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The main objective of this work is to provide a stability and error analysis of high-order commutator-free
quasi-Magnus (CFQM) exponential integrators. These time integration methods for non-autonomous
linear evolution equations are formed by products of exponentials involving linear combinations of the
defining operator evaluated at certain times. In comparison with other classes of time integration meth-
ods such as Magnus integrators, an inherent advantage of CFQM exponential integrators is that structural
properties of the operator are well-preserved by the arising linear combinations. Employing the analytical
framework of sectorial operators in Banach spaces, evolution equations of parabolic type and dissipative
quantum systems are included in the scope of applications. In this context, however, numerical experi-
ments show that CFQM exponential integrators of nonstiff order five or higher proposed in the literature
suffer from poor stability properties. The given analysis delivers insight that CFQM exponential inte-
grators are well-defined and stable only if the coefficients occurring in the linear combinations satisfy a
positivity condition and that an alternative approach for the design of stable high-order schemes relies
on the consideration of complex coefficients. Together with suitable local error expansions this implies
that a high-order CFQM exponential integrator retains its nonstiff order of convergence under appropriate
regularity and compatibility requirements on the exact solution. Numerical examples confirm the theo-
retical result and illustrate the favourable behaviour of novel schemes involving complex coefficients in
stability and accuracy.
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1. Introduction

CLASS OF EVOLUTION EQUATIONS We consider evolution equations of the form{
u′(t) = A(t)u(t) , t ∈ [t0,T ] ,
u(t0) given ,

(1.1)

defined by a family of time-dependent linear operators (A(t))t∈[t0,T ] in a Banach space. We are primarily
interested in situations where (1.1) is related to a partial differential equation of parabolic type or a dis-
sipative quantum system, respectively. Non-autonomous linear evolution equations arise in sensitivity
analysis or optimal control; further relevant applications include driven open quantum systems such as
the parametrically driven dissipative Dicke model, see ALVERMANN, FEHSKE, LITTLEWOOD (2012)
and references given therein.

NONLINEAR EQUATIONS AND LINEARISATIONS. As an elementary illustration, we state a one-
dimensional partial differential equation

∂tU(x, t) = f2
(
U(x, t)

)
∂xxU(x, t)+ f1

(
U(x, t)

)
∂xU(x, t)+ f0

(
U(x, t)

)
+g(x, t) , (1.2a)

comprising a nonlinear diffusion term, a nonlinear advection term, a nonlinear reaction term, and an
additional inhomogeneity. The time-periodic logistic reaction-diffusion equation given in PAO (2001)
can be cast into the above form with

f2(w) = c3 , f1(w) = 0 , f0(w) = c0 (w+ c1)(w+ c2) ,

and constants c0,c1,c2,c3 ∈ R. Associated linearised equations involve the Fréchet derivative of the
second-order differential operator defining the right-hand side of the equation

F(v) =
[
x 7→ f2

(
v(x)

)
∂xxv(x)+ f1

(
v(x)

)
∂xv(x)+ f0

(
v(x)

)]
,

F ′(v)w =
[
x 7→ f ′2

(
v(x)

)
∂xxv(x)w(x)+ f2

(
v(x)

)
∂xxw(x)

+ f ′1
(
v(x)

)
∂xv(x) w(x)+ f1

(
v(x)

)
∂xw(x)+ f ′0

(
v(x)

)
w(x)

]
.

For instance, the variational equation, which describes the sensitivity of the solution with respect to the
reference solution, corresponds to a non-autonomous linear partial differential equation

∂tu(x, t) = α2(x, t)∂xxu(x, t)+α1(x, t)∂xu(x, t)+α0(x, t)u(x, t) (1.2b)

with space-time-dependent coefficient functions given by

α2(x, t) = f2
(
U(x, t)

)
, α1(x, t) = f1

(
U(x, t)

)
,

α0(x, t) = f ′2
(
U(x, t)

)
∂xxU(x, t)+ f ′1

(
U(x, t)

)
∂xU(x, t)+ f ′0

(
U(x, t)

)
.

(1.2c)

When rewritten as abstract differential equation, the variational equation is of the form (1.1).
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EXPONENTIAL INTEGRATORS A variety of contributions confirms that exponential time integra-
tion methods are favourable in various respects, see ALVERMANN, FEHSKE (2011); ALVERMANN,
FEHSKE, LITTLEWOOD (2012); BADER, ISERLES, KROPIELNICKA, SINGH (2016); BLANES, MOAN
(2006); CROUCH, GROSSMAN (1993); HOCHBRUCK, LUBICH (2003); THALHAMMER (2006) and ref-
erences given therein. Exponential integrators for non-autonomous evolution equations commonly rely
on the computation of several exponentials, which involve the values of the defining operator at certain
nodes and combinations thereof. For the associated spatially semi-discretised equation, the action of the
arising matrix exponentials on vectors is often advantageously realised by polynomial approximations
such as Chebyshev or Krylov methods, see also HOCHBRUCK, LUBICH (1997); MOLER, VAN LOAN
(2003); SIDJE (1998).

MAGNUS INTEGRATORS A well-established class of exponential time integration methods for non-
autonomous linear evolution equations (1.1) is based on a formal solution representation by the Magnus
expansion

u(tn+1) = eΩ(τn,tn) u(tn) , t0 6 tn < tn+1 = tn + τn 6 T ,

Ω(τn, tn) =
∫ tn+τn

tn
A(σ) dσ

+ 1
2

∫ tn+τn

tn

∫
σ1

tn

[
A(σ1),A(σ2)

]
dσ2 dσ1

+ 1
6

∫ tn+τn

tn

∫
σ1

tn

∫
σ2

tn

([
A(σ1),

[
A(σ2),A(σ3)

]]
+
[
A(σ3),

[
A(σ2),A(σ1)

]])
dσ3 dσ2 dσ1

+ · · · ,

(1.3)

see MAGNUS (1954); the natural approach to truncate the infinite series and to employ quadrature
approximations of the arising multiple integrals leads to interpolatory Magnus integrators.

However, as has been noticed in CELLEDONI, MARTHINSEN, OWREN (2003), the use of commu-
tators may be undesirable for solving stiff systems. In particular, in the context of partial differential
equations, Magnus integrators manifest a fundamental difficulty. In consideration of the fact that the
commutator [

A(σ1),A(σ2)
]
= A(σ1)A(σ2)−A(σ2)A(σ1)

in general does not inherit the characteristic properties of the underlying operator, one has to face the
issue of well-definedness. Moreover, as relevant applications include partial differential equations in two
and three space dimensions, the systems resulting from spatial semi-discretisation commonly involve
large matrices; the computation of the action of discrete counterparts to iterated commutators such as[

A(σ1),
[
A(σ2),A(σ3)

]]
on vectors, needed for the realisation of higher-order Magnus integrators by Krylov-type methods, can
be exceedingly costly due to the number of matrix-vector products required, see also BLANES, CASAS,
THALHAMMER (2016) and references therein.

Nevertheless, there are situations where a special structure of the defining operator enables sig-
nificant simplifications and the action of the resulting matrix-commutators on vectors can be efficiently
carried out. This is the case, for instance, for the linear Schrödinger equation in the semiclassical regime
with a time-dependent potential, see BADER, ISERLES, KROPIELNICKA, SINGH (2016).
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COMMUTATOR-FREE QUASI-MAGNUS EXPONENTIAL INTEGRATORS In the present work, we focus
on a class of exponential time integration methods that circumvents the difficulties of Magnus inte-
grators in the context of partial differential equations and thus may provide a favourable alternative,
see ALVERMANN, FEHSKE (2011); BLANES, MOAN (2006); THALHAMMER (2006). In view of the
attempt to avoid the presence of iterated commutators, we employ the notion commutator-free exponen-
tial integrator, and to distinguish them from the commutator-free exponential integrators considered in
CELLEDONI, MARTHINSEN, OWREN (2003); OWREN (2006), we add the term quasi-Magnus.

The basic idea leading to commutator-free quasi-Magnus (CFQM) exponential integrators is to re-
place the single exponential (1.3) by the composition of several exponentials involving linear combina-
tions of the values of the underlying operator at certain nodes

un+1 = eτn BnJ · · · eτn Bn1 ≈ u(tn+1) = eΩ(τn,tn) u(tn) ,

ck ∈ [0,1] , Ank = A(tn + ckτn) , k ∈ {1, . . . ,K} ,
Bn j = a j1 An1 + · · ·+a jK AnK , j ∈ {1, . . . ,J} .

An inherent advantage of CFQM exponential integrators over Magnus integrators is that structural prop-
erties of the defining operator family are well-preserved by the arising linear combinations. As a con-
sequence, well-definedness and stability of the time-discrete solution can be established for instance
within the framework of sectorial operators and analytic semigroups under natural (weak) regularity
requirements on the defining operator family.

EXAMPLES Henceforth, we denote by p ∈ N the nonstiff order of the method.

(i) As a first example, we mention the exponential midpoint rule of nonstiff order two

p = 2 : un+1 = eτn A(tn+ 1
2 τn) un ≈ u(tn+1) = eΩ(τn,tn)u(tn) , (1.4)

which is an instance of a Magnus integrator and likewise fits into the class of CFQM exponential
integrators.

(ii) A Magnus integrator of nonstiff order four is based on two Gaussian nodes

p = 4 : un+1 = eτn a1(An1+An2)+τ2
n a2 [An2,An1] un ≈ u(tn+1) = eΩ(τn,tn)u(tn) ,

c1 =
1
2 −

√
3

6 , c2 =
1
2 +

√
3

6 , a1 =
1
2 , a2 =

√
3

12 .

A related CFQM exponential integrator of nonstiff order four is given by

p = 4 : un+1 = eτn(a21An1+a22An2) eτn(a11An1+a12An2) un ≈ u(tn+1) = eΩ(τn,tn)u(tn) ,

c1 =
1
2 −

√
3

6 , c2 =
1
2 +

√
3

6 , a11 = a22 =
1
4 +

√
3

6 , a12 = a21 =
1
4 −

√
3

6 .
(1.5)

RELATED CLASSES OF COMMUTATOR-FREE EXPONENTIAL INTEGRATORS It is worth mentioning
the connection of CFQM exponential integrators to other classes of commutator-free exponential inte-
grators.

In CELLEDONI, MARTHINSEN, OWREN (2003), autonomous nonlinear (ordinary) differential equa-
tions of the form

u′(t) = F
(
u(t)

)
=

L

∑
`=1

f`
(
u(t)

)
E`

(
u(t)

)
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are studied; the family of vector fields (E`)
L
`=1 is assumed to span, at every point, the tangent space,

and ( f`)L
`=1 denotes a family of real or complex-valued functions defined on the underlying manifold.

Under the assumption that for a fixed value y the differential equation

w′(t) =
L

∑
`=1

f`(y)E`

(
w(t)

)
is more easily solvable than the original one, explicit commutator-free exponential integrators of orders
three and four involving three and five exponentials, respectively, are proposed.

A non-autonomous linear equation of the form (1.1) can be recast in this way by adding the time as
a coordinate, i.e., by considering the system{

u′(t) = A
(
ζ (t)

)
u(t) ,

ζ ′(t) = 1 .
(1.6)

However, compared to CFQM exponential integrators, this approach leads to more costly schemes,
requiring for instance five exponentials for order four; besides, we are not aware of schemes of order
five or higher that have been proposed in the literature.

A simpler alternative consists in considering a pth-order splitting method that is defined by real or
complex coefficients (a`,b`)L

`=1; for non-commutative matrices X ,Y , this in particular implies

L

∏
`=1

(
eτa`X eτb`Y

)
= eτ(X+Y )+O

(
τ

p+1).
The application to the autonomous system (1.6), more precisely, to the corresponding subproblems{

u′(t) = A
(
ζ (t)

)
u(t) ,

ζ ′(t) = 0 ,

{
u′(t) = 0 ,
ζ ′(t) = 1 ,

leads to the commutator-free exponential integrator

un+1 =
L

∏
`=1

eτna`A(tn+c`τn) un , c` =
`

∑
j=1

b j , ` ∈ {1, . . . ,L} . (1.7)

Again, compared to CFQM exponential integrators, the number of exponentials grows considerably
with the order; moreover, for order greater than two, schemes with real coefficients necessarily involve
negative coefficients and thus have poor stability properties for evolution equations of parabolic type.

OBJECTIVE AND APPROACH In this work, our main concern is to provide a stability and error analysis
of high-order CFQM exponential integrators for the time integration of non-autonomous linear evolution
equations of parabolic type. For this purpose, we employ the analytical framework of sectorial operators
in Banach spaces.

Preliminary numerical tests for an elementary parabolic equation showed that CFQM exponential
integrators of nonstiff orders six proposed in the literature suffer from poor stability properties, and a first
theoretical analysis delivered insight that the structural quality of CFQM exponential integrators is only
preserved under a positivity condition on certain combinations of the coefficients. Additional numerical
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tests confirmed a conjectured order barrier at order five for schemes involving real coefficients, and the
connection to operator splitting method suggested to circumvent this order barrier by the consideration
of complex coefficients.

On the basis of these findings, we deduce stability and local error estimates with respect to the
norm of the underlying Banach space, which imply that a CFQM exponential integrator retains its
nonstiff order of convergence, provided that the exact solution to the considered evolution equation
satisfies suitable regularity and compatibility requirements. Numerical results obtained for a variational
equation associated with a test equation of the form (1.2) confirm the theoretical convergence estimate
and illustrate the favourable behaviour of novel schemes involving complex coefficients in stability and
accuracy. The class of methods considered in this paper thus has good potential for its use in the time
integration of non-autonomous linear evolution equations.

RELATED WORK Our analysis of CFQM exponential integrators extends former work on a fourth-
order scheme within this class involving two exponentials; however, in THALHAMMER (2006), the
main objective was to explain order reductions encountered for parabolic equations under homogeneous
Dirichlet boundary conditions, and thus only few expansion steps of the local error were needed. The
main original contribution of the present work is the accomplishment of a suitable local error expansion,
applicable to the whole class of CFQM exponential integrators. The main novel aspect of the stability
analysis is to include complex coefficients and to identify the positivity condition on certain linear
combinations of coefficients.

The observation that high-order CFQM exponential integrators given in the literature involve nega-
tive coefficients and thus suffer from poor stability properties when applied to dissipative equations of
parabolic type motivates the design of novel optimised schemes with complex coefficients. Our related
work BLANES, CASAS, THALHAMMER (2016) is concerned with this question; in particular, a set of
independent conditions for time-symmetric methods of order six is given there. In addition, the effi-
ciency of the novel schemes is compared to other time integration methods such as Magnus integrators
for a dissipative problem in quantum mechanics.

OUTLINE The present manuscript is organised as follows. The class of CFQM exponential integrators
is introduced in Section 2. A rigorous stability and error analysis of high-order CFQM exponential
integrators is provided in Section 3. For better readability, the details of the somewhat long-winded
local error expansion are included in the appendix; as an illustration of the general case, the expansion
obtained for a fourth-order CFQM exponential integrator involving two nodes and two exponentials per
time step and a MAPLE implementation of the resulting nonstiff order conditions are also included there.
Numerical examples that confirm and complement the theoretical considerations are given in Section 4.

NOTATION Let N= {n∈Z : n> 0} denote the set of non-negative integer numbers. For a composition
of non-commutative operators, we employ the convenient short notation

m

∏
i=`

Ei =

{
Em · · ·E` , `6 m ,

I , m < `,
`,m ∈ N ;

here, by definition, the empty product is equal to the identity operator. Thoughout, C > 0 denotes a
generic constant. For simplicity, we do not distinguish the solutions to a partial differential equation and
to the associated abstract differential equation in notation, and likewise for the defining operators.
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2. Commutator-free quasi-Magnus exponential integrators

In this section, we introduce the general format of CFQM exponential integrators for the non-
autonomous linear evolution equation (1.1) and specify higher-order schemes.

GENERAL FORMAT As usual in a time-stepping approach, we consider suitably chosen time grid
points t0 < t1 < · · ·< tN = T and denote by

τn = tn+1− tn , n ∈ {0,1, . . . ,N−1} ,

the associated time increments; throughout, we employ the standard assumption that the ratios of sub-
sequent time stepsizes are bounded from below and above

ρmin 6
τn+1

τn
6 ρmax , n ∈ {0,1, . . . ,N−2} . (2.1)

For a given initial approximation, the time-discrete solution values are determined by recurrence

u0 ≈ u(t0) , un+1 = Sn(τn)un ≈ u(tn+1) , n ∈ {0,1, . . . ,N−1} ; (2.2a)

a high-order CFQM exponential integrator can be cast into the format

Sn(τn) =
J

∏
j=1

eτnBn j ,

J = {1, . . . ,J} , K = {1, . . . ,K} ,

Ank = A(tn + ckτn) , Bn j =
K

∑
k=1

a jk Ank , ( j,k) ∈J ×K .

(2.2b)

As common, we relate the nodes to quadrature nodes which we assume to be contained in the unit
interval and monotonically increasing

0 6 c1 < · · ·< cK 6 1; (2.3a)

for evolution equations of parabolic type, it is beneficial to permit complex coefficients in the linear
combinations. Henceforth, we use the abbreviations

b j =
K

∑
k=1

a jk , d j =
j

∑
`=1

b` , γ j` =
K

∑
k=1

a jk c`k , j ∈J , ` ∈ N , (2.3b)

and set d0 = 0 as well as d0
0 = 1. For a time-independent operator A, we have

Sn(τn) =
J

∏
j=1

eτnb jA ,

which explains the basic necessity of the positivity condition

ℜb j > 0 , j ∈J ; (2.3c)
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indeed, this elemental requirement ensures that a CFQM exponential integrator remains well-defined
within the analytical framework of sectorial operators and analytic semigroups, see also Section 3.
Moreover, we tacitly assume that the consistency condition

dJ =
J

∑
j=1

b j =
J

∑
j=1

K

∑
k=1

a jk = 1 (2.3d)

is satisfied; this relation is a direct consequence of the basic requirement Sn(τn) = eτnA for a time-
independent operator A. We recall that p ∈ N denotes the nonstiff order of the method.

EXAMPLES As illustration and in view of numerical comparisons described in Section 4, we recall the
CFQM exponential integrators introduced before and specify the coefficients of fifth- and sixth-order
schemes. For further examples, among them optimised schemes with small effective error constants,
we refer to ALVERMANN, FEHSKE (2011); ALVERMANN, FEHSKE, LITTLEWOOD (2012); BLANES,
CASAS, OTEO, ROS (2009); BLANES, MOAN (2006).

Often, the coefficient matrix a ∈ CJ×K is defined by the Gaussian nodes and weights (ci,wi)
K
i=1,

which correspond to a quadrature approximation of maximum order 2K. In some situations, however,
the use of a different quadrature formula of the same order or higher may be convenient or favourable,
providing more accurate approximations without considerably increasing the computational cost. The
new coefficient matrix related to quadrature nodes and weights (ĉi, ŵi)

K̂
i=1 is given by

â = a
(
Q[K,K]

)−1 Q̂[K,K̂] ,

Q[K,K] ∈ RK×K , Q[K,K]
i j = w j

(
c j− 1

2

)i−1
, i, j ∈ {1, . . . ,K} ,

Q̂[K,K̂] ∈ RK×K̂ , Q̂[K,K̂]
i j = ŵ j

(
ĉ j− 1

2

)i−1
, i ∈ {1, . . . ,K} , j ∈ {1, . . . , K̂} .

We note that the row sums of a are equal to the row sums of â, that is, the validity of condition (2.3c) is
independent of the underlying quadrature formula.

(i) Order 2. The exponential midpoint rule (1.4) is based on a single Gaussian node and involves a
single exponential at each time step

p = 2 , J = K = 1 , c1 =
1
2 , w1 = 1 , a11 = 1;

evidently, condition (2.3c) is satisfied. Considering instead the trapezoidal rule, we obtain

ĉ1 = 0 , ĉ2 = 1 , ŵ1 = ŵ2 =
1
2 , â11 = â12 =

1
2 .

(ii) Order 4. The fourth-order CFQM exponential integrator (1.5) is based on the Gaussian quadrature
formula and requires the evaluation of two exponentials at each time step

p = 4 , J = K = 2 , c1 =
1
2 −

√
3

6 , c2 =
1
2 +

√
3

6 , w1 = w2 =
1
2 ,

a =

(
1
4 +

√
3

6
1
4 −

√
3

6
1
4 −

√
3

6
1
4 +

√
3

6

)
;

(2.4)

in particular, condition (2.3c) is satisfied, since

b1 = a11 +a12 =
1
2 , b2 = a21 +a22 =

1
2 .
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For instance, for the Simpson rule, we obtain

ĉ1 = 0 , ĉ2 =
1
2 , ĉ3 = 1 , ŵ1 = ŵ3 =

1
6 , ŵ2 =

2
3 ,

â = 1
12

(
3 4 −1
−1 4 3

)
;

for the sixth-order Gaussian quadrature formula, we have

ĉ1 =
1
2 −
√

3
20 , ĉ2 =

1
2 , ĉ3 =

1
2 +
√

3
20 , ŵ1 = ŵ3 =

5
18 , ŵ2 =

4
9 ,

â =

(
5+2
√

15
36

2
9

5−2
√

15
36

5−2
√

15
36

2
9

5+2
√

15
36

)
.

(2.5)

(iii) Order 5. A fifth-order CFQM exponential integrator with complex coefficients that satisfies con-
dition (2.3c) is designed in BLANES, CASAS, THALHAMMER (2016). Employing a quadrature
approximation based on the sixth-order Gaussian quadrature rule, see (2.5), the coefficient matrix
reads

p = 5 , J = K = 3 ,

a =


145+37

√
15

900 + 5+3
√

15
300 i − 1

45 +
1
15 i 145−37

√
15

900 + 5−3
√

15
300 i

− 2
45 −

√
15

50 i 22
45 − 2

45 +
√

15
50 i

145−37
√

15
900 − 5−3

√
15

300 i − 1
45 −

1
15 i 145+37

√
15

900 − 5+3
√

15
300 i

 ;
(2.6)

in particular, this implies
ℜb1 = ℜb3 =

3
10 , b2 =

2
5 .

(iv) Order 6. A non-optimised sixth-order CFQM exponential integrator results from the coefficients
( f jk)

3
j,k=1 given in (ALVERMANN, FEHSKE, 2011, Table 3, CF6:6); using again the sixth-order

Gaussian quadrature rule yields

p = 6 , J = 6 , K = 3 ,

f =

 0.160000000000000 −0.151015389377465 0.133046168132396
−0.227381647426963 0.087654259755115 0.069919836812657

0.567381647426963 −0.210351545122098 −0.202966004945053

 ,

F =


f11 f12 f13
f21 f22 f23
f31 f32 f33
f31 − f32 f33
f21 − f22 f23
f11 − f12 f13

 , G =

 1 0 0
0 6 0
− 5

2 0 30

 , a = F GQ[3,3] ,

a =


0.215838996975768 −0.076717964591551 0.020878967615784
−0.080897796320853 −0.178747217537158 0.032263366431047

0.180628460055830 0.477687404350931 −0.090934216979798
−0.090934216979798 0.477687404350931 0.180628460055830

0.032263366431047 −0.178747217537158 −0.080897796320853
0.020878967615784 −0.076717964591551 0.215838996975768

 .

(2.7)
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We point out that condition (2.3c) does not hold, since

b1 = b6 = 0.16 , b2 = b5 =−0.227381647426963 , b3 = b4 = 0.567381647426963;

thus, a poor stability behaviour is observed for evolution equations of parabolic type. As al-
ternative, we introduce a sixth-order CFQM exponential integrator with complex coefficients,
see BLANES, CASAS, THALHAMMER (2016); when based on the Gaussian nodes (2.5), the
scheme is given by

p = 6 , J = 5 , K = 3 , a = ℜa+ℑa ,

ℜa =


0.194217945883438 −0.056316450736459 0.014749454957822
0.103849953683652 0.155323390036559 −0.032809068534171
−0.002230508212962 0.246430565844245 −0.002230508212962
−0.032809068534171 0.155323390036559 0.103849953683652

0.014749454957822 −0.056316450736459 0.194217945883438

 ,

ℑa =


0.032784503082251 −0.002894852021076 0.000390316102524
−0.032105649424546 0.056238557581740 −0.007595658537257

0.006526488777028 −0.106687411121327 0.006526488777028
−0.007595658537257 0.056238557581740 −0.032105649424546

0.000390316102524 −0.002894852021076 0.032784503082251

 ,

(2.8)

which in particular implies

ℜb1 = ℜb5 = 0.1526509501048 , ℜb2 = ℜb4 = 0.22636427518604 ,
ℜb3 = 0.241969549418321 .

3. Convergence analysis

In this section, we establish a convergence result for high-order CFQM exponential integrators applied to
non-autonomous linear evolution equations of parabolic type. In Section 3.1, we specify our hypotheses
on the defining operator and recapitulate basic results related to sectorial operators in Banach spaces;
for details on the employed analytical framework, we refer to the standard works ENGEL, NAGEL
(2000); HENRY (1981); PAZY (1983); TANABE (1979) and in particular to the monograph LUNARDI
(1995). An elementary initial-boundary-value problem introduced in Section 3.2 serves as illustration
and test problem for numerical comparisons. A fundamental stability estimate and a suitable local error
expansion are stated in Sections 3.3 and 3.4. Our main result is finally given in Section 3.5.

3.1 Analytical framework

As before, we let (X ,‖·‖X ) denote the underlying Banach space and assume that the Banach space
(D,‖ · ‖D) is dense and continuously embedded in X . For some exponent µ ∈ (0,1), the associated
intermediate space D⊂ Xµ ⊂ X satisfies a bound of the form

‖x‖Xµ
6C‖x‖µ

D ‖x‖
1−µ

X , x ∈ D ; (3.1)

as common, we set X0 = X and X1 = D. Examples for intermediate spaces are real interpolation spaces
or fractional power spaces, see HENRY (1981); LUNARDI (1995); PAZY (1983). We employ the follow-
ing hypotheses on the family (A(t))t∈[t0,T ] defining the right-hand side of (1.1), see (LUNARDI, 1995,
Ch. 6.1).
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Hypothesis 1 (i) The linear operator A(t) : D→ X is sectorial, uniformly in t ∈ [t0,T ]; that is, there
exist constants a ∈ R, φ ∈ (0, π

2 ), and C1 > 0 such that the resolvent estimate

∥∥(λ I−A(t))−1∥∥
X←X 6

C1

|λ −a|
(3.2a)

holds for all t ∈ [t0,T ] and complex numbers λ ∈ C\Sφ (a) in the complement of the sector

Sφ (a) = {a}∪
{

λ ∈ C : |arg(a−λ )|6 φ
}
.

(ii) The graph norm of A(t) and the norm in D are equivalent for any t ∈ [t0,T ]; that is, there exists a
constant C2 > 0 such that the relation

C−1
2 ‖x‖D 6 ‖x‖X +

∥∥A(t)x
∥∥

X 6C2‖x‖D , x ∈ D , (3.2b)

is valid for all t ∈ [t0,T ].

(iii) The regularity requirement A ∈ C ϑ
(
[t0,T ],L(D,X)

)
holds for some ϑ ∈ (0,1]; that is, there exists

a constant C3 > 0 such that the bound∥∥A(t)−A(s)
∥∥

X←D 6C3 (t− s)ϑ (3.2c)

is valid for all s, t ∈ [t0,T ].

Let t ∈ [t0,T ]. Under the above assumptions, the sectorial operator A(t) : D → X generates an
analytic semigroup

(
eσA(t)

)
σ>0, given by the integral formula of Cauchy

eσA(t) =


1

2πi

∫
Γ

eλ
(
λ I−σA(t)

)−1 dλ , σ > 0 ,

I , σ = 0 ,

for some path Γ surrounding the spectrum of A(t); the resolvent estimate (3.2a) ensures that the operator
eσA(t) : X → X remains bounded, see also relation (3.3) below.

In order to show well-definedness and stability of high-order CFQM exponential integrators, we
make use of the following auxiliary considerations, see also HENRY (1981); LUNARDI (1995); PAZY
(1983).

Remark 1 Let t ∈ [t0,T ].

(i) For any τ > 0 and λ ∈ C\Sφ (a), the resolvent bound implies

∥∥(λ I− τA(t))−1∥∥
X←X = 1

τ

∥∥( 1
τ

λ I−A(t))−1∥∥
X←X 6

C1

|λ − τa|
.
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By the required equivalence of the graph norm and the norm in D, this yields the estimate∥∥(λ I− τA(t))−1∥∥
D←D = sup

‖x‖D=1

∥∥(λ I− τA(t))−1 x
∥∥

D

6C2 sup
‖x‖D=1

(∥∥(λ I− τA(t))−1 x
∥∥

X +
∥∥A(t)(λ I− τA(t))−1 x

∥∥
X

)
6C2

∥∥(λ I− τA(t))−1∥∥
X←X sup

‖x‖D=1

(
‖x‖X +

∥∥A(t)x
∥∥

X

)
6C2

2
∥∥(λ I− τA(t))−1∥∥

X←X

6
C1C2

2
|λ − τa|

.

Moreover, together with the identity τA(t)
(
λ I− τA(t)

)−1
= λ

(
λ I− τA(t)

)−1− I, the bound

τ
∥∥(λ I− τA(t))−1∥∥

D←X = sup
‖x‖X=1

τ
∥∥(λ I− τA(t))−1 x

∥∥
D

6C2 sup
‖x‖X=1

(
τ
∥∥(λ I− τA(t))−1 x

∥∥
X + τ

∥∥A(t)(λ I− τA(t))−1 x
∥∥

X

)
6C2

(
τ
∥∥(λ I− τA(t))−1∥∥

X←X +
∥∥λ (λ I− τA(t))−1− I

∥∥
X←X

)
6C2

(
1+

C1(τ + |λ |)
|λ − τa|

)
follows.

(ii) Let Tσ > 0. The above considerations lead to a basic estimate for the analytic semigroup∥∥eσA(t)∥∥
X←X +

∥∥eσA(t)∥∥
D←D +σ

∥∥eσA(t)∥∥
D←X 6C , σ ∈ [0,Tσ ] ; (3.3a)

more generally, for exponents 0 6 µ 6 ν 6 1 and k ∈ N, we obtain

σ
k+ν−µ

∥∥(A(t))k eσA(t)∥∥
Xν←Xµ

6C , σ ∈ [0,Tσ ] , (3.3b)

see also (3.1).

3.2 Illustration

Let Ω ⊂ R denote a bounded closed interval. In regard to (1.2), we consider the initial value problem
for a non-autonomous linear partial differential equation{

∂tu(x, t) = α2(x, t)∂xxu(x, t)+α1(x, t)∂xu(x, t)+α0(x, t)u(x, t) , (x, t) ∈Ω × [t0,T ] ,
u(x,0) = u0(x) , x ∈Ω .

(3.4)

Under the basic assumption that all values of the leading space-time-dependent coefficient function are
positive, the equation is of parabolic type. In order to rewrite (3.4) as an abstract Cauchy problem of the
form (1.1), we choose the space of continuous functions as underlying Banach space

X = C (Ω ,R) , D = C 2(Ω ,R) ,
A(t) : D−→ X : w 7−→

[
x 7→ α2(x, t)∂xxw(x)+α1(x, t)∂xw(x)+α0(x, t)w(x)

]
, t ∈ [t0,T ] .



HIGH-ORDER CFQM EXPONENTIAL INTEGRATORS 13 of 34

Further restrictions apply when additional boundary conditions are imposed; for instance, in the case of
homogeneous Dirichlet boundary conditions, the domain of the defining operator is given by

D =
{

w ∈ C 2(Ω ,R) : w(x)
∣∣
x∈∂Ω

= 0
}
.

Analogous considerations are valid for alternative choices such as X = L2(Ω ,R).
For a detailed exposition and the natural extension to several space dimensions, we refer

to (LUNARDI, 1995, Ch. 3). Provided that the boundary of the spatial domain Ω ⊂Rd is sufficiently reg-
ular and that the (complex-valued) space-time-dependent coefficient functions are sufficiently smooth
with respect to the spatial variables, it is for instance shown that a (strongly) elliptic second-order differ-
ential operator under homogeneous boundary conditions generates a sectorial operator in the space of
continuous functions, see (LUNARDI, 1995, Corollary 3.1.21). Furthermore, assuming the coefficient
functions to be Hölder-continuous with respect to time permits to extend fundamental results for the
time-independent case to the time-dependent case, see (LUNARDI, 1995, Ch. 6). We point out that the
construction of the evolution operator associated with a non-autonomous linear equation and in partic-
ular the proof of its well-definedness as operator from X to X is a non-trivial task; the stability bound
given in Section 3.3 conforms to the first statement in (LUNARDI, 1995, Corollary 6.1.8).

3.3 Well-definedness and stability

Employing the analytical framework introduced in Section 3.1, it is ensured that high-order CFQM
exponential integrators remain well-defined on the underlying Banach space.

Remark 2 Let n ∈ {0,1, . . . ,N−1} and j ∈J . Under Hypothesis 1 on the linear operator family and
assumption (2.3) on the method coefficients, the operator Bn j : D→ X defining the CFQM exponential
integrator (2.2) is sectorial; indeed, employing the reformulation

Bn j =
K

∑
k=1

a jkA(tn + ckτ) = b j A(tn)+
K

∑
k=1

a jk
(
A(tn + ckτ)−A(tn)

)
,

noting that the operator b j A(tn) is sectorial if ℜb j > 0 and that the remainder is bounded by the
Hölder continuity assumption (3.2c), the statement follows from a perturbation result for sectorial oper-
ators (PAZY, 1983, Sec. 3.2).

A stability bound for high-order CFQM exponential integrators is provided by the following result.

Theorem 1 (Stability) Let n0,n ∈ {0,1, . . . ,N − 1} be such that n0 6 n. Under Hypothesis 1, as-
sumption (2.1) on the sequence of time stepsizes, and condition (2.3c) on the method coefficients, the
time-discrete evolution operator associated with a high-order CFQM exponential integrator (2.2) satis-
fies the following bound with a constant C > 0 that depends on tN = T , in general, but is independent
of N and the stepsize sequence ∥∥∥ n

∏
i=n0

Si(τi)
∥∥∥

X←X
6C .

PROOF. We recall that C > 0 denotes a generic constant which possibly has different values at differ-
ent occurrences. Without loss of generality, we henceforth assume n >> n0; otherwise, the boundedness
of compositions of the time-discrete evolution operator follows at once from a repeated application
of (3.3). Our proof of the above stability bound is in the lines of the preceding work THALHAMMER
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(2006), see also references given therein. The basic idea is to use the relations

n

∏
i=n0

J

∏
j=1

eb jτiA(t) = e(tn+1−tn0 )A(t) ,∥∥e(tn+1−tn0 )A(t)∥∥
X←X +(tn+1− tn0)

∥∥e(tn+1−tn0 )A(t)
∥∥

D←X 6C ,

(3.5)

that are valid for the analytic semigroup generated by the sectorial operator A(t), due to the consistency
condition (2.3) and the bounds in (3.3); for reason which will become clear subsequently, we choose
t = tn0 + cKτn0 . Thus, it suffices to estimate the difference

∆
n
n0
=

n

∏
i=n0

Si(τi)− e(tn+1−tn0 )A(t) .

We employ the telescopic identity

∆
n
n0
=

n

∑
i=n0

( n

∏
`=i+1

S`(τ`)
)(

Si(τi)− eτiA(t)
)

e(ti−tn0 )A(t)

=
n−1

∑
i=n0

∆
n
i+1
(
Si(τi)− eτiA(t)

)
e(ti−tn0 )A(t)+

n

∑
i=n0

e(tn+1−ti+1)A(t) (Si(τi)− eτiA(t)
)

e(ti−tn0 )A(t) ;

as a consequence, by (3.5), we obtain the estimate∥∥∆
n
n0

∥∥
X←X 6

∥∥∆
n
n0+1

∥∥
X←X

∥∥Sn0(τn0)− eτn0 A(t)∥∥
X←X

+
n−1

∑
i=n0+1

∥∥∆
n
i+1
∥∥

X←X

∥∥Si(τi)− eτiA(t)
∥∥

X←D

∥∥e(ti−tn0 )A(t)∥∥
D←X

+C
∥∥Sn0(τn0)− eτn0 A(t)∥∥

X←X

+C
n

∑
i=n0+1

∥∥Si(τi)− eτiA(t)
∥∥

X←D

∥∥e(ti−tn0 )A(t)∥∥
D←X

6
∥∥∆

n
n0+1

∥∥
X←X

∥∥Sn0(τn0)− eτn0 A(t)∥∥
X←X

+C
n−1

∑
i=n0+1

(ti− tn0)
−1∥∥∆

n
i+1
∥∥

X←X

∥∥Si(τi)− eτiA(t)
∥∥

X←D

+C
∥∥Sn0(τn0)− eτn0 A(t)∥∥

X←X

+C
n

∑
i=n0+1

(ti− tn0)
−1∥∥Si(τi)− eτiA(t)

∥∥
X←D .

(3.6)

In a similar manner, for some i ∈ {n0, . . . ,n}, the difference Si(τi)− eτiA(t) is rewritten by means of the
telescopic identity

Si(τi)− eτiA(t) =
J

∏
j=1

eτiBi j −
J

∏
j=1

eb jτiA(t)

=
J

∑
`=1

J

∏
j=`+1

eb jτiA(t)
(
eτiBi` − eb`τiA(t)

) `−1

∏
j=1

eτiBi j
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and estimated as follows

∥∥Si(τi)− eτiA(t)
∥∥

X←D 6
J

∑
`=1

∥∥∥ J

∏
j=`+1

eb jτiA(t)
∥∥∥

X←X

∥∥eτiBi` − eb`τiA(t)
∥∥

X←D

∥∥∥ `−1

∏
j=1

eτiBi j
∥∥∥

D←D

6C max
`∈{1,...,J}

∥∥eτiBi` − eb`τiA(t)
∥∥

X←D ,

∥∥Si(τi)− eτiA(t)
∥∥

X←X 6
J

∑
`=1

∥∥∥ J

∏
j=`+1

eb jτiA(t)
∥∥∥

X←X

∥∥eτiBi` − eb`τiA(t)
∥∥

X←X

∥∥∥ `−1

∏
j=1

eτiBi j
∥∥∥

X←X

6C max
`∈{1,...,J}

∥∥eτiBi` − eb`τiA(t)
∥∥

X←X .

An application of the integral formula of Cauchy yields the representation

eτiBi` − eb`τiA(t) = 1
2πi

∫
Γ

eλ
(
(λ I− τiBi`)

−1− (λ I−b`τiA(t))−1) dλ

= τi
1

2πi

K

∑
k=1

a`k
∫

Γ

eλ (λ I− τiBi`)
−1(A(ti + ckτi)−A(t)

)
(λ I−b`τiA(t))−1 dλ

and thus implies the bound

τi
∥∥eτiBi`(τi)− eb`τiA(t)

∥∥
X←X +

∥∥eτiBi`(τi)− eb`τiA(t)
∥∥

X←D 6C τi max
k∈K
|ti + ckτi− t|ϑ ,

see also Hypothesis 1 and Remark 1-2. In regard to (3.6), we set t = tn0 + cKτn0 such that

τi
∥∥Si(τi)− eτiA(t)

∥∥
X←X +

∥∥Si(τi)− eτiA(t)
∥∥

X←D 6C τi max
k∈K
|ti− tn0 + ckτi− cKτn0 |

ϑ ;

this yields the bounds

i = n0 : τn0

∥∥Sn0(τn0)− eτn0 A(t)∥∥
X←X +

∥∥Sn0(τn0)− eτn0 A(t)∥∥
X←D 6C τ

1+ϑ
n0

,

i ∈ {n0 +1, . . . ,n} : τi
∥∥Si(τi)− eτiA(t)

∥∥
X←X +

∥∥Si(τi)− eτiA(t)
∥∥

X←D 6C τi (ti− tn0)
ϑ .

Altogether, by collecting the above bounds and estimating the arising Riemann sums by the correspond-
ing integrals, we obtain

∥∥∆
n
n0

∥∥
X←X 6C τ

ϑ
n0

∥∥∆
n
n0+1

∥∥
X←X +C

n−1

∑
i=n0+1

τi (ti− tn0)
−1+ϑ

∥∥∆
n
i+1
∥∥

X←X

+C τ
ϑ
n0
+C

n

∑
i=n0+1

τi (ti− tn0)
−1+ϑ

6C τ
ϑ
n0

∥∥∆
n
n0+1

∥∥
X←X +C

n−1

∑
i=n0+1

τi (ti− tn0)
−1+ϑ

∥∥∆
n
i+1
∥∥

X←X +C .

A Gronwall-type inequality involving a weakly singular kernel, see for instance BRUNNNER, VAN DER
HOUWEN (1986), finally proves the stated result.



16 of 34 S. BLANES, F. CASAS, M. THALHAMMER

3.4 Local error expansion

Our objective is the derivation of a local error expansion for a high-order CFQM exponential integrator
that is appropriate for non-autonomous evolution equations involving time-dependent unbounded linear
operators. Compared to alternative approaches for nonstiff differential equations, it is essential to cap-
ture the remainder terms and to specify the regularity and compatibility requirements on the problem
data and the exact solution. As the treatment of the general case entails certain technicalities, detailed
calculations are shifted to the appendix; for the less involved case of a fourth-order CFQM exponential
integrator comprising two nodes and two exponentials, the basic expansion steps are also recapitulated
there.

LOCAL ERROR We meanwhile fix n ∈ {0,1, . . . ,N−1}. For the convenience of the reader, we recall
useful abbreviations and a basic consistency condition on the coefficients

Ank = A(tn + ckτn) , k ∈K ,

Bn j =
K

∑
k=1

a jk Ank , b j =
K

∑
k=1

a jk , d j =
j

∑
`=1

b` , j ∈J ,

dJ =
J

∑
j=1

b j = 1 ,

see (2.2) and (2.3). The local error of a CFQM exponential integrator is defined by

δn+1 = u(tn+1)−Sn(τn)u(tn) = u(tn+1)−
J

∏
j=1

eτnBn j u(tn) . (3.7)

Assuming that the coefficients of the method satisfy the p-th nonstiff order conditions, our aim is to
deduce a local error expansion which implies δn+1 = O

(
τ

p+1
n
)
.

LINEARISATION AND SOLUTION REPRESENTATION Let j ∈J be such that b j 6= 0. In order to attain
a local error representation that is appropriate for further stepwise expansions, we rewrite the right-hand
side of the evolution equation (1.1) as follows

u′(t) = A(t)u(t) = B̃n j u(t)+Rn j(t) ,

B̃n j =
1
b j

Bn j , Rn j(t) =
(
A(t)− B̃n j

)
u(t) , t ∈ [tn, tn + τn] .

The variation-of-constants formula together with a linear integral transformation yields

u(tn +d jτn) = u(tn +d j−1τn +b jτn)

= eτnBn j u(tn +d j−1τn)+b j

∫
τn

0
e(τn−σ)Bn j Rn j(tn +d j−1τn +b jσ) dσ ;
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a repeated application of this relation implies

u(tn +d1τn) = eτnBn1 u(tn)+b1

∫
τn

0
e(τn−σ)Bn1 Rn1(tn +b1σ) dσ ,

u(tn +d2τn) = eτnBn2 u(tn +d1τn)+b2

∫
τn

0
e(τn−σ)Bn2 Rn2(tn +d1τn +b2σ) dσ

= eτnBn2 eτnBn1 u(tn)

+b1 eτnBn2

∫
τn

0
e(τn−σ)Bn1 Rn1(tn +b1σ) dσ

+b2

∫
τn

0
e(τn−σ)Bn2 Rn2(tn +d1τn +b2σ) dσ ,

u(tn +d3τn) = eτnBn3 u(tn +d2τn)+b3

∫
τn

0
e(τn−σ)Bn3 Rn3(tn +d2τn +b3σ) dσ

= eτnBn3 eτnBn2 eτnBn1 u(tn)

+b1 eτnBn3 eτnBn2

∫
τn

0
e(τn−σ)Bn1 Rn1(tn +b1σ) dσ

+b2 eτnBn3

∫
τn

0
e(τn−σ)Bn2 Rn2(tn +d1τn +b2σ) dσ

+b3

∫
τn

0
e(τn−σ)Bn3 Rn3(tn +d2τn +b3σ) dσ ,

and, by induction, this leads to

u(tn+1) =
J

∏
j=1

eτnBn j u(tn)+
J

∑
j=1

b j

( J

∏
i= j+1

eτnBni
)∫ τn

0
e(τn−σ)Bn j Rn j(tn +d j−1τn +b jσ) dσ .

LOCAL ERROR REPRESENTATION As a consequence, we obtain the local error representation

δn+1 =
J

∑
j=1

K

∑
k=1

a jk

( J

∏
i= j+1

eτnBni
)∫ τn

0
e(τn−σ)Bn j gn jk(σ) dσ ,

gn jk(σ) =
(
A(tn +d j−1τn +b jσ)−A(tn + ckτn)

)
u(tn +d j−1τn +b jσ) ,

(3.8)

see also (2.2) and (3.7).

FURTHER EXPANSION Starting from the above integral relation, suitable Taylor series expansions of
certain values of A and u lead to a representation of the form

δ
(1)
n+1 =

J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m6p−1

c jk`m τ
`+m+1
n Fjk`m(Bn j, . . . ,BnJ)A(`)(tn)u(m)(tn)+O

(
τ

p+1
n ,A(p),u(p−1))
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with certain coefficients c jk`m and expressions Fjk`m involving the operators Bni for j 6 i 6 J; detailed
calculations are included in the appendix. A further expansion yields the relation

δn+1 =
J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m6p−1

∑
κ∈K j`m

c jk`mκ τ
`+m+|κ|+1
n

×
( J

∏
i= j

Bκi
ni

)
A(`)(tn)u(m)(tn)+O

(
τ

p+1
n ,A(p),u(p−1)) ,

c jk`mκ =
κ j!

`!m!κ! a jk

( `+m

∑
µ=0

(`+m)!
µ!(`+m+κ j+1−µ)! b`+m−µ

j dµ

j−1−
m

∑
ν=0

m!
ν!(m+κ j+1−ν)! bm−ν

j c`k dν
j−1

)
,

(3.9)

and, in a final step, a suitable expansion of the product involving the operators Bni for j 6 i 6 J is
employed.

LOCAL ERROR EXPANSION Altogether, this yields the local error expansion

δn+1 = δ
(4)
n+1 +Rn+1 , (3.10a)

where the principal term

δ
(4)
n+1 =

J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m6p−1

∑
κ∈K j`m

∑
λ∈L j`mκ

κ j!
`!m!κ!λ ! a jk γλ τ

`+m+|κ|+|λ |+1
n

×
( `+m

∑
µ=0

(`+m)!
µ!(`+m+κ j+1−µ)! b`+m−µ

j dµ

j−1

−
m

∑
ν=0

m!
ν!(m+κ j+1−ν)! bm−ν

j c`k dν
j−1

)
A(λ )(tn)A(`)(tn)u(m)(tn)

(3.10b)

retains the nonstiff order conditions imposed on a p-th order CFQM exponential integrator (2.2); more
precisely, a (redundant) set of order conditions results from inspecting the expressions associated with τ

q
n

for exponents q∈ {2, . . . , p} and utilising that certain compositions of A and u as well as time derivatives
thereof are independent. The remainder comprises terms of the form A(`)(s)u(m)(t) with `∈{0,1, . . . , p}
and m ∈ {0,1, . . . , p−1}.

3.5 Convergence result

By means of the stability bound and the local error expansion given in Sections 3.3 and 3.4, we are
able to establish the following convergence result for a CFQM exponential integrator of the form (2.2).
We point out once more that the local error expansion (3.10) implies that the stiff order conditions
coincide with the nonstiff order conditions. A set of ten independent order conditions for nonstiff order
five and the corresponding seven conditions for time-symmetric schemes of order six are stated in our
related work BLANES, CASAS, THALHAMMER (2016), see also references given therein. For notational
simplicity, we formulate the global error estimate for the maximum time stepsize

τ = max
{

τn : n ∈ {0,1, . . . ,N−1}
}
.
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On the basis of the elementary evolution equation introduced in Section 3.2, the regularity and compat-
ibility requirements on the problem data and the exact solution are discussed below.

Theorem 2 Assume that the operator family (A(t))t∈[t0,T ] defining the non-autonomous linear evolution
equation (1.1) satisfies Hypothesis 1; suppose further that the coefficients of the considered CFQM
exponential integrator fulfill the relations in (2.3) and the nonstiff p-th order conditions. Provided that
compositions of the form A(`)(s)u(m)(t) with ` ∈ {0,1, . . . , p} and m ∈ {0,1, . . . , p−1} remain bounded
for s, t ∈ [0,T ], the global error estimate∥∥un−u(tn)

∥∥
X 6C

(∥∥u0−u(t0)
∥∥

X + τ
p) , n ∈ {0,1, . . . ,N} ,

is valid with a constant C > 0 that does not dependent on n and τ .

PROOF. As standard, we employ a telescopic identity to relate the global error to the local errors

un−u(tn) =
(n−1

∏
`=0

S`(τ`)
)(

u0−u(t0)
)
−

n−1

∑
m=0

( n−1

∏
`=m+1

S`(τ`)
)

δm+1 ,

δm+1 = u(tm+1)−
(
Sm(τm)u(tm) .

By means of Theorem 1, the estimate

∥∥un−u(tn)
∥∥

X 6C
∥∥u0−u(t0)

∥∥
X +C

n−1

∑
m=0

∥∥δm+1
∥∥

X

follows. Under the given assumptions on the operator family and the exact solution, the local error
expansion (3.10) is well-defined; in particular, the remainder is bounded in the underlying Banach space∥∥Rm+1

∥∥
X 6C τ

p+1
m .

Provided that the CFQM exponential integrator (2.2) fulfills the nonstiff p-th order conditions, the prin-
cipal error term in (3.10) vanishes, and we obtain

δ
(4)
m+1 = 0 ,

∥∥δm+1
∥∥

X =
∥∥Rm+1

∥∥
X 6C τ

p+1
m .

As a consequence, this implies the stated global error bound.

Remark 3 We note that any CFQM exponential integrator of order five or higher found in the literature
involves merely real coefficients and does not fulfill the positivity condition in (2.3); as a consequence,
the above result does not apply to it.

ELEMENTARY EVOLUTION EQUATION In order to substantiate the implications of Theorem 2, we
reconsider the elementary evolution equation (3.4), choosing again the space of continuous functions
as underlying function space. Provided that the coefficient functions are sufficiently often continuously
differentiable, time derivatives of the defining operator again correspond to second-order differential
operators; for instance, the first time derivative is given by

A′(t) : D−→ X : w 7−→
[
x 7→ ∂tα2(x, t)∂xxw(x)+∂tα1(x, t)∂xw(x)+∂tα0(x, t)w(x)

]
, t ∈ [t0,T ] .
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Straighforward calculations such as

u′(t) = A(t)u(t) ,

u′′(t) =
(
A′(t)+A(t)A(t)

)
u(t) ,

u′′′(t) =
(
A′′(t)+2A′(t)A(t)+A(t)A′(t)+A(t)A(t)A(t)

)
u(t) ,

show that the k-th time derivative of the solution involves the k-fold product (A(t))k for k ∈ N. The
regularity requirements of Theorem 2, reflected for instance in

A(p)(t)u(p−1)(t) ∈ C (Ω ,R) ,

hence correspond to the condition

u(t) ∈ C 2p(Ω ,R) , t ∈ [t0,T ] .

Whenever the solution is subject to boundary conditions, additional restrictions apply; for instance,
in the case of homogeneous Dirichlet boundary conditions, the condition u(p−1)(t) ∈ D in particular
involves the compatibility requirement

∂
2(p−1)
x u(x, t)

∣∣
x∈∂Ω

= 0 , t ∈ [t0,T ] .

ORDER REDUCTIONS In situations, where it is unnatural to assume that certain compositions of the
defining operators and the exact solution satisfy the imposed boundary conditions, order reductions are
encountered. These order reductions are explained by the fact that the relation (A(t))k−κ u(t) ∈ X holds
for certain exponents k ∈ N and κ ∈ (0,1), but (A(t))ku(t) 6∈ X . The smoothing property of an analytic
semigroup, reflected in relation (3.3), then permits to use estimates such as

tκ
∥∥(A(t))κ etA(t)(A(t))k−κ u(t)

∥∥
X 6C

∥∥(A(t))k−κ u(t)
∥∥

X , k ∈ N , κ ∈ (0,1) ,

in order to establish global error estimates involving fractional powers of the time increments. For a
detailed error analysis of a fourth-order CFQM exponential integrator and the explanation of signifi-
cant order reductions, we refer to THALHAMMER (2006); a numerical counterexample for an evolution
equation subject to homogeneous Dirichlet boundary conditions is also given there.

FULL DISCRETISATION ERROR Our convergence result for the time-discrete solution is also a basic
ingredient for the derivation of an estimate for the full discretisation error. We sketch the approach for
the exponential midpoint rule applied with constant time stepsize τ > 0 and exact initial value

un =
n−1

∏
`=0

S`(τ)u(t0) =
n−1

∏
`=0

eτ A(t`+
1
2 τ) u(t0) , n ∈ {1, . . . ,N} ,

see also (1.4); the fully discrete solution values are obtained by a composition of the form

unM =
n−1

∏
`=0

S̃`M(τ)u(t0) , n ∈ {1, . . . ,N} ,

where the index M reflects the quality of the spatial approximation. For instance, for central finite
differences, the number M corresponds to the number of spatial grid points. Together with a suitable
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interpolation, this procedure defines an element in the underlying function space (and not just a vector
comprising real numbers). The triangle inequality implies that the full discretisation error is bounded
by the time discretisation error, see Theorem 2, and by the error of the additional space discretisation

‖unM−u(tn)‖X 6C τ
p +‖unM−un‖X , n ∈ {1, . . . ,N} .

Employing a telescopic identity, the difference unM−un takes the form( n−1

∏
`=0

S̃`M(τ)−
n−1

∏
`=0

S`(τ)
)

u(t0) =
n−1

∑
`=0

( n−1

∏
m=`+1

S̃mM(τ)

)(
S̃`M(τ)−S`(τ)

)( `−1

∏
m=0

Sm(τ)

)
u(t0) .

Thus, the crucial point is to estimate products of S̃`M(τ) and the defect S̃`M(τ)−S`(τ). Under suitable
regularity requirements on the data of the problem, a global error bound of the form

‖unM−u(tn)‖X 6C
(
τ

p +M−q) , n ∈ {1, . . . ,N} ,

with some exponent q > 0 is expected, see also THALHAMMER (2012) and references given therein.

4. Numerical examples

In this section, we present numerical comparisons for a test equation in a single space dimension. The
definition of the underlying nonlinear equation is somewhat inspired by models arising in pattern for-
mation such as the Kuramoto–Sivashinsky equation and the Gierer-Meinhardt equations, but with a
nonlinear diffusion term; for this type of problems, it is also natural to consider periodic boundary con-
ditions. Our test equation is rather elementary from a computational point of view and has been chosen
in this way for two reasons. First, in order to enable a comparison with other high-order CFQM expo-
nential integrators given in the literature, a sufficiently low degree of freedom is required; otherwise,
the poor stability behaviour of CFQM exponential integrators involving merely real coefficients would
entirely spoil the numerical result (not a number). Second, our purpose here is to confirm the favourable
stability behaviour of schemes involving complex coefficients and our theoretical global error estimate,
rather than exhaustively analysing the efficiency of our novel schemes on realistic problems.

Simulations for relevant applications are found in ALVERMANN, FEHSKE, LITTLEWOOD (2012);
for a more detailed assessment of our novel schemes when applied to a dissipative quantum system of
higher dimension, we refer to BLANES, CASAS, THALHAMMER (2016).

TEST EQUATION Let Ω = [0,1]. In regard to (1.2) and Section 3.2, we consider the nonlinear
diffusion-advection-reaction equation

∂tU(x, t) = f2
(
U(x, t)

)
∂xxU(x, t)+ f1

(
U(x, t)

)
∂xU(x, t)+ f0

(
U(x, t)

)
+g(x, t) , (x, t) ∈Ω × [0,T ] ,

(4.1a)

defined by the scalar functions

f2(w) = 1
10

(
cos(w)+ 11

10

)
, f1(w) = 1

10 w , f0(w) = w
(
w− 1

2

)
; (4.1b)

the inhomogeneity is chosen such that the exact solution is equal to

U(x, t) = e− t sin(2π x) .
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FIG. 1. Time integration of test equation (4.1) by different CFQM exponential integrators of nonstiff orders p = 2,4,5,6. Left:
Periodic boundary conditions. Global errors at time T = 1 versus the chosen time stepsizes. Right: Homogeneous Dirichlet
boundary conditions. Global errors at time T = 1, measured on the entire spatial domain and in the interior, respectively, versus
the chosen time stepsizes. Numerical results obtained for M = 100 (first row) and M = 120 (second row) grid points.

The associated variational equation

∂tu(x, t) = α2(x, t)∂xxu(x, t)+α1(x, t)∂xu(x, t)+α0(x, t)u(x, t) , (x, t) ∈Ω × [0,T ] , (4.1c)

involves the space-time-dependent coefficient functions

α2(x, t) = f2
(
U(x, t)

)
, α1(x, t) = f1

(
U(x, t)

)
,

α0(x, t) = f ′2
(
U(x, t)

)
∂xxU(x, t)+ f ′1

(
U(x, t)

)
∂xU(x, t)+ f ′0

(
U(x, t)

)
,

(4.1d)

where all values of the leading coefficient are positive; we in particular consider the initial state

u(x,0) =
(

sin(2π x)
)2
, x ∈Ω .

NUMERICAL RESULTS For the space discretisation, we choose M = 100 equidistant grid points and
apply standard symmetric finite differences. The time integration is performed by different CFQM ex-
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ponential integrators with time stepsizes 2−` for ` ∈ {1, . . . ,10}; the numerical approximation obtained
for the finest time stepsize serves as reference solution.

In Figure 1, we display the global errors at time T = 1, obtained for the CFQM exponential integra-
tors of nonstiff orders p = 2,4,5,6 introduced in Section 2; the slopes of the lines reflect the orders of
convergence. In accordance with Theorem 2, the nonstiff orders are retained for smaller time stepsizes.

The numerical comparisons also confirm the poor stability behaviour of CFQM exponential inte-
grators that do not verify condition (2.3c). Indeed, for the sixth-order scheme with real coefficients a
satisfactory result is only obtained for sufficiently small time stepsizes; for larger values it fails (not a
number). This unstable behaviour changes for the worse when the spatial grid is refined, see Figure 1.

ORDER REDUCTIONS In situations, where compositions of the involved operators applied to the ex-
act solution values do not satisfy the imposed boundary conditions, an order reduction is expected,
see THALHAMMER (2006). In order to illustrate this error behaviour, we consider (4.1) with

U(x, t) = e− t x(1− x) , u(x,0) = 10x(1− x) ,

and impose homogeneous Dirichlet boundary conditions. We determine the global temporal orders
at time T = 1. In addition, we measure the global errors in the interior of the domain; that is, we only
consider the 80 interior grid points and neglect the contributions of the grid points nearby the boundaries.

The obtained results, displayed in Figure 1, show order reductions of the fourth-, fifth- and sixth-
order schemes to third-order, when the error is measured in the maximum norm, whereas higher con-
vergence rates are obtained in the interior of the spatial domain.

EFFECT OF SPACE DISCRETISATION For comparison, we include the corresponding results obtained
for M = 120 grid points in Figure 1; due to the fact that the size of the errors are retained for the stable
schemes, we conclude that the spatial error is negligible and that the numerical results are independent
of the considered space discretisation method.
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A. Further expansion of the local error

This section is devoted to a detailed derivation of the local error expansion (3.10), starting from (3.8).

AUXILIARY NOTATION AND RESULTS In a first expansion step, we employ Taylor series expansions
of the integrand; that is, we utilise the formula

f (t + s) =
m

∑
i=0

1
i! si f (i)(t)+R

(
sm+1, f (m+1)) ,

R
(
sm+1, f (m+1))= 1

m! sm+1
∫ 1

0
(1−σ)m f (m+1)(t +σs) dσ .

(A.1)
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In order to obtain a compact representation of the resulting integrals and in view of a further expansion, it
is convenient to introduce linear operators which are closely related to the analytic semigroup generated
by a sectorial operator. For t ∈ [t0,T ], σ > 0, and m ∈ N, we set

ϕm
(
σA(t)

)
=

eσA(t) , m = 0 ,
1

(m−1)! σ
−m
∫

σ

0
σ̃

m−1 e(σ−σ̃)A(t) dσ̃ , m > 1;
(A.2a)

referred as ϕ-functions. Evaluation at zero is understood as right-sided limit σ → 0+ such that
ϕm(0) = 1

m! I for any m ∈ N. The corresponding result for the analytic semigroup
(
eσA(t)

)
σ>0 en-

sures that ϕm(σA(t)) : Xµ → Xµ remains bounded for exponents µ ∈ [0,1] and σ ∈ [0,Tσ ], see (3.3). By
means of the recurrence relation

ϕm
(
σA(t)

)
= 1

m! I +σA(t)ϕm+1
(
σA(t)

)
, m ∈ N , (A.2b)

we obtain the expansion

ϕm
(
σA(t)

)
=

M−1

∑
κ=0

1
(m+κ)!

(
σA(t)

)κ
+
(
σA(t)

)M
ϕm+M

(
σA(t)

)
, m ∈ N, M ∈ N>2 . (A.2c)

TAYLOR SERIES EXPANSIONS AND INTEGRATION Let ( j,k) ∈J ×K . In order to expand the local
error (3.8) with respect to the time increment, we employ the Taylor series expansions

A(tn +d j−1τn +b jσ)−A(tn + ckτn) =
q

∑
`=1

1
`!

(
(d j−1τn +b jσ)`− (ckτn)

`
)

A(`)(tn)

+R
(
(d j−1τn +b jσ)q+1,A(q+1))−R

(
(ckτn)

q+1,A(q+1))
u(tn +d j−1τn +b jσ) =

r

∑
m=0

1
m! (d j−1τn +b jσ)m u(m)(tn)

+R
(
(d j−1τn +b jσ)r+1,u(r+1)) ,

see (A.1); clearly, the term involving `= 0 vanishes. An elementary calculation yields

gn jk(σ) =
q

∑
`=1

r

∑
m=0

1
`!m!

(
(d j−1τn +b jσ)`− (ckτn)

`
)
(d j−1τn +b jσ)m A(`)(tn)u(m)(tn)+R jk(σ) ,

R jk(σ) = R
(
(d j−1τn +b jσ)q+1,A(q+1)) r

∑
m=0

1
m! (d j−1τn +b jσ)m u(m)(tn)

−R
(
(ckτn)

q+1,A(q+1)) r

∑
m=0

1
m! (d j−1τn +b jσ)m u(m)(tn)

+
q

∑
`=1

1
`!

(
(d j−1τn +b jσ)`− (ckτn)

`
)

A(`)(tn)R
(
(d j−1τn +b jσ)r+1,u(r+1))

+R
(
(d j−1τn +b jσ)q+1,A(q+1)) R

(
(d j−1τn +b jσ)r+1,u(r+1))

−R
(
(ckτn)

q+1,A(q+1)) R
(
(d j−1τn +b jσ)r+1,u(r+1)) .
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Inserting the above representation into (3.8) implies

δn+1 =
J

∑
j=1

K

∑
k=1

q

∑
`=1

r

∑
m=0

1
`!m! a jk

( J

∏
i= j+1

eτnBni
)

×
∫

τn

0
e(τn−σ)Bn j

(
(d j−1τn +b jσ)`− (ckτn)

`
)
(d j−1τn +b jσ)m dσ A(`)(tn)u(m)(tn)

+
J

∑
j=1

K

∑
k=1

a jk

( J

∏
i= j+1

eτnBni
)∫ τn

0
e(τn−σ)Bn j R jk(σ) dσ .

The integrals arising in the principal local error term are rewritten by means of the binomial series and
the ϕ-functions, which leads to

∫
τn

0
e(τn−σ)Bn j

(
(d j−1τn +b jσ)`− (ckτn)

`
)
(d j−1τn +b jσ)m dσ

=
`+m

∑
µ=0

(`+m
µ

)
b`+m−µ

j dµ

j−1 τ
µ
n

∫
τn

0
e(τn−σ)Bn j σ

`+m−µ dσ

−
m

∑
ν=0

(m
ν

)
bm−ν

j c`k dν
j−1 τ

`+ν
n

∫
τn

0
e(τn−σ)Bn j σ

m−ν dσ

= τ
`+m+1
n

( `+m

∑
µ=0

(`+m)!
µ! b`+m−µ

j dµ

j−1 ϕ`+m+1−µ(τnBn j)−
m

∑
ν=0

m!
ν! bm−ν

j c`k dν
j−1 ϕm+1−ν(τnBn j)

)
.

As a consequence, choosing q = p−1 and r = q−1 = p−2, where p denotes the nonstiff order of (2.2),
we obtain the local error representation

δn+1 = δ
(1)
n+1 +R

(1)
n+1 (A.3a)

δ
(1)
n+1 =

J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m6p−1

1
`!m! a jk τ

`+m+1
n

( J

∏
i= j+1

eτnBni
)

×
( `+m

∑
µ=0

(`+m)!
µ! b`+m−µ

j dµ

j−1 ϕ`+m+1−µ(τnBn j)

−
m

∑
ν=0

m!
ν! bm−ν

j c`k dν
j−1 ϕm+1−ν(τnBn j)

)
A(`)(tn)u(m)(tn) ;

(A.3b)
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in order to indicate the dependence of the remainder

R
(1)
n+1 =

J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m>p

1
`!m! a jk τ

`+m+1
n

( J

∏
i= j+1

eτnBni
)

×
( `+m

∑
µ=0

(`+m)!
µ! b`+m−µ

j dµ

j−1 ϕ`+m+1−µ(τnBn j)

−
m

∑
ν=0

m!
ν! bm−ν

j c`k dν
j−1 ϕm+1−ν(τnBn j)

)
A(`)(tn)u(m)(tn)

+
J

∑
j=1

K

∑
k=1

a jk

( J

∏
i= j+1

eτnBni
)∫ τn

0
e(τn−σ)Bn j R jk(σ) dσ ,

R jk(σ) = R
(
(d j−1τn +b jσ)p,A(p)) p−2

∑
m=0

1
m! (d j−1τn +b jσ)m u(m)(tn)

−R
(
(ckτn)

p,A(p)) p−2

∑
m=0

1
m! (d j−1τn +b jσ)m u(m)(tn)

+
p−1

∑
`=1

1
`!

(
(d j−1τn +b jσ)`− (ckτn)

`
)

A(`)(tn)R
(
(d j−1τn +b jσ)p−1,u(p−1))

+R
(
(d j−1τn +b jσ)p,A(p)) R

(
(d j−1τn +b jσ)p−1,u(p−1))

−R
(
(ckτn)

p,A(p)) R
(
(d j−1τn +b jσ)p−1,u(p−1)) ,

(A.3c)

on the time increment and the highest time derivatives, we employ the short notation

R
(1)
n+1 = O

(
τ

p+1
n ,A(p),u(p−1)) . (A.3d)

EXPANSION OF EXPONENTIAL FUNCTIONS It remains to suitably expand the principal term in the
local error representation (A.3). For this purpose, we apply the following relations for the ϕ-functions

ϕ`+m+1−µ(τnBn j) =
p−`−m−1

∑
κ=0

1
(`+m+κ+1−µ)! (τnBn j)

κ +(τnBn j)
p−`−m

ϕp+1−µ(τnBn j) ,

ϕm+1−ν(τnBn j) =
p−`−m−1

∑
κ=0

1
(m+κ+1−ν)! (τnBn j)

κ +(τnBn j)
p−`−m

ϕp+1−`−ν(τnBn j) ,

see (A.2). This leads to the local error expansion

δn+1 = δ
(2)
n+1 +R

(1)
n+1 +R

(2)
n+1 ,



HIGH-ORDER CFQM EXPONENTIAL INTEGRATORS 27 of 34

δ
(2)
n+1 =

J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m6p−1

p−`−m−1

∑
κ=0

1
`!m! a jk τ

`+m+κ+1
n

×
( `+m

∑
µ=0

(`+m)!
µ!(`+m+κ+1−µ)! b`+m−µ

j dµ

j−1−
m

∑
ν=0

m!
ν!(m+κ+1−ν)! bm−ν

j c`k dν
j−1

)
×
( J

∏
i= j+1

eτnBni
)

Bκ
n j A(`)(tn)u(m)(tn) ,

where the remainder is given by (A.3c) and

R
(2)
n+1 = τ

p+1
n

J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m6p−1

1
`!m! a jk

( J

∏
i= j+1

eτnBni
)

×
( `+m

∑
µ=0

(`+m)!
µ! b`+m−µ

j dµ

j−1 ϕp+1−µ(τnBn j)

−
m

∑
ν=0

m!
ν! bm−ν

j c`k dν
j−1 ϕp+1−`−ν(τnBn j)

)
Bp−`−m

n j A(`)(tn)u(m)(tn) ;

as before, we indicate the highest time-derivatives and write

R
(1)
n+1 +R

(2)
n+1 = O

(
τ

p+1
n ,A(p),u(p−1))

for short. In a further expansion step, we repeatedly employ the recurrence relation

eτnBni = ϕ0(τnBni) =
Λi−1

∑
λi=0

1
λi!

τ
λi
n Bλi

ni + τ
Λi
n BΛi

ni ϕΛi(τnBni) .

Setting ΛJ = p− `−m−κ as well as ΛJ−1 = ΛJ−λJ , we obtain

eτnBnJ eτnBn,J−1 =
ΛJ−1

∑
λJ=0

1
λJ ! τ

λJ
n BλJ

nJ eτnBn,J−1 + τ
ΛJ
n BΛJ

nJ ϕΛJ (τnBnJ)eτnBn,J−1

=
ΛJ−1

∑
λJ=0

ΛJ−1−1

∑
λJ−1=0

1
λJ−1!λJ ! τ

λJ−1+λJ
n BλJ

nJ BλJ−1
n,J−1

+
ΛJ−1

∑
λJ=0

1
λJ ! τ

λJ+ΛJ−1
n BλJ

nJ BΛJ−1
n,J−1 ϕΛJ−1(τnBn,J−1)

+ τ
ΛJ
n BΛJ

nJ ϕΛJ (τnBnJ)eτnBn,J−1

=
ΛJ−1

∑
λJ=0

ΛJ−1−1

∑
λJ−1=0

1
λJ−1!λJ ! τ

λJ−1+λJ
n BλJ

nJ BλJ−1
n,J−1

+ τ
ΛJ
n

(ΛJ−1

∑
λJ=0

1
λJ ! BλJ

nJ BΛJ−1
n,J−1 ϕΛJ−1(τnBn,J−1)+BΛJ

nJ ϕΛJ (τnBnJ)eτnBn,J−1
)

;



28 of 34 S. BLANES, F. CASAS, M. THALHAMMER

we point out that the range for the index λJ−1 is chosen in dependence of the preceding index λJ such
that the remainder involves the same power of the time increment, namely τ

ΛJ
n . In order to indicate

the dependence of the remainder on certain values of A and products thereof, comprising a total of ΛJ

factors, we henceforth employ the short notation O
(
τ

ΛJ
n ,AΛJ

)
; hence, the above relation rewrites as

eτnBnJ eτnBn,J−1 =
ΛJ−1

∑
λJ=0

ΛJ−1−1

∑
λJ−1=0

1
λJ−1!λJ ! τ

λJ−1+λJ
n BλJ

nJ BλJ−1
n,J−1 +O

(
τ

ΛJ
n ,AΛJ

)
.

In an inductive manner, for any j ∈J the expansion

J

∏
i= j+1

eτnBni = ∑
λ∈L j+1

1
λ ! τ

|λ |
n

( J

∏
i= j+1

Bλi
ni

)
+O

(
τ

p−`−m−κ
n ,Ap−`−m−κ

)
,

L j+1 =
{

λ = (λ j+1, . . . ,λJ) ∈ NJ− j : 0 6 λi 6 Λi−1 = p− `−m−κ−
J

∑
ĩ=i+1

λĩ−1 for j+1 6 i 6 J
}

;

follows; here, we set |λ | = λ j+1 + · · ·+λJ as well as λ ! = λ j+1! · · ·λJ! for λ = (λ j+1, . . . ,λJ) ∈ NJ− j.
As a consequence, we obtain

δn+1 = δ
(3)
n+1 +R

(1)
n+1 +R

(2)
n+1 +R

(3)
n+1 ,

δ
(3)
n+1 =

J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m6p−1

p−`−m−1

∑
κ=0

∑
λ∈L j+1

1
`!m!λ ! a jk τ

`+m+κ+|λ |+1
n

×
( `+m

∑
µ=0

(`+m)!
µ!(`+m+κ+1−µ)! b`+m−µ

j dµ

j−1−
m

∑
ν=0

m!
ν!(m+κ+1−ν)! bm−ν

j c`k dν
j−1

)
×
( J

∏
i= j+1

Bλi
ni

)
Bκ

n j A(`)(tn)u(m)(tn) ;

the remainder R
(3)
n+1 comprises certain compositions of the linear operators Bn j for j ∈J and can be

cast into the form O
(
τ

p+1
n ,A(p),u(p−1)

)
. Employing the abbreviation

K j`m =
{

κ = (κ j, . . . ,κJ) ∈ NJ+1− j : 0 6 κ j 6 p− `−m−1 ,

0 6 κi 6 p− `−m−κ j−
J

∑
ĩ=i+1

κĩ−1 for j+1 6 i 6 J
}
,
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we may rewrite δ
(3)
n+1 as follows

δ
(3)
n+1 =

J

∑
j=1

K

∑
k=1

p−1

∑
`=1

p−2

∑
m=0

`+m6p−1

∑
κ∈K j`m

κ j!
`!m!κ! a jk τ

`+m+|κ|+1
n

×
( `+m

∑
µ=0

(`+m)!
µ!(`+m+κ j+1−µ)! b`+m−µ

j dµ

j−1−
m

∑
ν=0

m!
ν!(m+κ j+1−ν)! bm−ν

j c`k dν
j−1

)
×
( J

∏
i= j

Bκi
ni

)
A(`)(tn)u(m)(tn) .

FINAL EXPANSION In a final expansion step, we employ the Taylor series expansion

Bni =
K

∑
k=1

aik A(tn + ckτn) =
K

∑
k=1

Λ−1

∑
λ=0

1
λ ! aik (ckτn)

λ A(λ )(tn)+O
(
τ

Λ
n
)
=

Λ−1

∑
λ=0

1
λ ! γiλ τ

λ
n A(λ )(tn)+O

(
τ

Λ
n
)
,

see also (2.3) for the definition of γiλ . For notational simplicity, we do not specify the remainder terms
arising in this expansion step; again, they can be cast into the form O(τ p+1

n ,A(p),u(p−1)). Analogously to
before, we choose the upper indices such that the same power Λ

(J)
κJ = p−`−m−|κ| occurs; proceeding

by induction, setting Λ
(J)
κJ−1 = Λ

(J)
κJ −λ

(J)
κJ etc., this yields the expansion

J

∏
i= j

Bκi
ni = BnJ BκJ−1

nJ

( J−1

∏
i= j

Bκi
ni

)

=

Λ
(J)
κJ −1

∑
λ
(J)
κJ =0

1
λ
(J)
κJ !

γ
Jλ

(J)
κJ

τ
λ
(J)
κJ

n A(λ
(J)
κJ )(tn)BκJ−1

nJ

( J−1

∏
i= j

Bκi
ni

)
+O

(
τ

Λ
(J)
κJ

n
)

=

Λ
(J)
κJ −1

∑
λ
(J)
κJ =0

Λ
(J)
κJ−1−1

∑
λ
(J)
κJ−1=0

1
λ
(J)
κJ−1!λ (J)

κJ !
γ

Jλ
(J)
κJ−1

γ
Jλ

(J)
κJ

τ
λ
(J)
κJ−1+λ

(J)
κJ

n A(λ
(J)
κJ )(tn)A(λ

(J)
κJ−1)(tn)BκJ−2

nJ

( J−1

∏
i= j

Bκi
ni

)

+O
(
τ

Λ
(J)
κJ

n
)

= ∑
λ∈L j`mκ

1
λ ! γλ τ

|λ |
n A(λ )(tn)+O

(
τ

Λ
(J)
κJ

n
)

;

here, for j ∈J , we employ the abbreviations

λ
(i) = (λ

(i)
1 , . . . ,λ

(i)
κi ) ∈ Nκi , j 6 i 6 J , λ = (λ ( j), . . . ,λ (J)) ∈ N|κ| ,

|λ |=
J

∑
i= j
|λ (i)|=

J

∑
i= j

κi

∑
ηi=1

λ
(i)
ηi , γλ =

J

∏
i= j

κi

∏
ηi=1

γ
iλ (i)

ηi
,

A(λ ) = A(λ
(J)
κJ )(tn) · · ·A(λ

(J)
1 )(tn) · · ·A

(λ
( j)
κ j )(tn) · · ·A(λ

( j)
1 )(tn) ,
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L j`mκ =
{

λ =∈ N|κ| : 0 6 λ
(i)
ηi 6 p− `−m−|κ|−

J

∑
ĩ=i+1

|λ ( ĩ)|−
κi

∑
η̃=ηi+1

λ
(i)
η̃
−1

for 1 6 ηi 6 κi and j 6 i 6 J
}
.

Clearly, the summation over the subindex λ (i) does not arise whenever κi = 0 and, in particular, the
summation over the index λ does not arise whenever |κ| = 0. Altogether, we obtain the local error
expansion (3.10), where the remainder is of the form

Rn+1 = R
(1)
n+1 +R

(2)
n+1 +R

(3)
n+1 +R

(4)
n+1 = O

(
τ

p+1
n ,A(p),u(p−1)) .

B. Illustration

In this section, we illustrate our approach for the derivation of (3.10) on the basis of a fourth-order
CFQM exponential integrator involving two nodes and two exponentials per time step. That is, setting
p = 4 as well as J = K = 2, relation (3.9) involves the index sets

`+m = 1 : (`,m) = (1,0) ,

K110 =
{
(0,0) ,(0,1) ,(0,2) ,(1,0) ,(1,1) ,(2,0)

}
, K210 =

{
0,1,2

}
,

`+m = 2 : (`,m) ∈
{
(1,1) ,(2,0)

}
,

K111 = K120 =
{
(0,0) ,(0,1) ,(1,0)

}
, K211 = K220 =

{
0,1
}
,

`+m = 3 : (`,m) ∈
{
(1,2) ,(2,1) ,(3,0)

}
,

K112 = K121 = K130 =
{
(0,0)

}
, K212 = K221 = K230 =

{
0
}
,
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and thus simplifies to

δn+1 =
2

∑
j=1

2

∑
k=1

3

∑
`=1

2

∑
m=0

`+m63

∑
κ∈K j`m

c jk`mκ τ
`+m+|κ|+1
n

( 2

∏
i= j

Bκi
ni

)
A(`)(tn)u(m)(tn)+O

(
τ

5
n ,A

(4),u(3)
)

=
(
c11100 + c12100 + c21100 + c22100

)
τ

2
n A′(tn)u(tn)

+
(
c1110(1,0)+ c1210(1,0)

)
τ

3
n Bn1 A′(tn)u(tn)

+
(
c1110(0,1)+ c1210(0,1)+ c21101 + c22101

)
τ

3
n Bn2 A′(tn)u(tn)

+
(
c11200 + c12200 + c21200 + c22200

)
τ

3
n A′′(tn)u(tn)

+
(
c11110 + c12110 + c21110 + c22110

)
τ

3
n A′(tn)u′(tn)

+
(
c1110(2,0)+ c1210(2,0)

)
τ

4
n B2

n1 A′(tn)u(tn)

+
(
c1110(0,2)+ c1210(0,2)

)
τ

4
n B2

n2 A′(tn)u(tn)

+
(
c1110(1,1)+ c1210(1,1)

)
τ

4
n Bn2 Bn1 A′(tn)u(tn)

+
(
c21102 + c22102

)
τ

4
n B2

n2 A′(tn)u(tn)

+
(
c1120(1,0)+ c1220(1,0)

)
τ

4
n Bn1 A′′(tn)u(tn)

+
(
c1120(0,1)+ c1220(0,1)+ c21201 + c22201

)
τ

4
n Bn2 A′′(tn)u(tn)

+
(
c11300 + c12300 + c21300 + c22300

)
τ

4
n A′′′(tn)u(tn)

+
(
c1111(1,0)+ c1211(1,0)

)
τ

4
n Bn1 A′(tn)u′(tn)

+
(
c1111(0,1)+ c1211(0,1)+ c21111 + c22111

)
τ

4
n Bn2 A′(tn)u′(tn)

+
(
c11210 + c12210 + c21210 + c22210

)
τ

4
n A′′(tn)u′(tn)

+
(
c11120 + c12120 + c21120 + c22120

)
τ

4
n A′(tn)u′′(tn)

+O
(
τ

5
n ,A

(4),u(3)
)
.

In the present situation, we employ the stepwise expansion

Bni = biA(tn)+O(τn)

= biA(tn)+ γi1τnA′(tn)+O
(
τ

2
n
)

= biA(tn)+ γi1τnA′(tn)+ 1
2 γi2 τ

2
n A′′(tn)+O

(
τ

3
n
)
,

and, as a consequence, we obtain the following local error expansion

δn+1 =C(2)
τ

2
n +C(3)

τ
3
n +C(4)

τ
4
n +O

(
τ

5
n ,A

(4),u(3)
)

comprising the compositions

C(2) =C10 A′(tn)u(tn) ,

C(3) =C010 A(tn)A′(tn)u(tn)+C20 A′′(tn)u(tn)+C11 A′(tn)u′(tn) ,

C(4) =C110 A′(tn)A′(tn)u(tn)+C0010 A(tn)A(tn)A′(tn)u(tn)+C020 A(tn)A′′(tn)u(tn)

+C30 A′′′(tn)u(tn)+C011 A(tn)A′(tn)u′(tn)+C21 A′′(tn)u′(tn)+C12 A′(tn)u′′(tn) ,
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where

C10 = c11100 + c12100 + c21100 + c22100 ,

C010 = b1
(
c1110(1,0)+ c1210(1,0)

)
+b2

(
c1110(0,1)+ c1210(0,1)+ c21101 + c22101

)
,

C20 = c11200 + c12200 + c21200 + c22200 ,

C11 = c11110 + c12110 + c21110 + c22110 ,

C110 = γ11
(
c1110(1,0)+ c1210(1,0)

)
+ γ21

(
c1110(0,1)+ c1210(0,1)+ c21101 + c22101

)
,

C0010 = b2
1
(
c1110(2,0)+ c1210(2,0)

)
+b1b2

(
c1110(1,1)+ c1210(1,1)

)
+b2

2
(
c1110(0,2)+ c1210(0,2)+ c21102 + c22102

)
,

C020 = b1
(
c1120(1,0)+ c1220(1,0)

)
+b2

(
c1120(0,1)+ c1220(0,1)+ c21201 + c22201

)
,

C30 = c11300 + c12300 + c21300 + c22300 ,

C011 = b1
(
c1111(1,0)+ c1211(1,0)

)
+b2

(
c1111(0,1)+ c1211(0,1)+ c21111 + c22111

)
,

C21 = c11210 + c12210 + c21210 + c22210 ,

C12 = c11120 + c12120 + c21120 + c22120 .

We note that the operators A(t) and A′(t) do not commute in general; thus, using the differential equation
and inserting the relations u′(t) = A(t)u(t) as well as u′′(t) = A′(t)u(t)+A(t)A(t)u(t) does not lead to
a further simplification. The requirement

δn+1 = O
(
τ

5
n
)

implies that the quantities

C10 , C010 , C20 , C11 , C110 , C0010 , C020 , C30 , C011 , C21 , C12 ,

involving the method coefficients a jk and ck for j = 1,2 and k= 1,2 should vanish; this set of (redundant)
order conditions possesses a uniquely determined solution, the CFQM exponential integrator (2.4) based
on two Gaussian nodes. For completeness, the order conditions are included in a simple MAPLE-
implementation.

> restart;

Coefficient for kappa = 0
> cc := proc(j,k,ell,m)
1/(ell!*m!)*a[j,k]*(sum((ell+m)!/mu!/(ell+m+1-mu)!*b[j]^(ell+m-mu)*d[j-1]^mu,mu=0..ell+m)
- sum(m!/nu!/(m+1-nu)!*b[j]^(m-nu)*c[k]^ell*d[j-1]^nu,nu=0..m));
end proc:

Coefficient for j = 1 with (kappa1, kappa2)
> ccj1 := proc(j,k,ell,m,kappa1,kappa2)
kappa1!/(ell!*m!*kappa1!*kappa2!)*a[j,k]
*(sum((ell+m)!/mu!/(ell+m+kappa1+1-mu)!*b[j]^(ell+m-mu)*d[j-1]^mu,mu=0..ell+m)
- sum(m!/nu!/(m+kappa1+1-nu)!*b[j]^(m-nu)*c[k]^ell*d[j-1]^nu,nu=0..m));
end proc:

Coefficient for j = 2 with kappa2
> ccj2 := proc(j,k,ell,m,kappa2)
kappa2!/(ell!*m!*kappa2!)*a[j,k]
*(sum((ell+m)!/mu!/(ell+m+kappa2+1-mu)!*b[j]^(ell+m-mu)*d[j-1]^mu,mu=0..ell+m)
- sum(m!/nu!/(m+kappa2+1-nu)!*b[j]^(m-nu)*c[k]^ell*d[j-1]^nu,nu=0..m));
end proc:
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Order conditions
> J := 2:
K := 2:
for j from 1 to J do
b[j] := sum(a[j,’k’],’k’=1..K);
od:
for j from 1 to J do
d[j] := sum(b[’ell’],’ell’=1..j);
od:
for ell from 1 to 1 do
for j from 1 to J do
gam[j,ell] := sum(a[j,’k’]*c[’k’]^ell,’k’=1..j);
od;
od:
> C[0] := d[2] = 1:
C[1,0] := simplify(cc(1,1,1,0) + cc(1,2,1,0) + cc(2,1,1,0) + cc(2,2,1,0)):
C[0,1,0] := simplify(b[1]*(ccj1(1,1,1,0,1,0) + ccj1(1,2,1,0,1,0))
+ b[2]*(ccj1(1,1,1,0,0,1) + ccj1(1,2,1,0,0,1) + ccj2(2,1,1,0,1) + ccj2(2,2,1,0,1))):
C[2,0] := simplify(cc(1,1,2,0) + cc(1,2,2,0) + cc(2,1,2,0) + cc(2,2,2,0)):
C[1,1] := simplify(cc(1,1,1,1) + cc(1,2,1,1) + cc(2,1,1,1) + cc(2,2,1,1)):
C[1,1,0] := simplify(gam[1,1]*(ccj1(1,1,1,0,1,0) + ccj1(1,2,1,0,1,0))
+ gam[2,1]*(ccj1(1,1,1,0,0,1) + ccj1(1,2,1,0,0,1) + ccj2(2,1,1,0,1) + ccj2(2,2,1,0,1))):
C[0,0,1,0] := simplify(b[1]^2*(ccj1(1,1,1,0,2,0) + ccj1(1,2,1,0,2,0))
+ b[1]*b[2]*(ccj1(1,1,1,0,1,1) + ccj1(1,2,1,0,1,1))
+ b[2]^2*(ccj1(1,1,1,0,0,2) + ccj1(1,2,1,0,0,2) + ccj2(2,1,1,0,2) + ccj2(2,2,1,0,2))):
C[0,2,0] := simplify(b[1]*(ccj1(1,1,2,0,1,0) + ccj1(1,2,2,0,1,0))
+ b[2]*(ccj1(1,1,2,0,0,1) + ccj1(1,2,2,0,0,1) + ccj2(2,1,2,0,1) + ccj2(2,2,2,0,1))):
C[3,0] := simplify(cc(1,1,3,0) + cc(1,2,3,0) + cc(2,1,3,0) + cc(2,2,3,0)):
C[0,1,1] := simplify(b[1]*(ccj1(1,1,1,1,1,0) + ccj1(1,2,1,1,1,0))
+ b[2]*(ccj1(1,1,1,1,0,1) + ccj1(1,2,1,1,0,1) + ccj2(2,1,1,1,1) + ccj2(2,2,1,1,1))):
C[2,1] := simplify(cc(1,1,2,1) + cc(1,2,2,1) + cc(2,1,2,1) + cc(2,2,2,1)):
C[1,2] := simplify(cc(1,1,1,2) + cc(1,2,1,2) + cc(2,1,1,2) + cc(2,2,1,2)):
> OCs := subs(d[0]=0, {C[0],C[1,0],C[0,1,0],C[2,0],C[1,1],C[1,1,0],C[0,0,1,0],C[0,2,0],
C[3,0],C[0,1,1],C[2,1],C[1,2]}):

Solution of order conditions

> allvalues(solve(OCs))[2];

{a1,1 =
1
4
+

√
3

6
, a1,2 =

1
4
−
√

3
6

, a2,1 =
1
4
−
√

3
6

, a2,2 =
1
4
+

√
3

6
, c1 =

1
2
−
√

3
6

,c2 =
1
2
+

√
3

6
}

References

A. ALVERMANN, H. FEHSKE, High-order commutator-free exponential time-propagation of driven quantum
systems. J. Comp. Phys. 230/15 (2011) 5930–5956.

A. ALVERMANN, H. FEHSKE, P. B. LITTLEWOOD, Numerical time propagation of quantum systems in radiation
fields. New. J. Phys. 14 (2012) 105008 (22pp).

PH. BADER, A. ISERLES, K. KROPIELNICKA, P. SINGH, Efficient methods for linear Schrödinger equation in the
semiclassical regime with time-dependent potential. Proc. R. Soc. A 472 (2016) 20150733.

S. BLANES, F. CASAS, M. THALHAMMER, High-order commutator-free quasi-Magnus exponential integrators
for non-autonomous linear evolution equations. In preparation.

S. BLANES, F. CASAS, J. A. OTEO, J. ROS, The Magnus expansion and some of its applications. Physics Reports
470/5-6 (2009) 151–238.

S. BLANES, P. C. MOAN, Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear
dynamical systems. App. Num. Math. 56/12 (2006) 1519–1537.

H. BRUNNNER, P.J. VAN DER HOUWEN, The numerical solution of Volterra equations. CWI Monographs 3.
North-Holland, Amsterdam, 1986.

E. CELLEDONI, A. MARTHINSEN, B. OWREN, Commutator-free Lie group methods. Future Generation Computer
Systems 19 (2003) 341–352.

P. E. CROUCH AND R. GROSSMAN, Numerical integration of ordinary differential equations on manifolds. J. Non-
linear Sci. 3 (1993) 1–33.

K. J. ENGEL, R. NAGEL, One-Parameter Semigroups for Linear Evolution Equations. Springer, New York, 2000.
D. HENRY, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840, Springer,

Berlin, 1981.



34 of 34 REFERENCES

M. HOCHBRUCK, CH. LUBICH, On Krylov subspace approximations to the matrix exponential operator. SIAM
J. Numer. Anal. 34 (1997) 1911–1925.

M. HOCHBRUCK, CH. LUBICH, On Magnus integrators for time-dependent Schrödinger equations. SIAM J. Nu-
mer. Anal. 41/3 (2003) 945–963.

A. LUNARDI, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel, 1995.
W. MAGNUS, On the exponential solution of a differential equation for a linear operator. Comm. Pure Appl. Math.

7 (1954) 649–673.
C. MOLER, CH. VAN LOAN, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years

later. SIAM Rev. 45/1 (2003) 3–49.
B. OWREN, Order conditions for commutator-free Lie group methods. J. Phys. A 39/19 (2006) 5585–5599.
C. V. PAO, Numerical methods for time-periodic solutions of nonlinear parabolic boundary value problems. SIAM

J. Numer. Anal. 39/2 (2001) 647–667.
A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York,

1983.
R. B. SIDJE, Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Software 24

(1998) 130–156.
M. THALHAMMER, A fourth-order commutator-free exponential integrator for nonautonomous differential equa-

tions. SIAM J. Numer. Anal. 44/2 (2006) 851–864.
M. THALHAMMER, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear

Schrödinger equations. SIAM J. Numer. Anal. 50/6 (2012) 3231–3258.
H. TANABE, Equations of Evolution. Pitman, London, 1979.


