
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 33, No. 4, pp. 1525–1548
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Abstract. A typical procedure to integrate numerically the time dependent Schrödinger equa-
tion involves two stages. In the first stage one carries out a space discretization of the continuous
problem. This results in the linear system of differential equations idu/dt = Hu, where H is a real
symmetric matrix, whose solution with initial value u(0) = u0 ∈ CN is given by u(t) = e−itHu0.
Usually, this exponential matrix is expensive to evaluate, so that time stepping methods to construct
approximations to u from time tn to tn+1 are considered in the second phase of the procedure.
Among them, schemes involving multiplications of the matrix H with vectors, such as Lanczos and
Chebyshev methods, are particularly efficient. In this work we consider a particular class of splitting
methods which also involves only products Hu. We carry out an error analysis of these integrators
and propose a strategy which allows us to construct different splitting symplectic methods of differ-
ent order (even of order zero) possessing a large stability interval that can be adapted to different
space regularity conditions and different accuracy ranges of the spatial discretization. The validity
of the procedure and the performance of the resulting schemes are illustrated in several numerical
examples.
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1. Introduction. To describe and understand the dynamics and evolution of
many basic atomic and molecular phenomena, their time dependent quantum me-
chanical treatment is essential. Thus, for instance, in molecular dynamics, the con-
struction of models and simulations of molecular encounters can benefit a good deal
from time dependent computations. The same applies to scattering processes such as
atom-diatom collisions and triatomic photodissociation and, in general, to quantum
mechanical phenomena where there is an initial state that under the influence of a
given potential evolves through time to achieve a final asymptotic state (e.g., chemical
reactions, unimolecular breakdown, desorption, etc.). This requires, of course, solving
the time dependent Schrödinger equation (� = 1)

(1) i
∂

∂t
ψ(x, t) = Ĥψ(x, t),
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where Ĥ is the Hamiltonian operator, ψ : Rd × R −→ C is the wave function repre-
senting the state of the system, and the initial state is ψ(x, 0) = ψ0(x). Usually

(2) Ĥ = T̂ (P̂ ) + V̂ (X̂) ≡ 1

2μ
P̂ 2 + V̂ (X̂)

and the operators X̂, P̂ are defined by their actions on ψ(x, t) as

X̂ψ(x, t) = xψ(x, t), P̂ ψ(x, t) = −i∇ψ(x, t).
The solution of (1) provides all dynamical information on the physical system at any
time. It can be expressed as

(3) ψ(x, t) = Û(t)ψ0(x),

where Û represents the evolution operator, which is linear and satisfies the equa-
tion i dÛ(t)/dt = ĤÛ(t) with Û(0) = I. Since the Hamiltonian is explicitly time
independent, the evolution operator is given formally by

(4) Û(t) = e−itĤ .

In practice, however, the Schrödinger equation has to be solved numerically, and the
procedure involves basically two steps. The first consists in considering a faithful
discrete spatial representation of the initial wave function ψ0(x) and the operator Ĥ
on an appropriately constructed grid. Once this spatial discretization is built, the
initial wave function is propagated in time until the end of the dynamical event. It is
the second stage of this process on which we will concentrate our analysis.

As a result of the discretization of (1) in space, one is left with a linear equa-
tion idu/dt = Hu, with a Hermitian matrix H of large dimension and large norm.
Since evaluating exactly the exponential exp(−itH) is computationally expensive, ap-
proximation methods requiring only matrix-vector products with H are particularly
appropriate [22]. Among them, the class of splitting symplectic methods has received
considerable attention in the literature [13, 23, 27, 2, 3]. In this case exp(−itH) is
approximated by a composition of symplectic matrices. While it has been shown
that stable high order methods belonging to this family do exist, such a high degree
of accuracy may be disproportionate in comparison with the error involved in the
spatial discretization, and also inappropriate, particularly when the problem at hand
involves nonsmooth solutions, as high order methods make small phase errors in the
low frequencies but much larger errors in the high frequencies. An error analysis of
this family of integrators, in particular, could help one to design different efficient
time integrators adapted to different accuracy requirements and spacial regularity
situations.

The analysis carried out in the present paper could be considered a step forward
in this direction. We present a strategy which allows us to construct different splitting
symplectic methods of different order and large stability interval (with a large number
of stages) that can be adapted to different space regularity conditions and different
accuracy ranges of the spatial discretization. When this regularity degree is low,
sometimes the best option is provided by methods of order zero.

Since the splitting methods we analyze here involve only products of the matrix
H with vectors, they belong to the same class of integrators as the Chebyshev and
Lanczos methods, in the sense that all of them approximate exp(−itH)u0 by linear
combinations of terms of the form Hju0 (j ≥ 1).
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The plan of the paper is as follows. In section 2 we review first the Fourier collo-
cation approach, carrying out the spatial discretization of the Schrödinger equation,
and then we turn our attention to the time discretization errors of symplectic split-
ting methods. The bulk of the paper is contained in section 3. There we carry out a
theoretical analysis of symplectic splitting methods and obtain some estimates on the
time discretization error. These estimates in turn allow us to build different classes
of splitting schemes in section 4 which are then illustrated in section 5 in several
numerical examples exhibiting different degrees of regularity. Here we also include,
for comparison, results achieved by the Lanczos and Chebyshev methods. Finally,
section 6 contains some conclusions.

2. Space and time discretization. Among many possible ways to discretize
the Schrödinger equation in space, collocation spectral methods possess several at-
tractive features: they allow a relatively small grid size for representing the wave
function, are simple to implement, and provide an extremely high order of accuracy
if the solution of the problem is sufficiently smooth [11, 12]. In fact, spectral methods
are superior to local methods (such as finite difference schemes) not only when very
high spatial resolution is required but also when long time integration is carried out,
since the resulting spatial discretization does not cause a deterioration of the phase
error as the integration in time goes on [16].

To simplify the treatment, we will limit ourselves to the one-dimensional case.
Although the methods proposed in this work could in principle also be applied to
higher dimensions and several particles as far as it is feasible to compute Hu, such
applications would involve additional difficulties which are beyond the scope of this
work. In consequence, we assume that the wave function is negligible outside an
interval [α, β]. In such a situation one may reformulate the problem on the finite
interval with periodic boundary conditions. After rescaling, one may assume without
loss of generality that the space interval is [0, 2π], and therefore

(5) i
∂

∂t
ψ(x, t) = − 1

2μ

∂2ψ

∂x2
(x, t) + V (x)ψ(x, t), 0 ≤ x < 2π,

with ψ(0, t) = ψ(2π, t) for all t. In the Fourier collocation (or pseudospectral) ap-
proach, one intends to construct approximations based on the equidistant interpola-
tion grid

xj =
2π

N
j, j = 0, . . . , N − 1,

where N is even (although the formalism can also be adapted to an odd number of
points). Then one seeks a solution of the form [22]

(6) ψN (x, t) =
∑

|n|≤N/2

cn(t)e
inx, x ∈ [0, 2π),

where the coefficients cn(t) are related to the grid values ψN (xj , t) through a discrete
Fourier transform of length N , FN [26]. Its computation can be accomplished by the
fast Fourier transform (FFT) algorithm with O(N logN) floating point operations.

In the collocation approach, the grid values ψN (xj , t) are determined by requiring
that the approximation (6) satisfy the Schrödinger equation precisely at the grid
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points xj [22]. This yields a system of N ODEs to determine the N point values
ψN (xj , t):

(7) i
du

dt
= F−1

N DNFN u+ VNu ≡ Hu, u = (u0, u1, . . . , uN−1),

where

(8) DN =
1

2μ
diag(n2), VN = diag(V (xj))

for n = −N/2, . . . , N/2− 1 and j = 0, . . . , N − 1. Observe that the matrices on the
right-hand side of (7) are Hermitian.

An important qualitative feature of this space discretization procedure is that
it replaces the original Hilbert space L2(0, 2π) defined by the quantum mechanical
problem by a discrete one in which the action of operators are approximated by N×N
(Hermitian) matrices obeying the same quantum mechanical commutation relations
[18]. From a quantitative point of view, if the function ψ is sufficiently smooth and
periodic, then the coefficients cn exhibit a rapid decay (in some cases, faster than
algebraically in n−1, uniformly in N), so that typically the value of N in the expansion
(6) need not be very large to accurately represent the solution. Specifically, in [22]
the following result is proved.

Theorem 2.1. Suppose that the exact solution ψ(x, t) of (5) is such that, for
some s ≥ 1, ∂s+2

x ψ(·, t) ∈ L2(0, 2π) for every t ≥ 0. Then the error due to the
approximation ψN (x, t) defined by (6) in the collocation approach is bounded by

‖ψN(·, t)− ψ(·, t)‖ ≤ C N−s(1 + t) max
0≤t′≤t

∥∥∂s+2
x ψ(·, t′)∥∥ ,

where C depends only on s.
When the problem is not periodic, the use of a truncated Fourier series introduces

errors into the computation. In that case several techniques have been proposed to
minimize its effects (see [1, 5] and references therein).

The previous treatment can be generalized to several spatial dimensions, still ex-
ploiting all the one-dimensional features, by taking tensor products of one-dimensional
expansions. The resulting functions are then defined on the Cartesian product of in-
tervals [6, 22].

We can then conclude that after the previous space discretization has been applied
to (5), one ends up with a linear system of ODEs of the form

(9) i
d

dt
u(t) = Hu(t), u(0) = u0 ∈ C

N ,

where H is a real symmetric matrix. This is the starting point for carrying out an
integration in time. Although a collocation approach has been applied here, in fact
any space discretization scheme leading to an equation of the form (9) fits into our
subsequent analysis.

The spatial discretization chosen has of course a direct consequence on the time
propagation of the (discrete) wave function u(t), since the matrix H representing the
Hamiltonian has a discrete spectrum which depends on the scheme. This discrete
representation, in addition, restricts the energy range of the problem and therefore
imposes an upper bound to the high frequency components represented in the prop-
agation [19].
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The exact solution of (9) is given by

(10) u(t) = e−itH u0,

but to compute the exponential of the N×N complex and full matrix −itH (typically
also of large norm) by diagonalizing the matrix H can be prohibitively expensive for
large values of N . In practice, thus, one turns to time stepping methods, advancing
the approximate solution from time tn to tn+1 = tn + Δt, so that the aim is to
construct an approximation un+1 ≈ u(tn+1) = e−iΔtHu(tn) as a map un+1 = φΔtun.

Among them, exponential splitting schemes have been widely used when the
Hamiltonian has the form given by (2) [9, 19, 22]. In that case, (9) reads

(11) i u̇ = (T + V )u, u(0) = u0,

where V is a diagonal matrix associated with V̂ and T is related to the kinetic energy
T̂ . It turns out that the solutions e−itTu0 and e−itV u0 of equations iu̇ = Tu and iu̇ =
V u, respectively, can be easily determined [22], so that one may consider compositions
of the form

(12) e−ibmτV e−iamτT · · · e−ib1τV e−ia1τT ,

where τ ≡ Δt. In (12) the number of exponentials m (and therefore the number of
coefficients {ai, bi}mi=1) has to be sufficiently large to solve all the equations required
to achieve order r (the so-called order conditions).

Splitting methods of this class have several structure-preserving properties. They
are unitary, so that the norm of u is preserved along the integration, and time-
reversible when the composition (12) is symmetric. Error estimates of such methods
applied to the Schrödinger equation [17, 24, 25] seem to suggest that, while they are
indeed very efficient for high spatial regularity, they may not be very appropriate
under conditions of limited regularity.

Here we will concentrate on another class of splitting methods that has been
considered in the literature [13, 23, 27, 2, 3]. Notice that the corresponding H in (7)
is a real symmetric matrix, and thus e−itH is not only unitary but also symplectic
with canonical coordinates q = Re(u) and momenta p = Im(u). In consequence, (9)
is equivalent to [13, 14]

(13) q̇ = Hp, ṗ = −Hq.
Alternatively, one may write

(14)
d

dt

(
q
p

)
=

(
0 H

−H 0

)(
q
p

)
≡ (A+B)

(
q
p

)
,

with the 2N × 2N matrices A and B given by

A =

(
0 H
0 0

)
, B =

(
0 0

−H 0

)
.

The solution operator corresponding to (14) can be written in terms of the rotation
matrix

(15) O(y) =

(
cos(y) sin(y)

− sin(y) cos(y)

)
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as O(tH), which is an orthogonal and symplectic 2N × 2N matrix. Computing
O(tH) exactly (by diagonalizing the matrixH) is, as mentioned before for its complex
representation e−i tH , computationally very expensive, so that one typically splits the
whole time interval into subintervals of length τ ≡ Δt and then approximates O(τH)
acting on the initial condition at each step. Since

eτakA =

(
I akτH
0 I

)
, eτbkB =

(
I 0

−bkτH I

)
,

it makes sense to apply splitting methods of the form

(16) un+1 = eτbmB eτamA · · · eτb1B eτa1A un.

Observe that the evaluation of the exponentials of A and B requires only computing
the productsHp andHq, and this can be done very efficiently with the FFT algorithm.
Since q and p are real vectors, one should use real→complex and complex→real FFTs
to evaluate Tq and Tp. Thus, the cost of computing both together is similar to
evaluating Tu, with u a complex vector. In consequence, the composition (16) requires
2m FFT calls, and therefore its computational cost is similar, in particular, to applying
a Chebyshev or Lanczos polynomial approximation of degree m.

Several methods with different orders have been constructed along these lines
[13, 21, 27]. In particular, the schemes presented in [13] use only m = r exponentials
eτaiA and eτbiB to achieve order r for r = 4, 6, 8, 10, and 12. Furthermore, when the
idea of processing is taken into account, it is possible to design families of symplectic
splitting methods with large stability intervals and a high degree of accuracy [2, 3].
They have the general structure P (τH)K(τH)P−1(τH), where K (the kernel) is built
as a composition (16) and P (the processor) is taken as a polynomial.

Although these methods are neither unitary nor unconditionally stable, they are
symplectic and conjugate to unitary schemes. In consequence, neither the average
error in energy nor the norm of the solution increases with time. In other words,
the quantities ‖u‖2 = uT ū/N and uTHū/(2N) are both approximately preserved
along the evolution, since the committed error is (as shown in subsection 3.1 below)
only local and does not propagate with time. The mechanism that takes place here
is analogous to the propagation of the error in energy for symplectic integrators in
classical mechanics [15]. In addition, the families of splitting methods considered here
are designed to have large stability intervals and can be applied when no particular
structure is required for the Hamiltonian matrix H . Furthermore, they can also
be used in more general problems of the form q̇ = M1p, ṗ = −M2q, resulting, in
particular, from the space discretization of Maxwell equations [3].

3. Analysis of symplectic splitting methods for time discretization. In
this section we proceed to characterize the family of splitting symplectic methods (16),
paying special attention to their stability properties. By interpreting the numerical
solution as the exact solution corresponding to a modified differential equation, it is
possible to prove that the norm and energy of the original system are approximately
preserved along evolution. We also provide rigorous estimates of the time discretiza-
tion error that are uniformly valid as both the space and time discretizations get
finer and finer. The analysis allows us to construct new methods with large stability
domains such that the error introduced is comparable to the error coming from the
space discretization.
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3.1. Theoretical analysis. It is clear that the problem of finding appropriate
compositions of the form (16) for (14) is equivalent to getting coefficients ai, bi in the
matrix

K(τH) =

(
I 0

−bmτH I

)(
I amτH
0 I

)
· · ·

(
I 0

−b1τH I

)(
I a1τH
0 I

)(17)

such that K(τH) approximates the solution O(τH), where O(y) denotes the rota-
tion matrix (15). The matrix K(τH) that propagates the numerical solution of the
splitting method (17) can be written as

(18) K(τH) =

(
K1(τH) K2(τH)
K3(τH) K4(τH)

)
,

where the entriesK1(y) andK4(y) (resp.,K2(y) andK3(y)) are even (resp., odd) poly-
nomials in y ∈ R, and detK(y) = K1(y)K4(y)−K2(y)K3(y) ≡ 1. It is worth stressing
here that by diagonalizing the matrixH with an appropriate linear change of variables,
one may transform the system into N uncoupled harmonic oscillators with frequen-
cies ω1, . . . , ωN . Although in practice one wants to avoid diagonalizing H , numerically
solving system (13) by a splitting method is mathematically equivalent to applying
the splitting method to each of such one-dimensional harmonic oscillators (and then
rewriting the result in the original variables). Clearly, the numerical solution of each
individual harmonic oscillator is propagated by the 2×2 matrix K(y) with polynomial
entries Kj(y) (j = 1, 2, 3, 4) for y = τωj . We will refer to K(y) in what follows as the
propagation matrix, although other denominations have also been used [3, 23].

Moreover, for a given K(y) with polynomial entries, an algorithm has been pro-
posed to factorize K(y) as (17) and uniquely determine the coefficients ai, bi of the
splitting method [3, Proposition 2.3]. Thus, any splitting method is uniquely deter-
mined by its propagation matrix K(y). For this reason, in the analysis that follows
we will be concerned only with such matrices K(y).

When applying splitting methods to the system (13) with time step size τ , the
numerical solution is propagated by (K(τH))n as an approximation to O(τH)n =
O(nτH), which is bounded (with the L2 norm equal to 1) independently of n. It then
makes sense to require that (K(τH))n also be bounded independently of n ≥ 1. This
clearly holds if for each eigenvalue ωj of H , the corresponding 2×2 matrix K(y) with
y = τωj is stable, i.e., if ‖(K(τωj))

n‖ ≤ C for some constant C > 0.
In our analysis, use will be made of the stability polynomial, defined for a given

K(y) by

(19) p(y) =
1

2
trK(y) =

1

2
(K1(y) +K4(y)).

The following proposition, whose proof can be found in [3], provides a characterization
of the stability of K(y).

Proposition 3.1. Let K(y) be a 2× 2 matrix with detK(y) = 1, and let p(y) =
1
2 trK(y), with y ∈ R. Then, the following statements are equivalent:

(a) The matrix K(y) is stable.
(b) The matrix K(y) is diagonalizable with eigenvalues of modulus one.
(c) |p(y)| ≤ 1, and there exists a real matrix Q(y) such that

Q(y)−1K(y)Q(y) = O(φ(y)),(20)

where O(y) is the rotation matrix (15) and φ(y) = arccosp(y) ∈ R.
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We define the stability threshold y∗ as the largest nonnegative real number such
that K(y) is stable for all y ∈ (−y∗, y∗). Thus, (K(τH))n will be bounded indepen-
dently of n ≥ 1 if all the eigenvalues of τH lie on the stability interval (−y∗, y∗), that
is, if τ ρ(H) < y∗, where ρ(H) is the spectral radius of the matrix H . For instance, if
a Fourier collocation approach based on N nodes is applied to discretize (5) in space,
then the spectral radius is of size ρ(H) = O(N2) (cf. (7)–(8)), which shows that τ
must decrease proportionally to N−2 as the number of nodes N increases.

The stability threshold y∗ depends on the coefficients {ai, bi} of the method (16)
and verifies y∗ ≤ 2m, since 2m is the optimal value for the stability threshold achieved
by the concatenation of m steps of length τ/m of the leapfrog scheme [7].

The stability of the matrix K(y) of a splitting method for a given y ∈ R can
alternatively be characterized as follows.

Proposition 3.2. The matrix K(y) is stable for a given y ∈ R if and only if
there exist real quantities φ(y), ε(y), γ(y), with γ(y) 
= 0, such that

K(y) =

⎛
⎝ cos(φ(y)) + ε(y) sin(φ(y)) γ(y) sin(φ(y))

−1 + ε(y)2

γ(y)
sin(φ(y)) cos(φ(y)) − ε(y) sin(φ(y))

⎞
⎠ .(21)

Proof. If K(y) is of the form (21), then, obviously, trK(y) = 2 cos(φ(y)), and thus
cos(φ(y)) = p(y). Moreover, it is straightforward to check that (20) holds with

Q(y) =

(
γ(y)1/2 0

−ε(y) γ(y)−1/2 γ(y)−1/2

)
,(22)

so that K(y) is stable in that case.
Let us assume now that K(y) is stable, so that from the third characterization

given in Proposition 3.1, φ(y) = arccos(p(y)) ∈ R, where p(y) is the stability polyno-
mial. We now consider two cases:

• p(y) = 1 (resp., p(y) = −1), so that K(y) (resp., −K(y)) is similar to the
identity matrix, which implies that K(y) (resp., −K(y)) is also the identity
matrix. In that case, (21) holds with ε(y) = 0 and γ(y) = 1.

• If p(y)2 
= 1, then sin(φ(y)) 
= 0, and we set

ε(y) =
K1(y)−K4(y)

2 sin(φ(y))
, γ(y) =

K2(y)

sin(φ(y))
.

Since det(K(y)) = 1, one has

−K2(y)K3(y) = 1−K1(y)K4(y) = (1 + ε(y)2) sin(φ(y))2,

which implies that γ(y) 
= 0 and

K3(y) = −1 + ε(y)2

γ(y)
sin(φ(y)).

Notice that, for a given splitting method with a nonempty stability interval
(−y∗, y∗), Proposition 3.2 determines two odd functions φ(y) and ε(y) and an even
function γ(y) defined for y ∈ (−y∗, y∗) which characterize the accuracy of the method
when applied with step size τ to a harmonic oscillator of frequency ω, with y = τω.
An accurate approximation will be obtained if |φ(y)− y|, |γ(y)− 1|, and |ε(y)| are all
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small quantities. In particular, if the splitting method is of order r, then

φ(y) = y +O(yr+1), ε(y) = O(yr), γ(y) = 1 +O(yr)

as y → 0. For instance, for the simple first order splitting eτAeτB one has

K(y) =

(
1 y
0 1

)(
1 0
−y 1

)
=

(
1− y2 y
−y 1

)
,

and one can easily check that

φ(y) = arccos(1− y2/2) = 2 arcsin(y/2) = y +O(y3),

ε(y) =
−y√
4− y2

= O(y),

γ(y) =
2√

4− y2
= 1 +O(y2).

It is worth stressing that (21) implies that (20) holds with Q(y) given by (22).
This feature, in particular, allows us to interpret the numerical result obtained by
a splitting method of the form (16) applied to (14) in terms of the exact solution
corresponding to a modified differential equation. Specifically, assume that qn+i pn =
un ≈ u(tn) = exp(−i tnH)u0 is obtained (for tn = nτ , n ≥ 1) as(

qn
pn

)
= K(τH)n

(
q0
p0

)
.

If τ ρ(H) < y∗, then it holds that

ũn ≡ (γ(τH)−1/2 + i ε(τH)γ(τH)−1/2
)
qn + i γ(τH)1/2 pn

trivially verifies ũn = exp(−inφ(τH))ũ0. In other words, ũn is the exact solution at
tn = nτ of the initial value problem

i
d

dt
ũ = H̃ ũ, ũ(0) = ũ0,(23)

where H̃ = 1
τ φ(τH) ≈ H . With this backward error analysis interpretation at hand,

it readily follows the preservation of both the discrete L2 norm of

ũ =
(
γ(τH)−1/2 + i ε(τH)γ(τH)−1/2

)
q + i γ(τH)1/2 p

and the energy corresponding to (23). This implies that the discrete L2 norm of
u = q + i p and the energy of the original system will be approximately preserved
(that is, their variation will be uniformly bounded for all times tn).

3.2. Error estimates. Our goal now is to obtain meaningful estimates of the
time discretization error that are uniformly valid as N → ∞ and τ → 0, that is,
as both the space discretization and the time discretization get finer and finer. We
know that, by stability requirements, the time step used in the time integration by a
splitting method of system (13) must be chosen as τ < y∗/ρ(H), where the stability
threshold must verify y∗ ≤ 2m for an m-stage splitting method. Since the Hermitian
matrix H comes from the space discretization of an unbounded self-adjoint operator,
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the spectral radius ρ(H) will tend to infinity as N → ∞, and thus inevitably τ → 0.
It seems reasonable, then, to introduce the parameter

θ ≡ τρ(H)(24)

and analyze the time integration error corresponding to a fixed value of θ < y∗.
The fact that, for each y ∈ (−y∗, y∗), (20) holds with Q(y) given by (22) implies

that, for each n ≥ 1,

K(y)n =

⎛
⎝ cos(nφ(y)) + ε(y) sin(nφ(y)) γ(y) sin(nφ(y))

−1 + ε(y)2

γ(y)
sin(nφ(y)) cos(nφ(y)) − ε(y) sin(nφ(y))

⎞
⎠ .

This will allow us to obtain rigorous estimates for the error of approximating e−itHu0
by applying n steps of a splitting method with time step τ = t/n. Specifically, we
have (

qn
pn

)
= K(τ H)n

(
q0
p0

)

= O(nφ(τ H))

(
q0
p0

)
+ E(τ H)

(
sin(nφ(τ H))q0
sin(nφ(τ H))p0

)
,(25)

where O(y) denotes the rotation matrix (15) and the 2× 2 matrix E(y) is given by

(26) E(y) =

⎛
⎝ ε(y) γ(y)− 1

−1 + ε(y)2

γ(y)
+ 1 −ε(y)

⎞
⎠ ,

so that the following theorem can be stated.
Theorem 3.3. Given u0 = q0 + ip0, let un = qn + ipn be the approximation to

u(nτ) = e−i nτ Hu0 obtained by applying n steps of length (24) of a splitting method
with stability threshold y∗. Then one has

‖un − u(nτ)‖ ≤ (nμ(θ) + ν(θ)) ‖u0‖

(in the Euclidean norm), where

μ(θ) = sup
0≤y≤θ

|φ(y) − y|, ν(θ) = sup
0≤y≤θ

‖E(y)‖.

Proof. From (25), we can write

‖un − u(nτ)‖ =

∥∥∥∥
(
qn − q(tn)
pn − p(tn)

)∥∥∥∥ ≤
∥∥∥∥(O(nφ) −O(nτH)

) ( q0
p0

)∥∥∥∥
+ ‖E(τH)‖

∥∥∥∥
(

sin(nφ)q0
sin(nφ)p0

)∥∥∥∥ ,
where, for clarity, φ ≡ φ(τH). For the first contribution we have∥∥∥∥(O(nφ) −O(nτH)

) ( q0
p0

)∥∥∥∥ = ‖(e−inφ − e−inτH)u0‖ = ‖e−inτ H(1− e−in(φ−τH))u0‖

≤ ‖(1− e−in(φ−τH))‖ ‖u0‖
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since H is Hermitian. Now

‖(1− e−in(φ−τH))‖ =

∥∥∥∥i n
∫ 1

0

e−in(φ−τH)s (φ− τH) ds

∥∥∥∥
≤ n

∫ 1

0

‖e−in(φ−τH)s‖ ‖φ− τH‖ ds = n ‖φ− τH‖
= n max

1≤j≤N
|φ(τ ωj)− τ ωj | ≤ nμ(θ).

As for the second contribution, one has∥∥∥∥
(

sin(nφ)q0
sin(nφ)p0

)∥∥∥∥ = ‖ sin(nφ)u0‖ ≤ ‖ sin(nφ)‖ ‖u0‖ ≤ ‖u0‖,

whereas

‖E(τ H)‖ = max
1≤j≤N

‖E(τωj)‖ ≤ ν(θ),

and thus the proof is complete.
Notice that the error estimate in the previous theorem does not guarantee that,

for a given t, the error in approximating e−i tHu0 by applying n steps of the method
is bounded as ρ(H) → ∞. As a matter of fact, since τ = t/n must satisfy the stability
restriction θ = τρ(H) < y∗, so that n > t ρ(H)/y∗, one has that n (and hence the
error bound above) goes to infinity as ρ(H) → ∞. This can be avoided by estimating
the error in terms of ‖Hu0‖ in addition to ‖u0‖. The assumption that ‖Hu0‖ can
be bounded uniformly as the space discretization parameter N → ∞ implies that the
initial state ψ(x, 0) of the continuous time dependent Schrödinger equation is such
that ∂2xψ(x, 0) is square-integrable. The converse will also be true for reasonable space
semidiscretizations and a sufficiently smooth potential V (x).

More generally, the assumption that ψ(x, 0) has sufficiently high spatial regularity
(together with suitable conditions on the potential V (x)) is related to the existence
of bounds of the form ‖Hku0‖ ≤ Ck that hold uniformly as ρ(H) → ∞. In this sense,
it is useful to introduce the following notation:

• Given k ≥ 0, we denote for each u ∈ C
N

‖u‖k := ‖Hku‖.

• For an m-stage splitting method with stability threshold y∗, given k ≥ 0 and
θ ∈ [0, y∗), we denote

μk(θ) = sup
0≤y≤θ

∣∣∣∣φ(y)y − 1

∣∣∣∣ (θ/y)k,(27)

νk(θ) = sup
0≤y≤θ

‖E(y)‖ (θ/y)k.(28)

Clearly, μk(θ) and νk(θ) are bounded if and only if the method is of order
r ≥ k.

We are now ready to state the main result of this section.
Theorem 3.4. Given u0 = q0 + ip0 and t ∈ R+, let n be such that τ = t/n =

θ/ρ(H) (with θ < y∗), and let un = qn + ipn be the approximation to u(t) = e−i tHu0
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obtained by applying n steps of length τ of an rth order splitting method with stability
threshold y∗. Then, for each k ∈ [0, r],

‖un − u(t)‖ ≤ t μk(θ) ‖u0‖k+1 + νk(θ)‖u0‖k
ρ(H)k

.(29)

Proof. We proceed as in the proof of Theorem 3.3. First we bound

‖e−inτ Hu0 − e−inφ(τ H)u0‖ ≤ τk+1 ‖(τH)−k−1(1 − e−in(φ(τ H)−τH))‖ ‖u0‖k+1

≤ tθk

ρ(H)k
‖(τH)−k−1(φ(τ H)− τ H))‖ ‖u0‖k+1,

with

‖(τH)−k−1(φ(τ H)− τ H)‖ = max
1≤j≤N

|(τωj)
−k−1(φ(τ ωj)− τ ωj)| ≤ μk(θ)/θ

k.

Then the second term in (25) verifies

τk ‖(τH)−kE(τ H) sin(nφ(τ H))Hku0‖ ≤ θk

ρ(H)k
‖(τH)−kE(τ H)‖ ‖u0‖k,

and

‖(τH)−kE(τ H)‖ = max
1≤j≤N

‖(τωj)
−kE(τωj)‖ ≤ νk(θ)/θ

k,

from which (29) is readily obtained.
Some remarks are in order at this point:
1. Recall that the estimate in Theorem 2.1 shows the behavior of the space

discretization error (of a spectral collocation method applied to the one-
dimensional Schrödinger equation) as the number N of collocation points
goes to infinity. Our estimate (29) shows in turn the behavior of the time
discretization error as N → ∞, provided that τ = θ/ρ(H) with a fixed θ < y∗.
In that case, it can be shown that ρ(H)−1 ≤ LN−2 uniformly for all N , and
thus the error of the full discretization admits the estimate

1

N2k

(
C(1 + t) max

0≤t′≤t

∥∥∂2k+2
x ψ(·, t′)∥∥+ L

(
t μk(θ)‖u0‖k+1 + νk(θ)‖u0‖k

))
.

Notice the similarity of both the space and time discretization errors (‖u0‖k+1 =
‖Hk+1u0‖ is a discrete version of a continuous norm ||ψ(·, 0)||k+1, which is
equivalent to the Sobolev norm ‖∂2k+2

x ψ(·, 0)‖).
2. Given a splitting method with stability threshold y∗ of order r for the har-

monic oscillator, consider μr(θ) and νr(θ) in (27)–(28) for a fixed θ < y∗. If,
instead of analyzing the behavior, as N increases, of the time discretization
error committed by the splitting method when applied with τ = θ/ρ(H), one
is interested in analyzing the error with fixed H and decreasing τ ≤ θ/ρ(H),
then one proceeds as follows. Since by definition

μr(τρ(H)) ≤ μr(θ)

(
ρ(H)τ

θ

)r

, νr(τρ(H)) ≤ νr(θ)

(
ρ(H)τ

θ

)r

,

reasoning as in the proof of Theorem 3.4, one gets the estimate

‖un − u(t)‖ ≤ t μr(θ) ‖u0‖r+1 + νr(θ)‖u0‖r
θr

τr.
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From a practical point of view, (29) can be used to obtain a priori error estimates
just by replacing the exact ρ(H) by an approximation (obtained, for instance, with
some generalization of the power method) or by an estimation based on the knowledge
of bounds of the potential and the eigenvalues of the discretized Laplacian.

The error estimates in Theorem 3.4 provide us with appropriate criteria to con-
struct splitting methods to be applied for the time integration of systems of the form
(13) that result from the spatial semidiscretization of the time dependent Schrödinger
equation. Such error estimates suggest in particular that different splitting meth-
ods should be used depending on the smoothness of the initial state in the original
equation. Also, Theorem 3.4 indicates that for sufficiently long time integrations, the
actual error will be dominated by the phase errors, that is, the errors corresponding
to μk(θ).

4. On the construction of new symplectic splitting methods. Observe
that when comparing the error estimates in Theorem 3.4 for a given k ≥ 0 corre-
sponding to two methods with different number of stages m and m′, respectively, one
should consider time steps τ and τ ′ that are proportional to m and m′, respectively.
In this way, the same computational effort is needed for both methods to obtain a
numerical approximation of u(t) for a given t > 0. It makes sense, then, to consider
a scaled time step of the application with time step τ of an m-stage splitting method
to the system (13). This can be defined as

(30) θ′ ≡ θ

m
=
τρ(H)

m
,

so that the relevant error coefficients associated to the error estimates in Theorem 3.4
are μk(θ

′m) and νk(θ
′m).

The task of constructing a splitting method in this family can thus be precisely
formulated as follows.

Problem. Given a fixed number m of stages in (17), and for prescribed values of
k ≥ 0 and scaled time step θ′ ∈ (0, 2), design some splitting method having order r ≥ k
and stability threshold y∗ > θ′m, which tries to optimize the main error coefficient
μk(θ

′m) while keeping νk(θ
′m) reasonably small.

We have observed, however, that trying to construct such optimized methods in
terms of the coefficients of the polynomial entries Kj(y) (j = 1, 2, 3, 4) of the propaga-
tion matrix K(y) leads us to very ill-conditioned systems of algebraic equations. That
difficulty can be partly overcome by taking into account the following observations:

• The functions |φ(y)/y − 1| and ‖E(y)‖ (y ∈ (−y∗, y∗)) determining the error
estimates in Theorem 3.4 uniquely depend on two polynomials: the stability
polynomial p(y) given in (19) and

q(y) =
K2(y)−K3(y)

2
.(31)

Indeed, on one hand, φ(y) = arccos(p(y)), so that |φ(y)/y − 1| uniquely
depends on p(y). On the other hand, according to Proposition 3.2,

q(y) =

(
1 +

1

2
δ(y)

)
sin(φ(y)), where δ(y) =

(
γ(y) +

1 + ε(y)2

γ(y)

)
− 2,
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and one can get by straightforward algebra that ‖E(y)‖ is (in the Euclidean
norm)

‖E(y)‖ =

√√√√δ(y)

(
1 +

δ(y)

2
+

√
δ(y) +

δ(y)2

4

)

(and thus ‖E(y)‖ =
√
δ(y) +O(δ(y)) as δ(y) → 0).

• Given an even polynomial p(y) and an odd polynomial q(y), there exists a
finite number of propagation matrices K(y) such that (19) and (31) hold.
Indeed, the entries of such stability matrices are of the form

K1(y) = p(y) + d(y), K2(y) = q(y) + e(y),

K3(y) = −q(y) + e(y), K4(y) = p(y)− d(y),

where d(y) and e(y) are, respectively, even and odd polynomials satisfying

p(y)2 + q(y)2 − 1 = d(y)2 + e(y)2.(32)

It is not difficult to see that there is a finite number of choices for such poly-
nomials d(y) and e(y). The ill-conditioning mentioned before seems to come
mainly from the ill-conditioning of the problem of determining d(y) and e(y)
from prescribed polynomials p(y) and q(y). Obviously, a necessary condition
for the existence of such polynomials d(y) and e(y) with real coefficients is
that p(y)2 + q(y)2 − 1 ≥ 0 for all y. It is also straightforward to see that, for
an rth order method, d(y) = O(yr+1) and e(y) = O(yr+1) (as y → 0), and
thus

p(y)2 + q(y)2 − 1 = O(y2r+2).(33)

In addition, if the method has stability threshold y∗ > 0, then there exists
0 < y1 < · · · < yl < y∗ such that φ(yj) = jπ, and thus

p(yj) = (−1)j, p′(yj) = 0, q(yj) = 0 for j = 1, . . . , l.(34)

For simplicity, we restrict ourselves to the construction of m-stage methods of
even order r that are intended to have small values of μr(θ

′m) and νr(θ
′m) for a

prescribed scaled time step θ′ ∈ (0, 2). When designing such a method, we follow
several steps:

1. First find two polynomials p(y) and q(y) with small value of μr(θ
′m) +

λνr(θ
′m) (for some λ < 1) among those satisfying the following three condi-

tions:
(a) There exist yj ≈ jπ (j = 1, . . . , l) with l π ≤ θ′m ≤ (l + 1)π such that

(34) holds;
(b) p(y) = cos(y) +O(yr+1), q(y) = sin(y) +O(yr+1), and (33) as y → 0;
(c) p(y)2 + q(y)2 − 1 > 0 for all y ∈ R.

2. Find all possible pairs (d(y), e(y)) of real (even and odd, respectively) poly-
nomials satisfying (32), and for each pair (d(y), e(y)), construct the corre-
sponding 2× 2 matrix K(y).

3. Apply the algorithm given in [3] to each of the matrices K(y) obtained in the
previous step. In this way we will get the vector of coefficients (ai, bi) of all
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Table 1

Relevant parameters of several new splitting methods of order r especially designed to integrate
with scaled time step θ′ = τρ(H)/m the semidiscretized Schrödinger equation. Here ρ(H) is the
spectral radius of the matrix H, m is the number of stages, y∗ stands for the stability threshold, and
μr(θ), νr(θ) are the coefficients appearing in the error estimate (29).

m r θ′ y∗/m
∑

j(|aj |+ |bj |) μr(θ′m) νr(θ′m)

10 6 1 1.1617 4.022 0.0009341 0.0372

20 16 1 1.0456 3.0553 0.000611028 0.0258433

30 24 1 1.0246 3.19658 0.0000841871 0.0373544

30 6 1.4 1.41876 3.0921 0.0000518519 0.0131295

30 0 1 1.1411 3.04948 2.91902 · 10−13 2.28673 · 10−9

30 0 0.75 1.027 3.44381 1.2545 · 10−17 5.96706 · 10−14

30 0 0.5 0.937874 3.84442 7.96031 · 10−24 6.66693 · 10−18

40 0 1 1.15953 3.21986 1.06301 · 10−15 1.07587 · 10−12

the splitting methods having a propagation matrix K(y) satisfying (19) and
(31) for the pair of polynomials (p(y), q(y)) determined in the first step. Since
Theorem 3.4 gives exactly the same error estimate (29) for all the splitting
schemes obtained in that way, we choose (with the aim of reducing the effect
of round-off errors) one that minimizes

m∑
j=1

(|aj |+ |bj|).

This procedure has been applied to construct several splitting methods of different
orders r, numbers of stages m, and scaled time steps θ′. We collect in Table 1 the
relevant parameters of some of them, whereas the actual coefficients aj , bj can be
found at http://www.gicas.uji.es/Research/splitting1.html. As a matter of fact, all
the methods have m + 1 pairs of coefficients ai, bi, but bm+1 = 0. In consequence,
the last stage at a given step can be concatenated with the first one at the next step,
so that the overall number of stages is m. This property is called first-same-as-last
(FSAL) in the numerical analysis literature. According to the previous comments, the
new schemes are aimed at integrating (13) under very different conditions of regularity.

The first three methods in Table 1 are designed to be applied with the same scaled
time step θ′ = τρ(H)/m = 1, and thus the three of them have the same computational
cost. The order r of the methods is increased by adding more stages while keeping
reasonably small error coefficients μr(θ) and νr(θ). This will be advantageous, ac-
cording to Theorem 3.4, for sufficiently regular initial states. Alternatively, one may
want to use the additional number of stages to reduce the computational cost while
keeping the same order r = 6. This can be illustrated with the fourth method in
Table 1, which has been optimized for scaled time step θ′ = 1.4, and thus is substan-
tially cheaper than the first method (optimized for θ′ = 1) while having smaller error
coefficients μ6(θ) and ν6(θ).

We now turn our attention to the methods of order zero in Table 1, which, ac-
cording to Theorem 3.4, are the methods of choice for very low regularity conditions.
Although they have comparatively smaller error coefficients than the methods of order
r > 1, one should bear in mind that the error estimates (29) for r ≥ k > 1 decrease
with ρ(H)−k as the spectral radius ρ(H) increases, while for methods of order r = 0
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the same estimate holds independently of the size of ρ(H). Comparing the first three
methods of order r = 0 and m = 30, we see that, not surprisingly, the accuracy of
the methods can be improved by increasing the computational cost (by considering
methods optimized for lower values of θ′). This is analogous to increasing the accu-
racy of the application of a Chebyshev polynomial of degree m = 30 by decreasing
the time step size. Now, by comparing the first 30-stage method of order 0 with the
method with m = 40 and order 0, we see that the accuracy can be increased also by
increasing the number of stages from m = 30 to m = 40 while keeping the same com-
putational cost (with θ′ = 1). This is similar to increasing the accuracy of Chebyshev
approximations, while keeping the same computational cost, by increasing the degree
of the polynomial from m = 30 to m = 40.

Recall that, if ω1, . . . , ωN are the eigenvalues of H , then numerically integrating
(13) by a splitting method is mathematically equivalent to applying the splitting
method to N uncoupled harmonic oscillators with frequencies ωj . Particularizing the
proof of Theorem 3.4 to this case, it is quite straightforward to conclude that, when
integrating the system with scaled time step θ′ (that is, with τ = mθ′/ρ(H), where
m is the number of stages of the scheme), the relative error made in each oscillator
can be bounded by

t |ωj|μj + νj ,

where

μj =

∣∣∣∣φ(myj)(myj)
− 1

∣∣∣∣ , νj = ‖E(myj)‖ with |yj | = τ ωj

m
=
θ′ ωj

ρ(H)
,

and thus |yj | ≤ θ′. When such a system of harmonic oscillators originates from
a continuous problem possessing a high degree of regularity, the highest frequency
oscillators have much smaller amplitude and thus can be approximated less accurately
than the lower frequency oscillators without compromising the overall precision. For
lower regularity conditions, the overall precision will be more affected by the accuracy
of the approximations corresponding to higher frequency oscillators.

With the aim of illustrating the relative error made in each harmonic oscillator,
in Figure 1 we represent (in double logarithmic scale) |φ(my)/(my)−1| and ‖E(my)‖
(which are even functions of y) for y ∈ [0, θ′] for some of the methods collected in
Table 1, identified by appropriate labels indicating their respective number of stages,
order, and scaled time step (m, r, θ′). Observe that both functions of y exhibit similar
behavior for each splitting method, although the values taken by the second one
are several orders of magnitude smaller, since the methods are designed to minimize
mainly the phase error coefficient μk(θ). The order r of each of the methods is reflected
in the slope of the curves as y approaches 0.

We also include in Figure 1 the 12th order 12-stage scheme presented in [13],
which is perhaps the most efficient when applied to harmonic oscillators among those
(nonprocessed) splitting methods currently found in the literature. We denote it
by GM12. It has a relative stability threshold y∗/12 = 0.2618, so that, strictly
speaking, it should be used with θ′ = τρ(H)/12 < 0.2618 to guarantee stability.
However, it seems in practice that the method can be safely used with θ′ = 0.932 (for
a larger value of the scaled time step θ′, the method becomes very unstable), because
||p(y)| − 1| < 10−6 provided that |y|/12 < 0.932183. The theoretical instability for
θ′ ∈ (0.2618, 0.932183) is relevant only after a very large number of steps and reveals
itself as resonance peaks (which are clearly visible in the graph of ‖E(my)‖ in Figure 1
for k = 2, 3) near the values θ′ = kπ/12, k = 1, 2, 3.
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Fig. 1. Graphs of |φ(my)/(my) − 1| (top) and ‖E(my)‖ (bottom) for some of the m-stage
splitting methods collected in Table 1 and the 12th order scheme GM12. Each new splitting method
is identified by the triad (m, r, θ′), indicating its number of stages m, order r, and scaled time step
θ′, as in Table 1. The resonances associated with the instability of GM12 at y ≈ kπ(k = 2, 3) are
visible, especially in the second graph.

We can see in Figure 1 that GM12 is less accurate than the 30-stage 24th order
method for the whole frequency range, and thus the former will show a poorer per-
formance than the latter for any regularity conditions. If the amplitudes at higher
frequencies decrease fast enough, the 24th order method will give very accurate ap-
proximations of u(t) = e−itH u0 at a relatively low cost (since θ′ = 1). The 6th order
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method with m = 30 stages gives correct approximations for all harmonic oscillators
within the range y ∈ [−1.4, 1.4], and hence it is expected to give excellent approxi-
mations under mild regularity with a comparatively lower cost than the 24th order
method (θ′ = 1.4 compared with θ′ = 1). Clearly, the methods of order 0 will be
the right choices for low regularity conditions, since the corresponding phase errors
|φ(my)/(my)−1| are uniformly bounded for all y ∈ [−1, 1]. Among them, the method
with m = 30 and θ′ = 1 can be accurate enough in many practical computations. If
more precision is required, one can either consider the method with θ′ = 0.75 (result-
ing in a 25% increase of the computational cost) or use the method with m = 40 and
θ′ = 1 without any increase of the computational cost (at the expense of having less
frequent output).

5. Numerical examples. The purpose of this section is twofold. On the one
hand, since the symplectic splitting methods we have presented here to approximate
e−itHu0 involve only products of the matrix H with vectors, it makes sense to com-
pare them with other well-established schemes of this kind, such as the Chebyshev
and Lanczos methods. Although a thorough comparison with the family of splitting
methods proposed in this work will be the subject of a forthcoming paper [4], we
include here some results which show that the new schemes are indeed competitive
for evaluating exp(−itH)u0, at least in the example considered.

On the other hand, since Theorem 3.4 provides a rigorous a priori estimate of the
error committed when using a splitting method of the form (17) in the time integration
of (9), it is interesting to check how this theoretical error estimate behaves in practice
for some of the methods constructed here.

5.1. A preliminary comparison with Chebyshev and Lanczos methods.
As is well known, Chebyshev and Lanczos methods provide high order polynomial
approximations to e−itHu0 requiring only matrix-vector products. The former is
neither unitary nor symplectic, whereas the latter is unitary but symplectic only in
the Krylov subspace (which changes from one time step to the next).

To carry out this comparison we choose the very simple example previously con-
sidered in [22]. The problem consists in approximating y = e−iAv, where v is a
random vector of unit norm and A is the tridiagonal matrix A = ω

2 tridiag(−1, 2,−1)
of dimension 10000. The eigenvalues of A are contained in the interval [0, 2ω].

We have implemented the Chebyshev and Lanczos algorithms in the usual way
(see [22]) with the particularity that, since the range of values for the eigenvalues
is known, both the Chebyshev and the new splitting methods are used with a shift
to the midpoint of the spectrum. In other words, y = e−iωI e−i(A−ωI)v, with I the
identity matrix. This shift allows us to take ρ(A− ωI) � ω.

Figure 2 shows the error ‖y−yap‖ for different degrees m of the polynomials used
and for ω = 15, 20, 30, 40. Here y is computed numerically to high accuracy and yap
corresponds to the approximate solution obtained by each scheme. Each particular
value of m in the Lanczos and Chebyshev methods corresponds to a different mth-
order polynomial approximation (denoted by small crosses and circles, respectively).
We clearly observe that, for this irregular problem, the Lanczos method converges to
the optimal Chebyshev method, the main difference between the two schemes being
the number of vectors to be kept in memory.

To apply the new splitting methods, we notice that for this problem the time
step τ = 1 and the corresponding spectral radius ρ � ω. Therefore, we shall consider
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Fig. 2. Error, ‖y − yap‖, versus m (the degree of the Lanczos or Chebyshev polynomials or
the number of stages for the splitting methods, leading to similar computational cost in all cases)
for approximations to y = e−iAv, where v is chosen as a random vector of unit norm and A is the
tridiagonal matrix A = ω

2
tridiag(−1, 2,−1) of dimension 10000. Here y is computed numerically

to high accuracy and yap correspond to the approximate solutions obtained by each method. Results
corresponding to Lanczos (crosses), Chebyshev (small circles), and several new splitting methods
(m, r, θ′) (big circles) are depicted.

splitting methods whose value of θ′ given by (30) satisfies

τρ

m
� ω

m
≤ θ′.

In other words, for each ω the method (m, r, θ′) is such that mθ′ ≥ ω. An m-stage
splitting method requires 2m products of the matrix A by a real vector, with a com-
putational cost which is similar to m products of A with a complex vector, so that the
computational cost is similar to a Lanczos or Chebyshev polynomial approximation
of degree m. This is taken into account when comparing the efficiency of the schemes.

From the graphs of Figure 2, it is clear that, for each value of ω, we can always
select one particular splitting method (big dots) which outperforms both Chebyshev
and Lanczos. High order splitting methods show a worse performance than schemes of
order zero for this problem, since they require typically a higher degree of regularity.

5.2. The Pöschl–Teller potential. We next illustrate the error estimate pro-
vided by Theorem 3.4 for the class of splitting methods proposed here. We also
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compare the error in the time integration with the error coming from the space dis-
cretization for different values of the mesh size N . For that purpose we choose a
well-known anharmonic quantum potential leading to analytical solutions and con-
sider, for clarity, only the 30-stage splitting methods of order six and order zero
collected in Table 1. Specifically, we consider the Pöschl–Teller potential

V (x) = −α
2

2μ

λ(λ− 1)

cosh2(αx)
,

with λ > 1. It has been frequently used in polyatomic molecular simulation and is also
of interest in supersymmetry, group symmetry, the study of solitons, etc. [8, 10, 20].
The parameter λ gives the depth of the well, whereas α is related to the range of the
potential. The energies are

En = −α
2

2μ
(λ− 1− n)2, with 0 ≤ n ≤ λ− 1.

We take the following values for the parameters (in atomic units, a.u.): the re-
duced mass μ = 1745 a.u., α = 2, λ = 24.5 (leading to 24 bounded states), x ∈ [−5, 5],
and we assume the system is periodic. The periodic potential is continuous and very
close to differentiable. For N = 128 we have ρ(H) � 0.635, whereas for N = 256 one
gets ρ(H) � 1.85.

We take as initial condition the displaced Gaussian function, ψ(x, 0) = σ e−b2(x−c)2,
where σ is a normalizing constant. We take c = 1/5 and b = 3 so the function and all
its derivatives of practical interest vanish up to round off accuracy at the boundaries.
The initial conditions contain part of the continuous spectrum, but this fact does not
cause any major concern due to the smoothness of the periodic potential and wave
function. Figure 3 shows the solution at times t = 0, 2T, 4T with T = 333. As an illus-
tration, some of the corresponding values of ‖u0‖k for N = 128 are ‖u0‖1 = 0.540894,
‖u0‖6 = 0.0436185, and ‖u0‖7 = 0.0272296. They decrease only moderately for the
first values of k (before they increase again due to the contributions coming from
higher energies). The corresponding values for N = 256 are quite similar to the pre-
vious values. For this problem, both large and very small spatial errors are expected
from spectral methods, depending on the mesh employed. It is then useful to have
different methods with large values of θ′ when low accuracy is desired and smaller
values of θ′ for high accuracy.

We integrate for t ∈ [0, 128T ] and measure the 2-norm error in the discrete wave
function ‖uex(2iT ) − uap(2

iT )‖ for i = 0, 1, . . . , 7. The values uex are computed
using the same spatial discretization and an accurate time integration (using a very
small time step), whereas uap stand for the numerical approximations obtained with
splitting methods. For a given spatial discretization, we choose the time step for each
of the new methods such that τ ≤ mθ′/ρ(H). In consequence, a period T has to
be divided into M steps such that M = T/τ ≥ Tρ(H)/(mθ′). In particular, for the
6th-order method (30, 6, 1.4) and N = 256, since ρ(H) � 1.85, we take M = 15 ≥
(333 × 1.85)/(30 × 1.4) (each period T requires 15 steps, 450 stages, or 1800 FFT
calls).

The results obtained are shown in Figure 4. Solid lines represent the error with
respect to the exact solution for the same spatial discretization, whereas dashed lines
correspond to the total error with respect to the exact solution obtained with a finer
mesh (it is the sum of the spatial error and the error from the time integration). Dotted
lines are obtained with the estimate (29). For comparison, we have also included the
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Fig. 3. Evolution of |ψ(x, t)|2 for the solution corresponding to the Pöschl–Teller potential at
t = 0, 2T, 4T .

results obtained by the unitary second order symmetric leap-frog/Strang splitting
(LF) when the Hamiltonian is split into kinetic and potential energy. It corresponds
to composition (12) with (a1, b1, a2, b2) = (0, 1/2, 1, 1/2). One step of this method has
a similar cost to one stage of the symplectic splitting methods. We have applied the
leap-frog method for two different time steps in each case, one adjusted such that it
requires the same number of FFT calls as the cheapest of the schemes in the plot, and
one adjusted similarly to the most costly one (τ = T/j with j = 150, 210 for N = 128
and j = 450, 840 for N = 256). Higher order methods tailored for this problem exist
in the literature, and a thorough comparison with the splitting schemes proposed here
will be the subject of a future work [4].

We observe that the spatial error decreases exponentially with N due to the
smoothness and periodicity of the problem. To estimate this spatial error we take
the results obtained with N = 512 and an accurate time integration as the exact
solution and compare them with the solution computed up to a high accuracy for
N = 128 and N = 256. For N = 128 the spatial error dominates the total error, so
that the most convenient time integration scheme is one able to provide such accuracy
with a large time step. These requirements are fulfilled by the (30, 6, 1.4) method,
especially designed to be used with θ′ = 1.4, whereas scheme (30, 0, 1) gives us higher
accuracy than necessary and with more computational cost. Method (30, 6, 1.4) can
be used with a time step τ about 40% larger than that of method (30, 0, 1), and thus
its computational cost is reduced approximately by this factor.

However, for N = 256 the spatial error reaches nearly round-off accuracy, and
it could be convenient to employ methods able to provide this accuracy with the
minimal computational cost. Notice that in this case the error committed by the
30-stage method with θ′ = 1, (30, 0, 1), is still larger than the spatial error. In
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Fig. 4. Error in time integration (solid lines), error bounds from (29) (dotted lines) for methods
(30, 6, 1.4) and (30, 0, 1), and the spatial error (dashed lines) along the interval t ∈ [0, 128T ] for the
Pöschl–Teller potential. We have also included in the right panel the results obtained with the 30-
stage method of order zero and θ′ = 0.75, (30, 0, 0.75). The errors from the unitary leap-frog/Strang
splitting method (LF) are also included for illustration. LF is used with two different time steps
requiring the same FFT calls as the cheapest and more costly method for each choice of N .

consequence, it makes sense to integrate in time with a method designed especially
to be used with a smaller time step. Thus, in particular, we reach round-off accuracy
with the 30-stage method (30, 0, 0.75) (θ′ = 0.75), which is nearly twice as expensive
as the method with θ′ = 1.4.

We have also performed here the time integration with the 12th order scheme
GM12, which in the case of N = 128 requires a scaled time step of θ′ = 0.49 to give a
precision similar to that obtained by (30, 6, 1.4) with θ′ = 1.4. With N = 256, GM12
must be applied with θ′ = 0.1 to achieve the precision obtained by (30, 0, 0.75) with
θ′ = 0.75, thus requiring approximately 7.5 times more FFT calls.

6. Concluding remarks. The time integration of the Schrödinger equation pre-
viously discretized in space has been extensively studied in the literature. This is
essentially equivalent to approximating u(t) = e−itHu(0), where H is a real sym-
metric matrix and u(0) represents the discrete wave function. In this work we pro-
pose using symplectic splitting integration methods to get this approximation. The
main difference from standard polynomial approximations is that in the products
Hv = H Re(v) + iH Im(v), the real and imaginary parts are computed sequentially
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instead of simultaneously (i.e., the computation of the real part is used in the com-
putation of the imaginary part and vice versa in consecutive stages). These schemes
are conjugate to unitary methods, so that the errors in norm and energy do not grow
secularly [3].

To carry out the integration, one divides the whole time interval into n steps
of length τ = t/n and applies an m-stage method at each time step. The total
computational cost of the method is measured by the product nm instead of m. The
analysis carried out in this paper allows us, in particular, to construct a particular
symplectic splitting scheme of the form (16) which minimizes the total cost nm, given
a prescribed tolerance, the spectral radius ρ(H) of the corresponding Hamiltonian
matrix H , and the norm of its action on the initial condition, ‖Hku(0)‖. We have
observed that the optimal methods in this sense have relatively large values of m. We
can choose the most appropriate method for each problem, i.e., the method, (m, r, θ′),
with the largest value of θ′ which provides the desired accuracy for a given problem.

The error analysis of splitting methods provided here allows one to get a priori
bounds on the propagating error when numerically integrating with a given time
step which are comparable to similar estimates for the space discretization error.
Moreover, it permits one to construct new classes of schemes with a large stability
interval specifically designed to be used with a certain (as large as possible) time step
in such a way that the accuracy is similar to the spatial discretization error for a
given space regularity. The main ingredients in the process are again the values of
ρ(H), ‖Hku0‖ and the estimate provided by Theorem 3.4. The numerical examples
considered illustrate the validity of our approach. In particular, they show that there
are methods in this family which are competitive with other standard procedures,
such as the Chebyshev and Lanczos methods.

By following this procedure it is indeed possible to generate a list of integration
schemes specifically designed to be used under different regularity conditions on the
initial state and the Hamiltonian matrix which involve in each case an error compara-
ble to that coming from the spatial discretization. It is our purpose in a forthcoming
paper [4] to elaborate an algorithm in such a way that, given a prescribed tolerance,
an initial state u0, and a Hamiltonian matrix H , automatically selects the most ef-
ficient time integration method in this family fulfilling the requirements supplied by
the user. Moreover, we will also carry out a detailed numerical study of this family
of splitting methods and the proposed automatic algorithm in comparison with the
Chebyshev polynomial expansion scheme and the Lanczos iteration method.
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