

h̄
tK (e)

)
,

being unitary even upon truncation of the series. This coincides with the formal
solution proposed by Kummer (1971) to avoid secular terms in perturbative
Proc. R. Soc. A
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approximations. In this sense, the formalism developed here could be considered
as a generalization to time-dependent problems of Kummer’s approach.

5. Examples

In this section, we apply the previous formalism to two simple examples with the
aim of illustrating its main features.

Example 5.1. First, we consider the Hamiltonian

H (t) = 1
2 h̄u0s3 + e(s1 cos ut + s2 sin ut), (5.1)

where sj denote the Pauli matrices and e, u0, u �= u0 are real parameters. The
exact solution of the Schrödinger equation (2.2) with U (0) = I is then

U (t) = exp
(−i

2
uts3

)
exp

[
−it

(
1
2(u0 − u)s3 + e

h̄
s1

)]
.

Let 1 and 2 denote the spin up and down states, respectively. Then the exact
transition probability from state 1 to state 2 is given by

|U21(t)|2 =
(

2e

u′ sin
u′t
2

)2

with u′ =
(

(u0 − u)2 + 4e2

h̄2

)1/2

,

and may serve as a test to analyse the various results in the following.

Our perturbative scheme starts by writing H (t) = H0 + eH1(t), with

H0 = 1
2 h̄u0s3 and H1(t) = s1 cos ut + s2 sin ut.

We have applied the procedure up to n = 10 twice. First by choosing Kn = 0 for
n ≥ 1 and second by taking Kn as a diagonal matrix. In either case, we get

K (t, e) �
10∑

n=0

enKn(t),

and the corresponding evolution operator UK (t), whereas

L(t, e) �
10∑

n=0

enLn+1(t)

leads to U(t, e) up to this order. Finally,

U (t) = T (t, e)UK (t) � exp(−U(t, e)) exp
(−i

h̄

∫ t

0
K (u)du

)
.

In figure 1, we depict the difference between the exact and approximate
transition probabilities as a function of time computed with this procedure up to
n = 4 and n = 10. Solid lines correspond to choosing K = H0, whereas dot-dashed
curves are generated by taking Kn as a diagonal matrix. Notice that increasing the
number of terms in L(t, e) in both cases provides a more accurate approximation.
Proc. R. Soc. A
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Figure 1. Error in the transition probability for the Hamiltonian (5.1) computed with the unitary
perturbation theory developed in this paper, with n = 4 and n = 10. The parameter values are
b = 0.35, u = 3 and u0 = 1. Solid lines correspond to taking K = H0, whereas dotted–dashed curves
are obtained by choosing Kn diagonal, n ≥ 1. (Online version in colour.)

Example 5.2. The second example illustrates the time-independent case. We
take the two-level spin Hamiltonian

H = H0 + eH1 ≡ 1
2 h̄u0s3 + es1.

Then the corresponding equations (4.2) provide for the first orders the following
results:

order e0 : K0 = H0, order e1 : K1 = 0, L1 = i
u0

s2,

order e2 : K2 = 1
u0

s3, L2 = 0 and order e3 : K3 = 0, L3 = − 4i
u3

0

s2.

Carrying out the computation up to order e10, we get

K (e) =
(

u0

2
+ e2

u0
− e4

u3
0

+ 2e6

u5
0

− 5e8

u7
0

+ 14e10

u9
0

)
s3. (5.2)

On the other hand, the exact eigenvalues of the Hamiltonian H are in this case

± 1
2

√
u2

0 + 4e2 and its expansion in power series of e agrees with (5.2). Finally,
U(e) = iuas2, with

ua ≡ e

u0
− 4e3

3u3
0

+ 16e5

5u5
0

− 64e7

7u7
0

+ 256e9

9u9
0

+ O(e11),

and thus the approximate solution is given by U (t) � e−iuas2e−(i/h̄)K (e)t .
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6. Discussion

(a) Connection with the standard time-dependent perturbation theory

The formalism we have developed here contains as a limiting case the usual time-
dependent perturbation theory summarized in §2. This indeed corresponds to
choosing K = H0 as a new Hamiltonian and expanding the operator T (t, e) =
e−U(t,e) in power series of e. Obviously, the resulting scheme is no longer unitary
when the series is truncated.

Let us illustrate this point by computing explicitly the first order in e. Since
F̃1 = H1, it is clear from (3.20) that

L1(t) = i
h̄

∫ t

0
du e−i(t−u)H0/h̄H1(u)ei(t−u)H0/h̄ ,

whereas

U (t) = T (t, e)e−(i/h̄)H0t = (I − eL1(t))e−(i/h̄)H0t + O(e2).

But then

U (t) = e−(i/h̄)H0t − e
i
h̄

∫ t

0
due−i(t−u)H0/h̄H1(u)e−iuH0/h̄

= e−(i/h̄)H0t
(

I − e
i
h̄

∫ t

0
HI (u)du

)
,

with

HI (u) = eiuH0/h̄H1(u)e−iuH0/h̄ .

This, as we know, is precisely the result achieved by standard perturbation theory
in the interaction picture defined by H0.

The previous treatment can be generalized to any order in e. In fact, by
following this approach, we have explicitly reproduced up to order e6 the results
achieved by the usual time-dependent perturbation theory for example 5.1.

(b) Quantum averaging

In a series of papers published in the mid-1990s, Scherer used the averaging
method to construct quantum mechanical analogues of the classical perturbation
expansions by Poincaré and Kolmogorov, both in the autonomous case and
for time-dependent operators (Scherer 1994, 1997, 1998). The idea was further
elaborated by Daems et al. (2003a, 2004) and Sugny et al. (2004), and successfully
applied in the perturbative treatment of pulse-driven quantum problems. This
quantum averaging algorithm can also be reproduced with our formalism
as follows.

Scherer’s basic proposal also consists of transforming the original Hamiltonian
(2.1) with the help of a unitary transformation T (t, e) such that the problem of
finding the time evolution of the transformed Hamiltonian K (t, e) is easier than
Proc. R. Soc. A
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the original one. In particular, he chooses the terms Kn in the series defining K
so as to satisfy

ih̄
vKn

vt
+ [Kn , H0] = 0, n ≥ 1. (6.1)

Then, it can be shown that the time evolution generated by K (t, e) is given by
(t0 = 0)

UK (t) = UH0(t) exp
(

− i
h̄

t(K (0, e) − H0)
)

.

In other words, the time evolution is reduced to a time-independent problem if
one introduces an interaction picture defined by H0 for the new Hamiltonian K .
Finally,

U (t) = T (t, e)UH0(t) exp

(
−i
h̄

t
∞∑

n=1

enKn(0)

)
, (6.2)

whereas equation (6.1) can be solved by averaging, generalizing the
autonomous case:

Kn(t) = 1
n

lim
t→∞

1
t

∫ t

0
du e−(i/h̄)H0uF̃n(t − u)e(i/h̄)H0u . (6.3)

The unitary transformation T (t, e) is then computed order by order from
Ln(t). In fact, a recursive procedure is proposed for determining the terms Tn(t)
in the series

T (t, e) = I +
∞∑

n=1

enTn(t). (6.4)

If not all terms Ln can be computed, the corresponding truncated series (6.4)
provides approximations that are no longer unitary. It is argued, however, that
these violations of unitarity do not grow with time, since they do not contain
secular terms.

Notice that Scherer’s algorithm fits quite naturally in the present scheme.
Moreover, with the choice (6.3), we can determine Ln(t) by applying (3.20) and
then compute the transformation as T (t, e) = exp(−U(t, e)) with the series (3.13).
Now, contrarily to the original formulation, the resulting scheme is unitary upon
truncation.

We have applied this modified scheme again to the Hamiltonian (5.1) and
compared with the previous choices of Kn = 0 and Kn diagonal (n > 0). In figure 2,
we represent the corresponding errors in the transition probability obtained
with the three procedures when n = 10 terms are considered in the series. The
results illustrate the fairly different character of each approximation. It should
be stressed again that the approximation (6.2) with (6.3) considered here is a
unitary modification of that originally proposed by Scherer (1997, 1998), i.e. with
T (t, e) = exp(−U(t, e)) instead of (6.4).

(c) Open problems and further comments

There are several issues only touched upon in this work that deserve a much
more detailed analysis. First, we have been only concerned here with the formal
aspects of the transformations and expansions. It is clear, then, that a more
Proc. R. Soc. A
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Figure 2. Error in the transition probability for the Hamiltonian (5.1) computed by the new unitary
perturbation scheme proposed here, with Kn = 0 (n > 0) (solid line) and Kn diagonal (dotted-
dashed line). The dashed curve labelled QA corresponds to the unitary modification of the quantum
averaging procedure (6.2). In all cases, we have computed n = 10 terms in the series. The parameter
values are b = 0.4, u = 1.8 and u0 = 1. (Online version in colour.)

rigorous treatment is necessary, with special attention to the convergence of the
expansion. Second, the procedure developed here is fairly flexible since it enables
different choices of the new Hamiltonian. We have seen on a simple example that
different options lead indeed to different approximations; so the natural question
is: for any particular problem, which is the optimal choice? In other words, which
particular K allows one to get the best approximation once the expansion is
truncated at a given order? In this sense, it is worth mentioning that there are
several free parameters in the formalism that eventually may be used to tune the
algorithm and improve the accuracy (e.g. Daems et al. 2004).

In dealing with quantum time-dependent problems, one also finds in the
literature the methods that are iterative in character. So, for example, when the
Hamiltonian is slowly varying with time, sequences of unitary transformations
intended to diagonalize instantaneously the Hamiltonian lead to non-perturbative
approaches (Berry 1987, 1990). In turn, the so-called Fer expansion (Blanes
et al. 2009) is based on the iterative use of the transformation that defines
the interaction picture. A perturbation theory can also be used in an iterative
way: the Hamiltonian obtained in each step is used as unperturbed Hamiltonian
for the next step. This quantum mechanical version of the KAM scheme has
been shown to produce very accurate results in treatments, different to the one
proposed in this paper, both for time-independent and time-dependent quantum
perturbations (Scherer 1997; Daems et al. 2003a,b, 2004). The same idea could
be implemented with the procedure developed here. In this work, by following
closely the Lie-Deprit method in classical mechanics, we have developed a
unitary perturbative algorithm well adapted to quantum problems. The technique
provides a, in practice approximate, single unitary transformation designed to
simplify the dynamics as much as possible.
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