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A special purpose solver, based on the Magnus expansion, well suited for the integration of the linear
three neutrino oscillations equations in matter is proposed. The computations are speeded up to two orders
of magnitude with respect to a general numerical integrator, a fact that could smooth the way for massive
numerical integration concomitant with experimental data analyses. Detailed illustrations about numerical
procedure and computer time costs are provided.
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I. INTRODUCTION

Discovered with atmospheric [1] and solar neutrinos [2],
neutrino oscillations [3,4] have been corroborated by
experiments using neutrinos from nuclear reactors and
accelerators [5]. These observations have established
beyond doubt that neutrinos have masses and mix [6],
which has a fundamental impact not only on particle
physics, but also on astrophysics and cosmology. For three
flavors (νe, νμ, ντ) the oscillation frequencies in vacuum are
characterized by two independent differences between the
squared masses: δm2 ≡m2

2 −m2
1 (solar) and Δm2 ≡m2

3 −
ðm2

1 þm2
2Þ=2 (atmospheric), with Δm2 ≫ δm2. While

propagating through ordinary matter, the coherent forward
scattering of νe on electrons and nucleons differ from
those of νμ and ντ. As a consequence, the oscillation
probabilities are modified in a nontrivial manner via the
Mikheyev-Smirnov-Wolfenstein (MSW) mechanism [7].
Matter effects are specially significant in the Sun and other
astrophysical objects and events, in particular, in core-
collapse supernovae [8].
Out of the six oscillation parameters, δm2, jΔm2j, and the

mixing angles θ12, θ23, θ13, are known at present [9].
Thanks to the MSW effect involved in the flavor trans-
formations of solar neutrinos we know that δm2 > 0 (i.e,
m2 > m1). The sign of Δm2 depends on the ordering of the
mass spectrum, positive for normal hierarchy ðm3 > m1;2Þ
and negative for inverted hierarchy ðm3 < m1;2Þ. The data
at hand neither allow us to establish the ordering of the
neutrino masses nor the value of the phase δ associated with

a possible CP-violation in the leptonic sector. We also
ignore if neutrinos are their own antiparticles. An intense
research program is underway to address these and other
important questions regarding neutrino physics [10].
Cosmic neutrinos offer opportunities both to understand

the properties and behavior of neutrinos, as to probe the
sources that produce them. Until now, two astrophysical
objects have been observed with neutrinos, the Sun and the
supernova SN1987A. High-energy extraterrestrial neutri-
nos have been observed by IceCube but their origin is still
unclear [11]. The detection of solar neutrinos not only
confirmed that nuclear fusion reactions power the Sun, but
also solved the solar neutrino puzzle, providing the only
observed matter effect on the neutrino propagation to date
[12]. On the other hand, observing supernova (SN) neu-
trinos, both Galactic and relic, is in the agenda of the future
large underground detectors [13]. As they stream out of a
SN, in addition to the influence of the stellar matter
(through the MSW effect), neutrinos are subject to the
interaction with other neutrinos and antineutrinos [14]. The
latter effect turns flavor evolution into a highly nonlinear
problem [15] and gives rise to collective oscillations of the
neutrino gas (see [16] for recent reviews and extensive lists
of references). This is a complex and rich phenomenon and,
despite the significant progress made, a complete picture of
it is still lacking. Limitations of the previous studies have
been recently recognized and open issues pointed out [17].
More realistic numerical studies with a full three-flavor
mixing seem necessary to make further progress.
In a medium, the evolution equation of the neutrino

flavor amplitudes is not (in general) analytically solvable.
In the case of ordinary matter, the way from collected data
to sound determination of the values of the parameters
requires massive numerical integrations of a linear,
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homogeneous system of ordinary differential equations
(ODE) with coefficients depending on the distance neu-
trinos travel along a medium. However, there is a lack of
discussion in the literature about the numerical methods
used to this end. The efficiency of the procedure, i.e, the
interplay between numerical accuracy and computation
time, seems to be given for granted. Even though it is
understandable, since it does not constitute an essential part
of the research, is noteworthy the very few references
existing in this regard in the specialized literature. To our
knowledge, only two papers have addressed this issue, both
of them within the realm of neutrino astrophysics [18,19].
Some articles in the same field have dealt with questions
such as convergence and stability of the numerical sol-
utions found by using ODE solvers [20], but no attention
was paid to alternative algorithms.
The integration of the differential equations governing

the matter neutrino oscillations with classical general
purpose methods of numerical integration (e.g., Runge-
Kutta schemes) does not preserve the norm of the solution
at every integration step. The value of the norm becomes
rather a test of the quality of the integration itself. In
contrast, the so-called geometric numerical integrators are
not flawed by such an issue, since they are designed to
preserve this property exactly (up to round-off error). They
have been developed in recent years within the area of
numerical analysis of differential equations [21–23] with
the aim of preserving under discretization qualitative (very
often geometric) properties the differential equation has. It
is the main purpose of this work to argue in favor of their
use as a convenient alternative to carry out neutrino
oscillation numerical integrations. Many geometric inte-
grators exist but, to be concrete, we will focus on a
particular class based on the Magnus expansion (ME)
[24–26]. We explain shortly the way the algorithms are
built up and give details that facilitate their coding. Other
similar procedures could be applied with the same purpose
without further complications.
ME provides an exponential representation for the

solution of linear, homogeneous systems of differential
equations. Originally considered as a procedure to build
approximate analytical solutions of the time-evolution
operator, in the sense of perturbation theory, its application
as an efficient numerical integrator constitutes a relatively
recent development [21,25]. Years ago, two of us intro-
duced the use of the time-evolution operator to study matter
neutrino oscillations and applied its representation in terms
of the ME to incorporate nonadiabatic effects into the flavor
transitions [27,28]. A distinctive feature of the ME is that
the approximate solution provided by the procedure shares
with the exact solution relevant geometric properties. More
specifically, for the case under consideration, the relevant
property corresponds to the unitary character of the time-
evolution operator and, consequently, the norm of the
solution vector. In a numerical calculation, this is verified

at every single integration step and, therefore, probability is
conserved by the final solution obtained through the
composition of the successive steps. As already mentioned,
this characteristic is not shared by classical numerical
integrators like, for instance, those of the Runge-Kutta
class. Another, more practical, advantage of a ME based
method is the use of larger values of the integration step
which conveys shorter CPU time to the same solution
accuracy.
The paper is organized as follows. In Sec. II we write

down the neutrino flavor evolution equation to be
integrated. The basics of the ME are given in Sec. III,
and their implementation in the problem at hand is
carried out in Sec. IV. Section V contains the outputs
of the integration for three neutrino oscillations in the
Sun and a supernova, modeled by simple density profiles.
A comparison in terms of the computing efficiency is
also provided for an algorithm based on ME and a
standard integration routine. The discussion of the results
is in Sec. VI.

II. THE FLAVOR EVOLUTION EQUATION

Except for some anomalous results from short baseline
measurements which require further clarification [29],
existing data can be interpreted with the simplest extension
of the standard model to incorporate nonzero masses of
mixed active neutrinos. Namely, within a framework where
the three known flavor states jναiðα ¼ e; μ; τÞ are linear
combinations of the states jνii with masses miði ¼ 1; 2; 3Þ:

jναi ¼
X
i

U�
αijνii: ð1Þ

The coefficients Uαi are elements of the unitary mixing
matrix U that appears in the charged current, the so called
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. For
Dirac neutrinos this matrix is customarily expressed as

U ¼ O23ΓO13Γ†O12; ð2Þ
where the orthogonal matrices Oij represent rotations by
angles θij ∈ ½0; π=2� in the respective planes, while
Γ ¼ diagð1; 1; eiδÞ, with δ ∈ ½0; 2π�. If neutrinos are
Majorana particles U has to be multiplied by the right
by another diagonal matrix ΓM ¼ diagð1; eiδ1 ; eiδ2Þ. The
two additional physical phases do not play a role in
neutrino oscillations and are therefore omitted in the
analysis of the phenomenon [30].
Let us consider a neutrino να produced within a medium

at time t0. The state of the system jψðtÞi at time t ≥ t0 can
be expressed as jψðtÞi ¼ P

βψβðtÞjνβi, with ψβðt0Þ ¼ δαβ.
The probability to have a state of flavor β at a point
r ¼ tðℏ ¼ c ¼ 1Þ is

PαβðrÞ ¼ jψβðrÞj2: ð3Þ
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Once the neutrinos leave the medium the amplitudes
evolve according to the equation that governs vacuum
oscillations, whose solution is simpler when written in the
basis of the mass eigenstates. According to Eq. (1),
denoting by Aj ¼ ϕjðr⋆Þ the probability amplitude of
having a νj at the edge of the medium, for r ≥ r⋆ we
can write

ψβðrÞ ¼
X3
j¼1

UβjAj expð−iEjLÞ; ð4Þ

where Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

j

q
and L ¼ r − r⋆ is the distance

traveled by the neutrinos in vacuum. Substituting (4) into
Eq. (3) we obtain

Pαβ ¼
X
j

jUβjj2jAjj2

þ 2
X
i>j

Re½UβiU�
βjAiA�

j exp ð−iΔijLÞ�: ð5Þ

The quantity Δij ¼ Δm2
ij=2E, with E ¼ jpj, is the oscil-

lation wave number associated with the squared mass
difference Δm2

ij ¼ m2
i −m2

j .
As a result, the problem of calculating Pαβ reduces to

determine the quantities Aj, i.e., find the mass eigenstate
amplitudes ϕjðrÞ within the medium, subject to the initial
condition ϕjðr0Þ ¼ U�

αj. For relativistic neutrinos propa-
gating in normal matter, after subtracting a global phase,
the evolution equation for these amplitudes has the form

i
d
dr

ΦðrÞ ¼ ½H0 þ vðrÞU†VU�ΦðrÞ; ð6Þ

with ΦTðrÞ ¼ ðϕ1ðrÞ;ϕ2ðrÞ;ϕ3ðrÞÞ, U the mixing matrix,
and V ¼ diagð1; 0; 0Þ. The first term between brackets is
the Hamiltonian matrix that governs the flavor evolution in
vacuum H0 ¼ diagð0;Δ21;Δ31Þ, while the second term
accounts for the matter effects due to the coherent inter-
action of the neutrinos with the background particles. The
quantity

vðrÞ ¼
ffiffiffi
2

p
GFneðrÞ ð7Þ

denotes the difference between the effective potential
energies of the νe and the νμ;τ. Here, GF is the Fermi
constant and neðrÞ is the number density of electrons along
the neutrino path.
If neutrinos propagate only in vacuum, then vðrÞ ¼ 0

along their entire way to the detector and L corresponds to
the distance from the production point at r0. Replacing Aj

by U�
αj in Eq. (5) we recover the usual formulas for the

oscillation probabilities in vacuum.

Since O12 and Γ commute, the PMNS matrix can be
written as U ¼ O23ΓOΓ†, where O ¼ O13O12. From this,
taking into account that the commutators ½V;O23�; ½V;Γ�,
and ½H0;Γ� vanish, we obtain

i
d
dr

ΨðrÞ ¼ HðrÞΨðrÞ; ð8Þ

with ΨðrÞ ¼ Γ†ΦðrÞ and

HðrÞ ¼ H0 þ vðrÞW: ð9Þ

The matrix W is given by W ¼ OTVO, where OT is the
transpose of the orthogonal matrix O. Explicitly,

W ¼

0
B@

c213c
2
12 c12s12c213 c12c13s13

c12s12c213 s212c
2
13 s12c13s13

c12s13c13 s12c13s13 s213

1
CA; ð10Þ

with sij ¼ sin θij and cij ¼ cos θij. Note that HðrÞ is a
real and symmetric matrix that can be diagonalized by an
r-dependent orthogonal transformation. It does not contain
θ23 nor δ and then its eigenvalues, which are identical to
those of the Hamiltonian in Eq. (6), do not depend on these
two parameters.
Typically, the oscillatory interference terms in (5) aver-

age to zero for neutrinos traveling a long distance to the
Earth. Under such circumstances, the average probability of
finding a νβ at a detector in the Earth is given by the
incoherent superposition

hPαβi ¼
X
j

jUβjj2Pj; ð11Þ

where Pj ≡ jAjj2 denotes the probability to have a mass
eigenstate at the surface of the star. Neutrinos that travel a
certain distance through the Earth before reaching the
detector will experience oscillations in the terrestrial matter.
As a consequence, Uβi in hPαβi has to be replaced by the
amplitude for a νi emerging from the Earth be in a flavor
state νβ. We do not consider this effect here but, whenever
needed, it can be easily incorporated in our approach.
If the initial state corresponds to an electron neutrino,

then

Ψðr0Þ ¼
0
@

c12c13
s12c13
s13

1
A ð12Þ

and, according to Eq. (11), the average survival probability
reads

hPeei ¼ c212c
2
13P1 þ s212c

2
13P2 þ s213P3; ð13Þ

where
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X3
j¼1

Pj ¼ 1 ð14Þ

by conservation of probability. For solar neutrinos the flux
of electron neutrinos at the detection point Fνe is obtained

multiplying the original flux Fð0Þ
νe by the expression of hPeei

as a function of energy.
On the other hand, neutrinos (and antineutrinos) of all

species are produced during a core-collapse SN. The flux of
νe arriving at Earth may be written as [31]

Fνe ¼ F0
νehPeei þ F0

νxð1 − hPeeiÞ; ð15Þ

where νx stands for either νμ of ντ. In the deepest regions
the neutrino density is now so high that neutrino-neutrino
interactions are dominant and produce novel collective
effects [16]. The net result is the modification of the
primary fluxes F0

να because of spectral swaps in certain
energy intervals. Usually, this happens within the first few
100 km, much before neutrinos experience the MSW
conversions we consider here, which can be incorporated
separately.
In the rest of the article, we will focus on the determi-

nation of the vector ΨðrÞ or equivalently the quantities Pj

calculated numerically by means of the Magnus procedure.
When substituted into Eq. (13) they render us hPeei as a
function of the energy. The corresponding curves for the
Sun and a SN are plotted in Fig. 1. They were obtained by
means of the method denoted as M4 in Sec. IV and using
a set of the oscillation parameters consistent with the
experimental results.

III. MAGNUS EXPANSION: BASICS

For the sake of completeness we present here the basics
of ME [26]. The explanations are oriented toward its use as
a numerical integrator.

Given the matrix differential equation

d
dt

YðtÞ ¼ AðtÞYðtÞ; A ∈ Cn×n; Y ∈ Cn; ð16Þ

with the initial condition Yðt0Þ ¼ Y0, the Magnus approach
consists in looking for an exponential representation of the
solution

YðtÞ ¼ expfΩðt; t0ÞgY0; ð17Þ

with

Ωðt; t0Þ ∈ Cn×n; Ωðt0; t0Þ ¼ 0: ð18Þ

When the matrix elements of A are t–independent, then
Ωðt; t0Þ ¼ ðt − t0ÞA. In general, Ωðt; t0Þ is given as a series
expansion

Ωðt; t0Þ ¼
X∞
k¼1

Ωkðt; t0Þ; Ωkðt0; t0Þ ¼ 0; ð19Þ

where the term Ωk is built up from multiple integrals of
nested commutators of k matrices A evaluated at k different
times [24]. The complexity of the individual terms largely
increases with the index k. In particular, the first three ones
read

Ω1ðt; t0Þ ¼
Z

t

t0

dt1A1; ð20Þ

Ω2ðt; t0Þ ¼
1

2

Z
t

t0

dt1

Z
t1

t0

dt2½A1; A2�; ð21Þ

Ω3ðt; t0Þ ¼
1

6

Z
t

t0

dt1

Z
t1

t0

dt2

Z
t2

t0

dt3f½A1; ½A2; A3��

þ ½½A1; A2�; A3�g; ð22Þ

where Ai ≡ AðtiÞ and the square brackets stand for the
commutator: ½A; B�≡ AB − BA, for A, B, matrices of
appropriate dimensions.
For the purposes of using ME as a numerical integrator

that furnishes a solution YðtfÞ starting from Y0, the
question focuses on how to handle efficiently a single
integration step. Namely, one considers certain grid points
t0 < t1 < � � � < tN ¼ tf of the time interval ½t0; tf� with
associated time increments hn¼ tnþ1− tn for 0≤n≤N−1
and then determines

Yðtnþ1Þ ¼ expfΩðtn þ hn; tnÞgYðtnÞ: ð23Þ

After that, iteration yields the solution in N steps

10-5 10-3 10-1 101 103 105 107
0,0

0,1

0,2

0,3

0,4

0,5

0,6

<
P ee

>

Neutrino energy (MeV)

Supernova
Sun

FIG. 1. Survival probability for electron neutrinos, Eq. (13), at
the edge of the Sun (dashed line) and a supernova (solid line) as a
function of the neutrino energy E. The curves have been obtained
with the Magnus solver M4.
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YðtfÞ ¼
YN−1

n¼0

exp fΩðtn; hnÞgY0; ð24Þ

withΩðtn; hnÞ≡Ωðtn þ hn; tnÞ. When the matrix A is anti-
Hermitian then the matrix

Q
N−1
n¼0 exp fΩðtn; hnÞg consti-

tutes a unitary approximation to the time-evolution operator
between t0 and tf, since it is the product of N unitary
matrices.
The procedure has to face three problems of different

nature:
(i) Truncate the series (19) for Ωðtn; hÞ at an appro-

priate index,

ΩðpÞðtn; hnÞ ¼
Xp
k¼1

Ωkðtn; hnÞ: ð25Þ

(ii) Generate the quadratures to approximate the multi-
variate integrals in the truncated series.

(iii) Compute the exponential of the resulting square
matrix.

The last pointwill be treated later on and an explicit algebraic
form given for the three neutrino case. The other two are
solved at once and depend on the order of approximation of
the method. This is defined as the order r of the Taylor
expansion that gives Yðtn þ hnÞ, up to Oðhrþ1

n Þ, out of the
exact valueYðtnÞ. One important point is that the order of the
quadratures required in thenumerical approximationofΩk in
the truncated series (25) is not greater than the order of
approximation r. This fact is exploited so as to minimize the
number of operations in the algorithm. Moreover, since ME
is time symmetric, for achieving an integration method of
order 2r (with r > 1) only terms up to p ¼ 2r − 2 are
required in the series expansion (19). Book-keeping tech-
nicalities may be found in the literature [21,25].

IV. NUMERICAL INTEGRATION

The differential system that rules the evolution of the
three-neutrino amplitudes in matter [Eq. (8)] is of the type
in (16) with n ¼ 3, t ¼ r, and the identifications

A≡ −iH; Y ≡Ψ: ð26Þ

Now, we apply the approach outlined in the previous
section to solve numerically such equation with the initial
condition (12). Since each term in the series expansion of
Ωðt; t0Þ is anti-Hermitian, ME provides a representation of
expfΩðt; t0Þg in (17) that is unitary by construction, even if
the series is truncated. This property is preserved by the
factorized expression given in Eq. (24) and by the algo-
rithm used to compute each factor. As a consequence,
condition (14) is fulfilled automatically by the Pj calcu-
lated using the procedure.
We assume normal hierarchy and adopt the best-fit

values of the 3-neutrino oscillation parameters, derived

from a global fit of the current neutrino data [9]:
Δm2

21 ¼ 7.54 × 10−5 eV2, Δm2
31 ¼ 2.47 × 10−3 eV2,

sin2θ12 ¼ 0.308, sin2θ23 ¼ 0.437, and sin2 θ13 ¼ 0.0234.
In addition, the distance is expressed in units of the solar
radius R⊙ ¼ 6.96 × 105 km. Thus, written in terms of the
dimensionless variable ξ≡ r=R⊙, Eq. (8) becomes

i
dΨ
dξ

¼ ½H0 þ vðξÞW�Ψ; ð27Þ

with W the matrix given in (10) and

H0 ¼
a
E

0
B@

0 0 0

0 b 0

0 0 1

1
CA: ð28Þ

Here E is the numerical value of the neutrino energy in
MeVand a ¼ 4.35196 × 106 and b ¼ 0.030554 are dimen-
sionless parameters.
The conclusions about the numerical efficiency are

essentially independent on the initial integration point. To
be concrete, for the computations we use ξ0 ¼ 0.1 in the
case of the Sun and ξ0 ¼ 0.02 in the case of a SN. We also
take the supernova’s radius equal to 20R⊙. Accordingly,
the integration yields Ψð1Þ and Ψð20Þ for the Sun and a
SN, respectively. The integration procedure requires a
particular shape of the function vðξÞ to be provided. In
order to keep as clear as possible the technical explan-
ations we consider two simple profiles of the electron
number density existing in the literature. For the Sun, we
model the density by an exponential profile vðξÞ ¼
γ expð−ηξÞ, with γ ¼ 6.5956 × 104 and η ¼ 10.54 [32].
In the SN case, we adopt the power law used in [33],
namely, vðξÞ ¼ γ=ξ3, with γ ¼ 52.934. Let us remark that
vðξÞ does not need to be analytically defined, nor to be a
continuous function, nor to have continuous derivatives.
This applies, for instance, to neutrinos that traverse the
Earth, which radial matter density is represented by a
discontinuous piecewise function according to the pre-
liminary reference Earth model (PREM) [34].
Next, we describe the main features of the numerical

integration of Eq. (8) by means of two particular
schemes based on the ME of orders 2 and 4. Starting
the integration at ξ0, with the initial value Ψðξ0Þ we
build up the approximate solution at Ψðξ1 ¼ ξ0 þ h1Þ.
At a generic point ξn, the solution ΨðξnÞ determines
Ψðξn þ hnÞ as

Ψðξnþ1Þ ¼ exp fΩ½r�ðξn; hnÞgΨðξnÞ: ð29Þ

Here Ω½r� denotes an approximation to the truncated
Magnus series (25) of order r in hn, with r ¼ 2, 4. The
iteration stops after N iterations at ξ ¼ 1, 20.
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A. Order 2 formula: M2

The method of order r ¼ 2 is particularly simple for two
reasons. First, just the term (20), namely,

Ω1ðξn; hnÞ ¼ −i
Z

ξnþhn

ξn

dtHðtÞ; ð30Þ

has to be taken into account in the series (25). Second, the
quadrature for this integral requires only one evaluation
point to obtain a second order approximation. Thus, for the
exponent in (29) we get

Ω½2�ðξn; hnÞ ¼ −iHðξ̄Þhn ¼ −iðH0 þ v̄WÞhn; ð31Þ

with ξ̄≡ ξn þ hn=2. The quantity v̄≡ vðξ̄Þ must be reeval-
uated at every step. This scheme is also known as the
exponential midpoint rule and we will refer to it as M2.

B. Order 4 formula: M4

With p ¼ 2 in the truncated series (25) one ends up with
a method of order r ¼ 4 if the corresponding integrals (20)
and (21) are approximated by a 2-point Gauss–Legendre
quadrature rule [21,25]. Specifically, given the quadrature
points

ξ� ¼ ξn þ
�
1� 1ffiffiffi

3
p

�
hn
2
; ð32Þ

with ξ− < ξþ and defining the quantities

H� ¼ Hðξ�Þ; ð33Þ

the one-step integration exponent of order 4 can be cast into
the form

Ω½4�ðξn; hnÞ ¼ −iðHþ þH−Þ
hn
2
þ

ffiffiffi
3

p

12
½H−; Hþ�h2n; ð34Þ

where, as before, the square brackets stand for the matrix
commutator. Alternatively, the Simpson quadrature rule
also yields an equivalent fourth-order approximation [25].
Working out Eq. (34) for the matrix H given in (9), we

arrive at

Ω½4�ðξn; hnÞ ¼ −i
�
H0 þ

1

2
ðvþ þ v−ÞW

�
hn

þ
ffiffiffi
3

p

12
ðvþ − v−Þ½H0;W�h2n; ð35Þ

where v� ≡ vðξ�Þ, are the only quantities to be reevaluated
at every integration step. The matrix ½H0;W� is built up
only once, namely at the beginning of the integration
process. This method will be referred to as M4.

C. Variable step size implementation

The easiest way to implement the previous methods
is by considering a constant step size, i.e., by taking h ¼
ðξf − ξ0Þ=N and then setting ξn ¼ ξ0 þ nh. This imple-
mentation tends to be inefficient, however, since the
solution ΨðξÞ may experience rapid changes along the
evolution on some intervals and evolve slowly on some
others. Thus, it is better to adjust hn accordingly as the
integration proceeds. There are several techniques for doing
this automatically in such a way that the local error is below
a prescribed tolerance tol, one of the most common being
the local extrapolation procedure [35,36]. In our setting this
approach can be summarized as follows.
We produce two numerical solutions at ξnþ1 according

with M2 and M4 above,

Ψ̂nþ1 ¼ eΩ
½2�ðξn;hnÞΨn; Ψnþ1 ¼ eΩ

½4�ðξn;hnÞΨn; ð36Þ

respectively. Then the quantity

Er ¼ kΨ̂nþ1 −Ψnþ1k ð37Þ

can be used to estimate the local error corresponding to M2.
If Er computed at ξnþ1 is below tol, then the step from ξn
to ξnþ1 is accepted and then we proceed to compute the
approximation to the solution at ξnþ2. If Er > tol, then
the approximation at ξnþ1 is rejected and a smaller step is
chosen to compute a new approximation at ξnþ1. In either
case, the value of the new step is given by [36]

hnew ¼ shc

�
tol
Er

�
1=3

; ð38Þ

where hc denotes the current value of the step size and s is a
“safety factor” chosen to decrease the probability of a
rejection at the next step. For our problem a good choice is
s ¼ 0.8. Notice that once the step ξn → ξnþ1 has been
completed, we have two numerical approximations at xnþ1:
Ψ̂nþ1 and Ψnþ1, so that it is possible to choose one or the
other as the approximation to Ψðξnþ1Þ. In local extrapo-
lation, one advances with the higher-order result Ψnþ1

(hence the name).
Since the most time-consuming part of the Magnus

methods corresponds to the computation of the exponen-
tial, evaluating directly Er as (37) may increase consid-
erably the total computational cost of the algorithm. To
avoid that we can express

Ψ̂nþ1 −Ψnþ1 ¼
�
eΩ

½2� − eΩ
½4�
�
Ψn ¼ ðeZ − IÞΨnþ1; ð39Þ

where
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Z ¼ log
�
eΩ

½2�
e−Ω

½4�
�
¼ Ω½2� −Ω½4� −

1

2
½Ω½2�;Ω½4�� þ � � � :

ð40Þ

Working out this expression and expanding eZ, we arrive at

Er ¼
����
�
h2nS1 þ h3nS2 þ

1

2
h4nS21

�
Ψnþ1

����þOðh5nÞ; ð41Þ

where

S1 ¼ −
ffiffiffi
3

p

12
ðvþ − v−Þ½H0;W�

S2 ¼ i

ffiffiffi
3

p

24
ðvþ − v−Þ

�
½H0; ½H0;W��

þ 1

2
ðvþ þ v−Þ½W; ½H0;W��

�
: ð42Þ

Notice that estimating Er according to (41) only requires
additional combinations of v� at each step and the
evaluation of the nested commutators ½H0; ½H0;W�� and
½W; ½H0;W�� at the beginning of the integration. In practice,
we will scale the ith component of Ψ̂nþ1 −Ψnþ1 by a factor
di ¼ jðΨnþ1Þij to work with relative errors. As for the initial
step size, a possible choice is just h0 ¼ tol=2.
More sophisticated schemes exist, of course, for step-

size control that are employed in commercial computer
packages. The previous method, although simple, is quite
efficient and well adapted for the problem at hand.
As with respect to the computation of the matrix

exponential, the Appendix below provides an analytic
formula for that. It has been written down so as to cope
with eventual quasidegeneracy of eigenvalues (causing
extra rounding-off errors) and to allow minimal amount
of arithmetic. Its direct coding is straightforward and saves
computing time with respect to general purpose routines
developed for generic dimension matrices.

V. RESULTS

All the results we will show correspond to outputs of
double precision computations carried out in FORTRAN
with no optimization during the compilation. They have
been replicated in MATLAB albeit investing longer
CPU times.
To test the performance of the M4 method we have

carried out the very same computations using the well
known ODE solver Dopri5(4) designed by Dormand and
Prince [37]. It is an adaptive step-size explicit Runge-Kutta
method of order five that has embedded a fourth-order
approximation used to estimate the error and applies local
extrapolation. The MATLAB procedure ode45, in particu-
lar, is based on this integrator.
Here we have used the standard FORTRAN implementa-

tion of Dopri5(4) called DOPRI5 available at [38]. Given a

particular level of accuracy, the focus will be on the
relatively shorter CPU time needed by M4 in comparison
with DOPRI5, rather than on the absolute measures of CPU
time. It might be, however, of interest to point out that
computations were carried out on an Intel Core Duo E8400
processor running at 3 GHz.
In Fig. 1 we plot the average electron-neutrino survival

probability [Eq. (13)] at the edge of Sun (dashed line) and a
SN (solid line) as a function of the neutrino energy. These
curves reproduce results of the same kind available in a
number of references. As a test, we mention that the
theoretical asymptotic value hPeei ¼ 0.547829 is correctly
reproduced, both in the high energy and the low energy
limits.
Figures 2 and 3 contain the main output of the present

work. They show the relationship between the accuracy
obtained for a numerical solution and the computational
cost required as measured by the CPU time invested to
achieve it. Every CPU time corresponds to a particular
value of the tolerance tol. The smaller tol, the larger
CPU time. These curves allow one to compare the relative
efficiency of the two ODE solvers tested: M4 and DOPRI5.
Two different representative values of the neutrino energy
have been considered, as specified in each diagram. Given a
value for the relative error (to be defined in next paragraph)
of the numerical solution of (27) then the corresponding
abscissa of every curve determines the CPU time that was
invested in the computation from ξ ¼ 0.1 up to ξ ¼ 1 (Sun)
and from ξ ¼ 0.02 up to ξ ¼ 20 (SN). Certainly, the CPU
time is not an absolute measure of efficiency since it
depends on the type of processor, the programmer exper-
tise, and the compiler. Nevertheless, the location of the
curves in the plots is a reasonable relative measure of
efficiency of each method, provided the runs are carried out
on the same computer and compiler. This type of plots
allow us to visualize the balance between the accuracy
required in the solution and the affordable numerical effort.
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FIG. 2. Relative error of the solution of Eq. (27) as a function of
the CPU cost for solar neutrinos with energies E ¼ 1 MeV
(circles) and E ¼ 10 MeV (squares). Numerical integrations
were carried out with the solvers M4 with variable stepsize
(solid) and DOPRI5 (open).
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In order to build up the relative error we employed an
“exact” numerical solution ΨrefðξÞ obtained by means of
the command NDSolve of Mathematica with stringent
requirements to guarantee high accuracy. Specifically, the
relative error is determined as the norm of the vector with
components given by the quantities ðψ jðξÞ − ψ ref

j ðξÞÞ=
ψ ref
j ðξÞðj ¼ 1; 2; 3Þ, evaluated at ξ ¼ 1 (Sun) or ξ ¼ 20

(SN). Notice that massive numerical computations cannot
afford the huge amount of CPU time required by the
procedure to obtain ΨrefðξÞ. Hence, the need for efficient
ODE solvers.
When one plots the error obtained with an integrator of

order r as a function of the computational cost in a double
logarithmic scale, in the limit hn → 0 one obtains a straight
linewith slope−r, so that usually the order of themethod can
be deduced at once from the diagram.For this reason,we have
included the straight line with slope −4, as visual reference.
Given that E appears in the denominator of (28) the

instantaneous oscillation frequencies of the solution
increase roughly as the inverse of the neutrino energy.
Thus, it is expected that at low energies the integration
should take longer times. The results we report in Figure 2
(solar neutrinos) stand for the relative error in the solution
at the edge of the Sun for two energies, E ¼ 1 MeV and
10 MeV, and confirm this point. This effect is more
dramatic for DOPRI5 than for M4. For fixed energy, M4
performs significantly better than DOPRI5.
Figure 3 shows the results for SN neutrinos for E ¼

15 MeV and 100 MeV. The dependence of the cost as a
function of E follows the same pattern as with solar
neutrinos. It is worth noticing the remarkable improvement
achieved with the Magnus method in all cases in compari-
son to the standard integration procedure.

VI. DISCUSSION

For neutrinos propagating in a medium, numerical
calculation of the flavor amplitudes is very often a costly

process due to the highly oscillatory character of the
solutions of the Schrödinger-like equation that governs
the problem. Given the interest in analyzing the neutrino
flavor evolution in a variety of settings, any novel pro-
cedure able to provide accurate approximations with a
reduced computation time is of undeniable benefit. The
purpose of this article is precisely to present one of such
techniques, namely an explicit fourth-order integrator
based on the ME for linear differential systems, that is
equipped with an adaptive step-size strategy to render it
more efficient in practice.
To evaluate the performance of the new integrator M4 we

compared it with the well known routine DOPRI5 based on
an explicit 5th-order Runge-Kutta method with variable
step size. The comparison was made for three-mixed
neutrinos evolving in the Sun and a type-II SN. We use
realistic values for the oscillations parameters (mixing
angles and square-mass differences). For simplicity, we
modeled the matter densities in terms of simple analytical
functions, but the procedure can be easily adapted to more
complex situations, like a piecewise profile or one defined
numerically. In our numerical tests, we found that results
with the same accuracy for the νe survival probability were
produced by M4 with a computational cost between one
and two orders of magnitude lower than DOPRI5, depend-
ing on the value of the neutrino energy.
The applicability of the procedure is not constrained by

the dimension of the system of linear differential equations.
Therefore, it can be used to examine matter neutrino
oscillations in the presence of one or more sterile neutrinos,
i.e., massive singlet leptons that do not interact with the
weak gauge bosons and mix with the standard active
neutrinos. As a result of the mixture of the active and
sterile neutrinos, the PMNS matrix becomes a nonunitary
part of a larger mixing matrix. When looking for possible
effects of such nonunitarity in matter neutrino oscillations it
might be advisable to employ numerical methods that are
not a affected by any intrinsic violation of unitarity. As
already emphazised, this is precisely an additional advan-
tage of the Magnus integrator, which, by construction, will
preserve the norm of the solution of the whole system,
irrespective of the number of mixed neutrinos.
As has been formulated, our procedure cannot be used to

integrate nonlinear differential equations like those arising
in a SN core. Nevertheless, a conveniently modified version
might still be applied in these cases [39].
In Ref. [19], a detailed proposal has been presented,

based on a Monte Carlo method, for the (not preserving
unitarity) numerical integration of the evolution operator
for the two neutrino system. Although the aim of that work
was not oriented to a systematic study of the CPU cost, the
method seems to be quite expensive. The technique might
be useful in long profiles, such as the core-collapse SN, but
would not be the best choice in simpler situations, like the
short, solar profile.
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FIG. 3. Relative error of the solution of Eq. (27) as a function of
the CPU cost for supernova neutrinos with energies E ¼ 15 MeV
(circles) and E ¼ 100 MeV (squares). Numerical integrations
were carried out with the solvers M4 (solid) and DOPRI5 (open).

F. CASAS, J. C. D’OLIVO, and J. A. OTEO PHYSICAL REVIEW D 94, 113008 (2016)

113008-8



In the case of two neutrino generations, a nonlinear
transformation of the linear differential system has been
proposed as an alternative [19]. In terms of hyperspherical
polar coordinates, a new set of four nonlinear, real-valued
equations is obtained. One of them, which stands for the
norm of the solution, becomes a constant of motion and
hence the norm is preserved, no matter the quality of the
integration. The numerical integration proceeds actually
with a system of three equations for which a preliminary
analysis of singularities is needed. An appropriate gener-
alization of this scheme to three generations could be a
further alternative starting point. We have not yet explored
this issue.
In perturbation theory, the use of the interaction picture

and the adiabatic basis are common tools. As far as the
numerical integration of Eq. (27) is concerned, a change of
picture transforms the slow varying coefficients system into
a linear differential system whose coefficients oscillate
rapidly, which actually is a harder problem. Anyhow, we
carried out an implementation of such an approach [40] and
convinced ourselves that any eventual advantage in the
integration process does not compensate the extra algebra
needed. For this reason, we have not included it here.
Interrelation between numerical analysis and physics has

proved to be of mutual benefit. We hope that this work will
help to motivate neutrino physics researchers to incorporate
geometric ODE solvers as useful tools to do detailed
numerical calculations on matter neutrino oscillations.
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APPENDIX: COMPUTATION OF THE
MATRIX EXPONENTIAL

Given a Hermitian matrix A of dimension three, we
provide here an efficient algebraic expression to explicitly
compute the unitary matrix expðitAÞ, where t is a param-
eter. For caveats on the numerical computation of the
exponential of a matrix see the classical paper by Moler and
Van Loan [41].

Without loss of generality we will assume that A
is traceless, TrðAÞ ¼ 0. Were it not the case, then
we can always factorize the problem: expðitAÞ ¼
expðitzIÞ expðitA0Þ, where I stands for the identity matrix
and z ¼ TrðAÞ=3, A0 ¼ A − zI. Thus, the essential problem
reduces to deal with a traceless matrix A0. In practice, this
conveys a number of important algebraic simplifications.
The eigenvalues of the (traceless) matrix A0 are all real

valued. They are given by the roots of the characteristic
equation

λ3 −
1

2
TrðA2

0Þλþ DetðA0Þ ¼ 0: ðA1Þ

The explicit solutions may then be written down as

λk ¼ �2

ffiffiffiffi
p
3

r
cos

�
1

3
arccos

�
3q
2p

ffiffiffiffi
p
3

r �
−
2πk
3

	
; ðA2Þ

for (k ¼ 0, 1, 2), where p≡ TrðA2
0Þ=2, and q≡ DetðA0Þ.

The positive sign corresponds to q ≤ 0, otherwise the
negative sign applies. The fact p > 0 ensures the real
character of the roots.
Finally, using Putzer’s algorithm [42] one gets

expðitA0Þ ¼ expðiλ0tÞ½ð1 − λ0ðr0 − λ1r1ÞÞI
þ ðr0 þ λ2r1ÞA0 þ r1A2

0�; ðA3Þ

where the eigenvalues have been relabeled such that now
λ0 < λ1 < λ2, and

r0 ¼ −
1 − expðiatÞ

a
;

r1 ¼ −
1

a − b

�
1 − expðiatÞ

a
−
1 − expðibtÞ

b

�
; ðA4Þ

with a ¼ λ1 − λ0, b ¼ λ2 − λ0. The formulas (A4) for the
complex coefficients r0, r1, cope with eventual situations
where a; b ≪ 1.
The most expensive part of the computation comes from

the matrix product A2
0. Thus, considerable amount of CPU

time is saved if the explicit numerical matrix computation
A2
0 in (A3) is avoided and, instead, only the matrix–vector

product A0ΨðtÞ and A0ðA0ΨðtÞÞ are evaluated on the
solution vector Ψ along the integration. Notice that in
(A1) the computation of the whole matrix A2

0 can also be
avoided.
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