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COMPOSITION METHODS FOR DIFFERENTIAL EQUATIONS
WITH PROCESSING∗
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Abstract. We construct numerical integrators for differential equations up to order 12 obtained
by composition of basic integrators. The following cases are considered: (i) composition for a system
separable in two solvable parts, (ii) composition using as basic methods a first-order integrator and its
adjoint, (iii) composition using second-order symmetric methods, and (iv) composition using fourth-
order symmetric methods. Each scheme is implemented with a processor or corrector to improve
their efficiency, and this can be done virtually cost-free.
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1. Introduction. A widely used technique in the geometric integration of ordi-
nary differential equations (ODEs) is to compose one or more low-order basic one-step
methods (usually first or second order) with appropriately chosen weights to achieve
a higher-order scheme. The resulting composition method then inherits the relevant
geometric properties that the basic scheme shares with the exact solution (if these
properties are preserved by composition). In close connection with composition is the
splitting idea: if the differential equation can be split into two or more parts that are
either solvable or simpler to integrate than the original system, it is also possible to
build integrators by composition of the corresponding flows. These splitting methods
are frequently used in celestial mechanics, quantum mechanics, molecular dynamics,
and accelerator physics and, in general, for solving numerically Hamiltonian systems,
as well as Poisson systems and reversible differential equations [8, 16, 21].

It has been widely recognized that the class of numerical integrators which pre-
serve the geometric properties of the exact flow (the so-called geometric integrators)
provide a better description of the system than standard methods, even with respect
to the accumulation of numerical errors along the evolution, making them the best
option for carrying out a long time integration. However, for short time integrations
they are typically less efficient. For this reason it is important to build more efficient
high-order geometric integrators which are also competitive in this setting.
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Given the ODE

x′ = f(x), x0 = x(0) ∈ R
D,(1.1)

with f : R
D −→ R

D and associated vector field (or Lie operator associated with f)

F =

D∑
i=1

fi(x)
∂

∂xi
,(1.2)

a one-step numerical integrator for a time step h, ψh : R
D −→ R

D, can be regarded
as a smooth family of maps with parameter h such that ψ0 is the identity map. The
integrator ψh is said to be of order q if ψh = ϕh +O(hq+1) as h → 0, where ϕh is the
h-flow of the ODE (1.1). In other words, an approximation to the exact solution x(h)
is given by xh = ψh(x0) = ϕh(x0) + O(hq+1).

In this work we consider methods obtained by enhancing an integrator ψh with
processing, i.e., algorithms of the form

ψ̂h = πh ◦ ψh ◦ π−1
h .(1.3)

Here ψh is referred to as the kernel and the map πh : R
D −→ R

D as the postprocessor
or corrector. The method ψh is of effective order q if a postprocessor πh exists for
which ψ̂h is of (conventional) order q [6]. Application of ψ̂h over n steps with constant
step size h leads to

ψ̂n
h = πh ◦ ψn

h ◦ π−1
h .

The computation of the preprocessor π−1
h has to be done only at the beginning of the

integration; then the kernel ψh acts once per step, and finally πh is evaluated when
output is required.

The analysis of the order conditions of the method ψ̂h has shown that many of
them can be satisfied by πh, so that ψh must fulfill a much reduced set of restrictions
[1, 3, 7, 14]. This allows us to take kernels of effective order q involving far fewer
function evaluations than a conventional integrator of order q.

In the course of constructing composition methods of a given order, the process-
ing technique also presents additional advantages. In general, it is necessary to solve
numerically a system of nonlinear polynomial equations in the coefficients (the order
conditions), whose number and complexity grow very rapidly with the order. Numeri-
cally finding every solution and eventually determining the optimal solution turns into
a very complicated task for nonprocessed methods, even for relatively small orders.
However, this problem simplifies for processed composition schemes because the anal-
ysis has to be carried out only for the kernel. Since the number of order conditions
for the kernel is smaller, one can analyze in more detail the set of solutions, even for
moderate orders, and eventually find very efficient methods [25, 3, 1, 15].

Once a kernel is chosen, it remains for us to build a postprocessor such that the
whole method has the required order. We can also impose additional conditions to
reduce the leading order error terms. Then the coefficients of the postprocessor πh

usually have to satisfy a large number of conditions. Many different solutions can be
found, and since usually their different contributions affect only higher-order terms,
we can choose one with moderately small coefficients (to avoid large higher-order error
terms), which considerably simplifies the numerical search.
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In any case, very often the postprocessors thus constructed are more expensive
than the kernel ψh, so that the use of processed schemes in this form has to be confined
to problems in which intermediate results are not frequently required; otherwise the
overall efficiency of the methods is decreased. To overcome this difficulty, a technique
is developed in [2] which allows us to obtain approximations to the postprocessor
virtually cost-free and without loss of accuracy. The key point is to replace πh by
a new integrator π̂h � πh obtained from the intermediate stages in the computation
of ψh. It is recommended that one have a very accurate preprocessor π−1

h but, on
the other hand, the postprocessor can safely be replaced by a cheap approximation
satisfying only the order conditions.

In the analysis of composition methods it is useful to apply the notion of adjoint
of a given integrator ψh [21]. By definition, this is the method ψ∗

h such that ψ∗
h = ψ−1

−h.
A method that is its own adjoint is called self-adjoint or (time-)symmetric. In this
case, ψ−h◦ψh = id. The order of a symmetric method is necessarily even. In addition,
only even powers of h appear in the asymptotic expansion of the global error [21] so
that the order equations are considerably simplified and its number is reduced. Time-
symmetry is often a desirable property when one aims to discretize the differential
equation in such a way that qualitative features of the system are preserved [8, 16]. In
the context of processed methods, if the kernel ψh is symmetric and the postprocessor
πh is an even function of h (π−h = πh), then the processed integrator ψ̂h has also the
time-symmetry property.

In this paper we construct and analyze new high-order processed geometric inte-
grators. We consider several families of kernels which are symmetric compositions of
different basic methods of first, second, and fourth order and whose postprocessors
can be implemented essentially at no additional computational cost. The procedure
is largely based on the theoretical analysis of the processing technique done in [2], to
which we will refer often in what follows.

2. Families of composition methods.

2.1. Classes of methods. Next we present the different classes of schemes
analyzed, whose common feature is that they are defined as the composition of simpler
maps.

1. Let us assume that the ODE (1.1) can be written as x′ = fa(x) + fb(x) and
that the vector field F is split accordingly as F = Fa +Fb. Suppose that the

corresponding h-flows ϕ
[a]
h and ϕ

[b]
h can be computed exactly. Then one can

form the following group G1 of schemes:

G1 =
{
ϕ

[b]
β2sh

◦ ϕ[a]
β2s−1h

◦ · · · ◦ ϕ[b]
β2h

◦ ϕ[a]
β1h

: s ≥ 1, (β1, . . . , β2s) ∈ R
2s
}
.

(2.1)

2. Let χh : R
D −→ R

D be any first-order integration scheme. An important
class G2 of integrators is obtained by considering compositions of χh and its
adjoint χ∗

h, namely,

G2 =
{
χα2sh ◦ χ∗

α2s−1h ◦ · · · ◦ χα2h ◦ χ∗
α1h : s ≥ 1, (α1, . . . , α2s) ∈ R

2s
}
.

(2.2)

This family G2 of integrators clearly has (with the composition) a group struc-
ture. As shown in [13], if

∑s
i=1 β2i−1 =

∑s
i=1 β2i, G2 is closely related to G1
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when χh = ϕ
[a]
h ◦ϕ[b]

h , βi = αi +αi−1 (i = 1, . . . , 2s), and α0 = α2s = 0. Con-

sistency of the schemes requires that
∑s

i=1 β2i−1 =
∑s

i=1 β2i =
∑2s

i=1 αi = 1,
and the order conditions at higher orders are equivalent in both cases [13].
Methods in G2 are more general and can also be used if the system is split
into more than two parts, i.e., x′ = fa + fb + fc + · · · , just taking χh =

ϕ
[a]
h ◦ ϕ[b]

h ◦ ϕ[c]
h ◦ · · · (χ∗

h = · · · ◦ ϕ[c]
h ◦ ϕ[b]

h ◦ ϕ[a]
h ).

3. Another well-known class G3 of integrators [13] is introduced as follows. If

S [2]
h : R

D −→ R
D is any second-order self-adjoint integrator, then

G3 =
{
S [2]
αsh

◦ · · · ◦ S [2]
α1h

: s ≥ 1, (α1, . . . , αs) ∈ R
s
}
.(2.3)

This family of integrators also has group structure. In fact, if S [2]
h is chosen

as S [2]
h = χh/2 ◦ χ∗

h/2, then G3 is a subgroup of G2 (in [18], it is shown that
any self-adjoint integrator can be written in this form; the choice of χh is not
unique, however).

4. Finally, if S [4]
h : R

D −→ R
D is any fourth-order self-adjoint integrator, then

another class G4 of integrators is

G4 =
{
S [4]
αsh

◦ · · · ◦ S [4]
α1h

: s ≥ 1, (α1, . . . , αs) ∈ R
s
}
.(2.4)

Methods in G4 could be compositions of schemes in Gl, l = 1, 2, 3. They can be
useful in some problems where, due to their particular structure, it is possible to build

a very efficient integrator S [4]
h , as is the case for the second-order differential equation

x′′ = g(x) [11].
Composition integrators ψh ∈ Gl (l = 1, 2, 3, 4) are time-symmetric whenever

they have left-right palindromic sequences of coefficients αi—more specifically, if the
following apply:

1. In G1, if either β2s = 0, β2s−i = βi or β1 = 0, β2s+1−i = βi+1. Then one of

the maps ϕ
[a]
βih

and ϕ
[b]
βih

is computed s times and the other s− 1 times. Now
the computations done for the last map can be reused for the first map in
the following step. (This feature is known as the FSAL (first same as last)

property.) Then both maps ϕ
[a]
βih

and ϕ
[b]
βih

are computed s− 1 times.
2. In Gl, l = 2, 3, 4, if αs̄+1−i = αi with s̄ = 2s or s̄ = s.

2.2. Associated graded Lie algebra. It is well known that for each infinitely
differentiable map g : R

D −→ R, g(ϕh(x)) admits an expansion of the form [19]

g(ϕh(x)) = ehF [g](x) = g(x) +
∑
k≥1

hk

k!
F k[g](x), x ∈ R

D,

where F is the vector field (1.2). Similarly, for the maps ψ̂h, ψh, and πh one has

g(ψ̂h(x)) = eF̂h [g](x), g(ψh(x)) = eFh [g](x), g(πh(x)) = ePh [g](x),

with

F̂h =
∑
k≥1

hkF̂k, Fh =
∑
k≥1

hkFk, Ph =
∑
k≥1

hkPk;
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i.e., ψ̂h, ψh, and πh are formally the exact 1-flows of the vector fields F̂h, Fh, and Ph,
respectively.

If the kernel ψh belongs to Gl (l = 1, 2, 3, 4), then the corresponding (h-dependent)
vector fields hkFk belong to a certain graded Lie algebra L =

⊕
k≥1 Lk such that

hF ∈ L1, h
kFk ∈ Lk for each k ≥ 1 and [Lk,Lm] ⊂ Lk+m. Each Lk (k ≥ 1) is the

subspace L of vector fields affected by a kth power of h, and we denote nk = dim Lk.
We give L explicitly in each case.

1. If ψh ∈ G1, then L =
⊕

k≥1 Lk is the graded Lie algebra generated by the

vector fields {hFa, hFb}. Here, hF1+h2F2+· · · can be obtained, for instance,
by repeated application of the Baker–Campbell–Hausdorff (BCH) formula
[24] to the expression

Ψh = exp(hβ1Fa) exp(hβ2Fb) · · · exp(hβ2s−1Fa) exp(hβ2sFb)

since, formally, g ◦ ψh = Ψh[g] and Fh = log(Ψh) [2, 8].
2. For G2, we have for the basic method g(χh(x)) = eYh [g](x) with Yh =∑

k≥1 h
kYk and for its adjoint g(χ∗

h(x)) = e−Y−h [g](x). Then

Ψh = exp(−Y−hα1
) exp(Yhα2

) · · · exp(−Y−hα2s−1
) exp(Yhα2s

),

and Fh can be obtained by repeated application of the BCH formula, which
shows that hkFk ∈ Lk for each k ≥ 1 and L =

⊕
k≥1 Lk is the graded

Lie algebra generated by the vector fields {hY1, h
2Y2, h

3Y3, . . . } where, by
consistency, Y1 = F .

3. For G3, the series of differential operators Sh associated with the integrator

S [2]
h , i.e., such that g ◦ S [2]

h = Sh[g], can be written as Sh = exp(Yh), where
Yh = hY1 + h3Y3 + h5Y5 + · · · , Y1 = F , and

Ψh = exp(Yhα1) · · · exp(Yhαs).

One similarly [13] arrives at an expansion hF1 + h3F3 + h4F4 + · · · , where
hkFk ∈ Lk for the graded Lie algebra L =

⊕
k≥1 Lk generated by the vector

fields {hY1, h
3Y3, h

5Y5, . . . }.
4. The case of G4 can be considered as a particular case of G3 with Y3 = 0.

2.3. Effective order conditions. According to the theory developed in [2] the
following theorem applies to the processed methods considered here.

Theorem 1 (see [2]). An integrator ψh has effective order p ≥ q if and only if
there exist vector fields P1, . . . , Pq−1 such that

F1 = F, [Pn−1, F ] = Fn + Rn(P1, . . . , Pn−2, F1, . . . , Fn−1), 1 < n ≤ q,(2.5)

hold, where

Rn = −
n−2∑
j=1

[Pj , Fn−j ] +
∑
k≥2

(−1)k

k!

∑
j1+···+jk+1=n

[Pj1 , [Pj2 , . . . [Pjk , Fjk+1
] . . . ]].

Under the premises of Theorem 1, [Pk, F ] ∈ Lk+1. As shown in [2], if such
vector fields Pk (1 ≤ k ≤ q − 1) exist, then they are not unique. We will hereafter
consider vector fields Pk belonging to Lk. Uniqueness is then achieved by requiring
that Pk ∈ L∗

k, where L∗
k is a subspace of Lk of minimal dimension, n∗

k, among all
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subspaces Vk of Lk such that [F, Vk] = [F,Lk]. It must be stressed that such a
requirement does not restrict the choice of the processed integrator [2]. Since the
graded Lie algebras associated with Gl (l = 1, 2, 3, 4) are free, then L1 = L∗

1 ⊕ F ,
L∗
k = Lk for k > 1, and P1 ∈ L∗

1. Therefore, n∗
1 = n1 − 1 and n∗

k = nk for k > 1.
Let us denote by {Ek,i}nk

i=1 a basis of Lk with E1,1 = F . Then one can write

Fk =

nk∑
i=1

fk,iEk,i, Rk =

nk∑
i=1

rk,iEk,i, Pk−1 =

n∗
k−1∑
i=1

pk−1,iEk−1,i,(2.6)

where P0 = 0, P1 =
∑n1

i=1 p1,iE1,i with p1,1 = 0, and the coefficients rk,i can be
written as polynomials in the indeterminates fl,j , pl−1,j , l < k.

The order conditions (2.5) can be expressed as a system of (polynomial) equations
in fk,i, pk−1,i. Such equations have a particularly simple form if the basis of each Lk+1

is constructed (from a given basis of Lk) in such a way that

Ek+1,nk+1−n∗
k
+i = [F,Ek,i], 1 ≤ i ≤ n∗

k, k ≥ 1.(2.7)

Theorem 2 (see [2]). Assume that the chosen basis of each Lk is such that (2.7)
holds. The kernel ψh has effective order p ≥ q if and only if it is consistent (F1 = F )
and the vector fields (2.6) in Theorem 1 satisfy the equations

fk,i = −rk,i, 1 ≤ i ≤ lk := nk − n∗
k−1, 2 ≤ k ≤ q,(2.8)

pk−1,i = −fk,lk+i − rk,lk+i, 1 ≤ i ≤ n∗
k−1, 2 ≤ k ≤ q.(2.9)

If ψh is self-adjoint, then for even values of k, conditions (2.8) are automatically
satisfied and equations (2.9) reduce to pk−1,i = 0.

When the coefficients fk,i are written in terms of the parameters α ≡ (α1, . . . , αs̄)
(s̄ = 2s or s̄ = s) of the kernel ψh, repeated substitution of (2.9) into the recursive ex-
pressions (2.8)–(2.9) leads to an equivalent system of equations where (2.8) is replaced
by a polynomial equation in the parameters αj , Nk,i(α) = 0, and (2.9) is transformed
into an expression of the form pk−1,i = Qk,i(α), with Qk,i a polynomial in α.

The total number of equations Nk,i(α) = 0 required to achieve effective order q
depends on the dimensions nk in the following way.

Corollary 2.1. There exists a system of s(q) = nq + 1 polynomial equations
on the parameters α that guarantees that the corresponding kernel ψh ∈ G1 (resp.,
ψh ∈ Gl, l = 2, 3, 4) has effective order q > 1 for arbitrary basic vector fields {Fa, Fb}
(resp., {Yk}l). If ψh is self-adjoint, this number reduces to ŝ(2) = n1, ŝ(2n) =
n1 +

∑n
k=2(n2k−1 − n2k−2), n > 1.

The numbers of effective order conditions given by Corollary 2.1 for each class
of integrators are displayed in Table 1 for nonsymmetric, s(q), and symmetric, ŝ(q),
kernels.

For a kernel of effective order q (i.e., satisfying (2.8) for k ≤ q but not for k = q+1)
one can in principle determine a postprocessor such that equations (2.9) hold also for
all k > q. We refer to that postprocessor as optimal, as it causes many terms of each
F̂k =

∑nk

i=1 f̂k,iEk,i to cancel (f̂k,nk−n∗
k−1

+i = 0, i = 1, . . . , n∗
k−1), and denote by Pk

the set of maps πh : R
D −→ R

D whose Taylor expansion coincides with the optimal
postprocessor up to order k (i.e., their difference is O(hk+1)). With this notation, the

processed integrator ψ̂h in (1.3) is of order q if the kernel ψh is of effective order q
and the postprocessor πh ∈ Pq−1. Note that optimality of a postprocessor depends
on the chosen basis in each Lk (see [2] for more details).
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Table 1

Total number of effective order conditions for nonsymmetric (s(q)) and symmetric (ŝ(q)) ker-
nels of effective order q.

Effective order G1 G2 G3 G4

q s(q) ŝ(q) s(q) ŝ(q) s(q) ŝ(q) s(q) ŝ(q)
1 2 – 1 – 1 – 1 –
2 2 2 2 1 1 1 1 1
3 3 – 3 – 2 – 1 –
4 4 3 4 2 2 2 1 1
5 7 – 7 – 3 – 2 –
6 10 6 10 5 3 3 2 2
7 19 – 19 – 5 – 3 –
8 31 15 31 14 6 5 3 3
9 57 – 57 – 9 – 4 –
10 100 40 100 39 12 8 4 4
11 187 – 187 – 19 – 6 –
12 335 127 335 126 26 15 7 6

Remark. For schemes in G1 it is clear that L1 = span(E1,1 = F = Fa+Fb, E1,2 =
Fa − Fb), L∗

1 = span(E∗
1,1 = E1,2), and thus n1 = 2, n∗

1 = 1, whereas in G2 one has
L1 = span(E1,1 = F = Y1), L∗

1 = ∅, so that n1 = 1, n∗
1 = 0. Moreover, nk for

k ≥ 2 and s(k) for k ≥ 3 are identical in G1 and G2, but s(1) = s(2) = 2 in G1 and
s(1) = 1, s(2) = 2 in G2. In consequence, any first-order method in G1 has always
effective order 2, but this is not the case in G2.

For example, let us consider the first-order scheme χh = ϕ
[a]
h ◦ ϕ[b]

h belonging to

G1 and G2. If we take πh = ϕ
[b]
h/2 ∈ G1, then the processed method πh ◦ χh ◦ π−1

h is

the well-known second-order leapfrog scheme. On the other hand, because a general
postprocessor in G1, exp(Ph) = exp

(
h(p1,1Fa + p1,2Fb) + O(h2)

)
, cannot be written

as a composition in G2 unless p1,1 = p1,2, the effective order of χh in G2 is only one.
However, if the kernel is a second-order method (as is the case of symmetric kernels),
then p1,1 = p1,2 = 0 and any composition postprocessor in G1 can be expressed as a
composition in G2; the effective order conditions are equivalent in both cases. �

2.4. Cost saving using the processing technique. For the families of com-
position methods considered in this work, the number of stages is frequently used as
a measure of the computational cost. Here and in the following, the number of basic
maps involved in a composition method or kernel will be referred to as the number
of stages (i.e., 2s in (2.1) and (2.2) and s in (2.3) and (2.4)). In general, the mini-
mum number of stages to obtain a method of order, or effective order, q is given by
the total number of order conditions, Nq =

∑q
k=1 nk, or effective order conditions,

s(q) = nq + 1. Then, the use of processed schemes is more advantageous as the value
of

rq =
Nq

s(q)
=

∑q
k=1 nk

nq + 1

increases. Observe that rq depends on how fast nk = dim Lk grows, and thus it is
important to analyze its asymptotic behavior.

Let us suppose that {X1, X2, . . . } are a countable set of generators of a graded free
Lie algebra with grades wi = w(Xi) and suppose that the formal sum 1 −

∑∞
i=1 T

wi

converges to a rational function P (T ) = q(T )/r(T ), as is the case for the Lie algebras
previously considered. If the roots of q(T ) and r(T ) are denoted by λ1, . . . , λm and
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γ1, . . . , γm̄, respectively, then nk is given as [9, 16, 17]

nk =
1

k

∑
d|k

μ(d)

⎛
⎝ m∑

j=1

λ
−k/d
j −

m̄∑
i=1

γ
−k/d
i

⎞
⎠ ,(2.10)

where the first sum ranges over all integers which divide k, and μ(d) is the Möbius
function: μ(1) = 1, μ(d) = (−1)q if d is the product of q distinct prime factors,
and μ(d) = 0 otherwise. Let ρ = 1/min{λ1, . . . , λm} > 1 denote the entropy of the
system, so that nk ∼ ρk/k [16]. By instead assuming nk ∼ ρk, a rough estimation of
the value of rq is obtained as

Nq =

q∑
k=1

nk ∼
q∑

k=1

ρk ∼ ρq+1

ρ− 1
=⇒ rq ∼ ρ

ρ− 1
,(2.11)

and thus the cost saving of the processing technique increases when ρ decreases.

For G1 and G2 one has P (T ) = 1− 2T and P (T ) = (1− 2T )/(1−T ), respectively,
and ρ = 2. In G3, P (T ) = (1 − T − T 2)/(1 − T 2), so ρ = 1.618, and in G4, P (T ) =
(1 − T − T 2 + T 3 − T 5)/(1 − T 2), so ρ = 1.443. It is worth noticing that the values
of nk (and thus the number of order conditions) collected in Table 1 can be obtained
through the respective functions P (T ) and (2.10).

2.5. Order conditions for methods in G3. For the sake of illustration we
next consider kernels ψh ∈ G3. Recall that in that case L =

⊕
k≥1 Lk is the graded

free Lie algebra generated by the symbols {Y1, Y3, Y5, . . . } (Y1 = F ). Now L∗
1 = ∅,

L2 = ∅, so that n∗
k = nk for all k. We derive the effective order conditions up to order

11 and the corresponding postprocessor coefficients when the basis of Lk, k ≤ 11, is
chosen according to (2.7) (see Table 2 for the particular basis taken).

Table 2

Basis of Lk (k ≤ 11) chosen for kernels in G3.

Li Basis of Li

L1 E1,1 = Y1 = F
L3 E3,1 = Y3

L4 E4,1 = [F,E3,1]
L5 E5,1 = Y5 E5,2 = [F,E4,1]
L6 E6,i = [F,E5,i] i = 1, 2
L7 E7,1 = Y7 E7,2 = [E3,1, E4,1]

E7,2+i = [F,E6,i] i = 1, 2
L8 E8,1 = [E3,1, E5,1] E8,i+1 = [F,E7,i] i = 1, . . . , 4
L9 E9,1 = Y9 E9,i+1 = [E3,1, E6,i] i = 1, 2

E9,3+j = [F,E8,j ] j = 1, . . . , 5
L10 E10,i = [E3,1, E7,i] i = 1, . . . , 3

E10,3+j = [F,E9,j ] j = 1, . . . , 8
L11 E11,1 = Y11 E11,i+1 = [E3,1, E8,i] i = 1, . . . , 5

E11,7 = [E5,1, E6,1] E11,7+j = [F,E10,j ] j = 1, . . . , 11

As previously stated, if ψh ∈ G3 the corresponding series of differential op-
erators can be written as Ψh = exp(Yhα1) · · · exp(Yhαs) ≡ exp(Fh), with Fh =
hF1 + h3F3 + h4F4 + · · · , and each fk,i in (2.6) is a polynomial in the coefficients
α1, . . . , αs. Consistency (F1 = F ) is achieved by requiring that

∑
αi = 1. Since

n1 = 1, n∗
1 = n2 = 0, then F2 = 0, P1 = P2 = 0 [2]. If we consider a self-adjoint
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kernel, a straightforward computation shows that

R2 = R3 = R4 = R5 = R6 = 0, R7 = f3,1p4,1E7,2, R8 = 0,

R9 = f5,1p4,1(E9,2 − E9,4)

+

(
f5,2p4,1 +

1

2
p2
4,1 + f3,1p6,2

)
E9,3 − p4,1

(
f5,2 +

1

2
p4,1

)
E9,6,

with similar (but larger) expressions for R10, R11. Equations (2.8) and (2.9) finally
lead, after rearranging and simplifying terms, to the order conditions collected in
Table 3.

Table 3

Order conditions for the kernel and postprocessor up to order q in G3 when the kernel is self-
adjoint (f2k,i = 0, p2k−1,j = 0).

q Eff. order conditions Postprocessor conditions
1 f1,1 = 1
3 f3,1 = 0
5 f5,1 = 0 p4,1 = −f5,2
7 f7,1 = f7,2 = 0 p6,i = −f7,i+2, i = 1, 2
9 f9,1 = f9,2 = 0 p8,i = −f9,i+3, i = 1, 2, 4, 5

f9,3 = 1
2
f2
5,2 p8,3 = −f9,6 − 1

2
f2
5,2

11 f11,i = 0, i = 1, 2, 3, 4, 7 p10,i = −f11,i+7, i = 1, 2, 4, 7, 8, 10, 11
f11,5 = f5,2f7,3 p10,3 = −f11,10 − 3

2
f5,2f7,3; p10,5 = 1

2
f5,2f7,3 − f11,12

f11,6 = f5,2f7,4 p10,6 = −f11,13 − 5
2
f5,2f7,4; p10,9 = 3

2
f5,2f7,4 − f11,16

3. Construction of the processor. Once a kernel satisfying the effective order
conditions is proposed, there is still much freedom in the choice of the preprocessor
and postprocessor πh to ensure that ψ̂h has the required order. The kernel fixes the
accuracy that is possible to reach. This can be attained with the optimal postproces-
sor, defined as the exact 1-flow of an infinite series of vector fields Ph. In practice,
one must look for a preprocessor and a postprocessor close to this optimal one (an
approximate map in Pq−1 or preferably in Pq), and at the same time it has to be easy
and/or cheap to compute. In the following we propose two different techniques which
satisfy the above requirements.

3.1. Composition postprocessors, π
(c)
h . Since the kernel is a composition of

basic methods in Gl, it seems appropriate to approximate the optimal map πh by a

similar composition, π
(c)
h , so that the algorithm employed to compute the kernel can

also be used. The resulting processed methods are also in Gl. The coefficients of the

composition π
(c)
h are chosen such that (2.9) are verified. It turns out, however, that

finding real solutions for the resulting system of polynomial equations can be difficult,
and the composition requires typically at least as many basic integrators as the kernel.

As we mentioned in the introduction, if the kernel is time-symmetric and π−h =
πh, then the processed method is also time-symmetric, but this equality cannot be

satisfied by π
(c)
h . Instead we impose that π

(c)
−h−π

(c)
h = O(hl), l ≥ q, for a postprocessor

π
(c)
h ∈ Pq−1. In this sense, it is sometimes helpful to construct π

(c)
h as a composition

of the form π
(c)
h = ωh ◦ ω−h, or even of the form π

(c)
h = ω−h ◦ ω2

h ◦ ω−h. With these
special structures many order conditions of the form p2i−1,j = 0 in Theorem 2 are
automatically satisfied, but the order conditions (2.9) of even k must still be enforced,
which still account for more equations than the kernel itself. Since the preprocessor
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is computed only once, it makes sense to use (π
(c)
h )−1 as an accurate approximation

to π−1
h , whereas π

(c)
h should be used if intermediate output is not frequently required.

3.2. Cheap postprocessors, π̂h. For a number of problems, the output has to
be computed for most steps. It is therefore reasonable to look for an approximation
π̂h to the optimal postprocessor as cheap to compute as possible. Usually π̂h will

be a less accurate approximation to πh than the composition π
(c)
h , but the error

π̂h(zn) − π
(c)
h (zn) is of local character and will eventually be overtaken by the global

error of the underlying optimally processed integrator (if the global error grows at
least linearly in time) [2].

Here we approximate πh by reusing intermediate calculations obtained when eval-
uating the kernel ψh [2], so that the procedure can be considered virtually cost-free.
More specifically, if zn ≡ ψn

h(π−1
h (x0)), then the numerical solution xn = πh(zn) is

approximated by the linear combination

xn ≈
s̄∑

i=−s̄

wiZi(3.1)

of intermediate values Zi computed when evaluating zn = ψh(zn−1) and zn+1 =
ψh(zn). In particular, we always take Z−s̄ = zn−1, Z0 = zn, and Zs̄ = zn+1. For the
set Gl (l = 1, 2, 3, 4), the intermediate values Zi that we propose for approximating
xn are the following.

1. In the case of G1, we have s̄ = 2s, and

Z−2s = zn−1, Z2i−1 = ϕ
[a]
β2i−1h

(Z2i−2), Z2i = ϕ
[b]
β2i

(Z2i−1),(3.2)

where −(s− 1) ≤ i ≤ s and βj−2s = βj for each j.
2. For G2,

Z−2s = zn−1, Z2i−1 = χ∗
α2i−1h(Z2i−2), Z2i = χα2i

(Z2i−1),(3.3)

with −(s− 1) ≤ i ≤ s and αj−2s = αj for each j.
3. For G3 and G4, we take s̄ = s, and

Z−s = zn−1, Zi = S [2]
αih

(Zi−1) (resp., Zi = S [4]
αih

(Zi−1)),(3.4)

with −(s− 1) ≤ i ≤ s and αj−s = αj for each j.
Remark. As we will see, the number of conditions to be imposed on the coefficients

wi so that the cheap postprocessor (3.1) achieves a given accuracy is smaller in G2

than in G1. Nevertheless, implementing ψh ∈ G1 as an integrator in G2 considering the
relation between (2.1) and (2.2) is in general more costly because explicitly obtaining
the intermediate values Zi in (3.3) requires the computation of additional basic flows,
which does not in general pay off for the extra accuracy of the postprocessor. An
important exception is the case in which fa and fb come from a partitioned ODE of
the form q′ = f1(p), p

′ = f2(q). Then an integrator in G1 can be seen as an explicit
partitioned Runge–Kutta method. In that case, there is no practical overhead in
implementing the kernel ψh ∈ G1 as an integrator in G2 because it does not require
additional evaluations of f1(p) and f2(q), and then it is recommended to do it that
way. �

Each Zi can be written as Zi = φ
(i)
h (zn), where φ

(i)
h ∈ Gl (l = 1, 2, 3, 4, −s̄ ≤

i ≤ s̄) implies that there exists a series F
(i)
h =

∑
k≥1 h

kF
(i)
k ∈ L such that formally



COMPOSITION METHODS WITH PROCESSING 1827

g ◦ φ(i)
h = exp(F

(i)
h )[g] for each infinitely differentiable map g : R

D −→ R (see [2] for
more details). Clearly, (3.1) can be expressed as

xn ≈ π̂h(zn), where π̂h(z) =

s̄∑
i=−s̄

wiφ
(i)
h (z).(3.5)

Notice that, in general, π̂h �∈ Gl. Our goal is to find coefficients wi in such a way that
π̂h ∈ Pl with l as large as possible. This is guaranteed for a given l ≥ 1 if

s̄∑
i=−s̄

wi exp(F
(i)
h ) = exp(Ph) + O(hl+1),(3.6)

where Ph =
∑

k≥1 h
kPk ∈ L is the vector field corresponding to the optimal postpro-

cessor.
The exponential of a formal series in the graded Lie algebra L can be represented

as an element of the universal enveloping algebra A of L. The algebra A is also
graded, with A =

⊕
k≥0 Ak, and A0 = span(I). Let us now consider a fixed basis

{Dk,j}mk
j=1 of the homogeneous subspace Ak for each k ≥ 1, with mk = dim Ak. The

values of mk for Gl (l = 1, 2, 3, 4) are displayed in Table 4 [2]. Then exp(Ph) and

exp(F
(i)
h ) can be expressed as

exp(Ph) = I +
∑
k≥1

hk
mk∑
j=1

πk,jDk,j , exp(F
(i)
h ) = I +

∑
k≥1

hk
mk∑
j=1

φ
(i)
k,jDk,j

for −s̄ ≤ i ≤ s̄, where πk,j and φ
(i)
k,j are polynomials in the coefficients αj , 1 ≤ j ≤ s̄.

Hence, (3.6) is equivalent to a system of linear equations on the unknowns wi, i.e.,

s̄∑
i=−s̄

wiφ
(i)
k,j = πk,j , 1 ≤ j ≤ mk, 0 ≤ k ≤ l.(3.7)

In particular, π̂h ∈ P0 requires that
∑s̄

i=−s̄ wi = 1. The total number of equations
(3.7) required for π̂h ∈ Pl is 1 + m1 + · · · + ml (m0 = 1).

Table 4

Dimensions mk of Ak for each class of integrators. If the kernel is self-adjoint, only the
dimensions m2j are relevant (bold numbers).

m1 m2 m3 m4 m5 m6 m7 m8

G1 2 4 8 16 32 64 128 256
G2 1 2 4 8 16 32 64 128
G3 1 1 2 3 5 8 13 21
G4 1 1 1 1 2 3 5 7

For self-adjoint composition kernels, P−h = Ph and F
(−i)
h = F

(i)
−h, which implies

that φ
(−i)
k,j = (−1)kφ

(i)
k,j . The choice w−i = wi for all i in (3.1) then makes sense, as

this guarantees that (3.7) is automatically satisfied for odd values of k. If in addition
w0 = 1 − 2

∑s̄
i=1 wi (so that π̂h ∈ Pl at least with l = 0), (3.7) holds if

2
s̄∑

i=1

wiφ
(i)
2k,j = π2k,j , 1 ≤ j ≤ m2k, 1 ≤ k ≤ l

2
.(3.8)
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Hence, the number of equations that remain to be satisfied by the unknowns w1, . . . , ws̄

in order that π̂h ∈ P2r+1 is m2 + · · · + m2r.
When the number of unknowns wi is larger than the number of equations (3.7)

required so that π̂h ∈ Pl for a given l, then one can use this freedom to minimize the
difference with the optimal postprocessor at higher orders.

4. New processed methods. In this section we construct self-adjoint compo-
sition kernels in Gl satisfying certain optimization criteria and a simplifying choice
of the coefficients. For the kernels collected here we also provide in Appendix A the
corresponding postprocessor, built according to the procedure of section 3.

4.1. Construction of the kernel. For building a specific kernel ψh of effective
order q by composition in Gl, one typically has to take as many basic integrators as
the total number, s(q) = nq + 1, of effective order conditions. As a matter of fact,
more stages are frequently required (a) due to the nonexistence of real solutions or (b)
to diminish the size of higher (> q+1)–order error terms (usually of large magnitude)
[5, 13, 15]. In any case, introducing extra parameters makes more difficult the task
of finding the numerical values of α which solve the equations Nk,i(α) = 0. For this
reason one usually considers self-adjoint kernels: although this symmetry fixes half
of the coefficients, it also solves (in most cases) approximately the same number of
equations.

Here the following symmetric compositions in Gl, l = 2, 3, 4 (schemes in G1 and
G2 are studied together), at different orders are considered:

ψ
[2]
h = χα1h ◦ χ∗

α2h ◦ · · · ◦ χα2h ◦ χ∗
α1h,(4.1)

ψ
[3]
h = S [2]

α1h
◦ · · · ◦ S [2]

αm−1h
◦ S [2]

αmh ◦ S [2]
αm−1h

◦ · · · ◦ S [2]
α1h

,(4.2)

ψ
[4]
h = S [4]

α1h
◦ · · · ◦ S [4]

αm−1h
◦ S [4]

αmh ◦ S [4]
αm−1h

◦ · · · ◦ S [4]
α1h

,(4.3)

where ψ
[2]
h involves 2m stages (or m different evaluations of ϕ

[a]
h and ϕ

[b]
h if χh =

ϕ
[a]
h ◦ϕ[b]

h ), whereas ψ
[3]
h and ψ

[4]
h have (2m−1) stages, and all of them have α1, . . . , αm

to solve the effective order conditions.
Among the different solutions, one is interested in those that minimize the lq+1 =

nq+1 −n∗
q noncorrectable terms at order q+ 1, according to some criterion previously

adopted. For instance, one could consider a norm in Lq+1 and use it to devise some
objective function of the parameters αi to be minimized, aimed at measuring the
size of the error. Unfortunately, it is by no means obvious how to characterize the
performance of the integrators applied to all initial value problems, since for different
problems the dominant error terms are not necessarily the same.

At least two objective functions have been used in the literature:

E1(α) =

m̄∑
i=1

|αi| and E2(d,α) = m̄ ‖d · fq+1‖1/q,(4.4)

where m̄ = 2m or 2m − 1 (depending on the set Gl considered), αm̄+1−i = αi, and
fq+1 = (fq+1,1, . . . , fq+1,lq+1

) and d = (d1, . . . , dlq+1
) are weight parameters fixed

in advance. Methods with small values of E1 usually have large stability domains
and small error terms. It has been successfully used to find efficient nonprocessed
methods in G3 up to order 10 [10, 8], although it is not possible to compare the
efficiency of schemes with different number of stages. On the other hand, the optimal
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weight vector d present in E2 is problem dependent. For methods in G1 it is usual
to consider d(1) = (1, . . . , 1) (we denote E21 ≡ E2(d

(1),α)), whereas in G3 it is
suggested [15] that one take d(2) = (1, 0 . . . , 0) (and denote E22 ≡ E2(d

(2),α)), since
fq+1,1 =

∑m̄
i=1 α

q+1
i is the dominant error term for a number of problems.

Here we adopt the following criterion: we look for methods with small values of
E1 which, in addition, have small values of E21 for schemes in G1 and/or E22 for
schemes in Gl, l = 2, 3, 4. Of course, one could propose other vectors d(j) and thus
different objective functions to minimize.

As we mentioned before, the number of coefficients in the composition is usually
larger than the number of order conditions, so that there are l (< m) free parameters
α1, . . . , αl. Recently, McLachlan [15] has proposed an idea to find (in a relatively
simple way) efficient methods in G3: he takes the free parameters (α1, . . . , αl) equal
to the first (and last) coefficient αl+1 of the symmetric composition with the minimum
number of stages necessary to satisfy the order conditions. Then, instead of many
multidimensional families of solutions, only isolated solutions are obtained which are
very easy to analyze. For methods up to effective order 6 in G3, the solutions obtained
by applying this rule of thumb correspond to simultaneous local minima of E1 and
E22. For higher orders, this is not necessarily the case, although the corresponding
solutions seem to stay very close to the minima.

Here we propose to extend this rule in the following way: we take α1 = α2 =
· · · = αl ≡ α as free parameter and solve the effective order conditions for different
values of α. Notice that α = αl+1 corresponds to McLachlan’s rule of thumb. A
numerical search with values α1, . . . , αl chosen at random also has been carried out,
but the solutions thus found do not lead to smaller values of E1 and E2 (see Appendix
B for more details). In fact, there exists a strong correlation between E1 and E2, but
their absolute minima do not necessarily coincide (E2 can be zero for some choice of
d, whereas E1 is always nonvanishing).

In view of the number of effective order conditions to be satisfied by symmetric
kernels in Gl and collected in Table 1, it seems reasonable to consider methods up
to order 6 in G1 and G2, up to order 10 in G3, and up to order 12 in G4. The new
methods are denoted by Pm̄q: a processed method of order q with an m̄-stage self-
adjoint kernel.

4.2. Kernels in G1 and G2 up to effective order 6. Several fourth- and
sixth-order schemes in G1 (also valid in G2) are available in the literature, both as
standard composition methods [5] and as processed algorithms [3]. These integrators,
however, have been designed to be efficient only in G1. In contrast, the methods we
present here have been optimized to be used both in G1 and G2.

Fourth-order. In [3] symmetric kernels with m = 3 and m = 4 are designed
(with m = 2 the order conditions do not admit real solutions). We have built kernels
with m = 5, 6, 7, obtaining solutions with very small values of E1 and E21 and/or
E22. In Table 5 (first column) we present the coefficients of the selected kernel with
m̄ = 2m = 12 stages.

Sixth-order. With m = 5 it is possible to solve all the order conditions [3], but
the resulting schemes are not very efficient. We have considered kernels with m up to
10. The most efficient methods found have m = 9 and m = 10 and their coefficients
are collected in Table 5 (second and third columns). These methods are discussed in

more detail in Appendix B. We should remark that, if χh = ϕ
[a]
h ◦ ϕ[b]

h , these kernels

require m evaluations of ϕ
[a]
h and ϕ

[b]
h (due to the FSAL property).
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Table 5

Coefficients in (4.1) for symmetric kernels in G1 and G2. These kernels can be used with the
corresponding postprocessors of Table 8.

P64 P96 P106
α1 = α2 = α3 = α4 α1 = α2 = α3 = α4 = α5 α1 = α2 = α3 = α4 = α5 = α6

α4 = 0.1341940158122142 α5 = 0.1106570871853300 α6 = 0.1008383784517379
α5 = −α4 − 0.18 α6 = −0.2854111127287940 α7 = 0.1008384231345842
α6 = 1/2 − (α1 + · · · + α5) α7 = 0.2138498496192465 α8 = −0.2387378577407101
α13−i = αi, i = 1, . . . , 6 α8 = −0.3402583791791715 α9 = −0.2387378757998321

α9 = 1/2 − (α1 + · · · + α8) α10 = 1/2 − (α1 + · · · + α9)
α19−i = αi, i = i, . . . , 9 α21−i = αi, i = i, . . . , 10

4.3. Kernels in G3 up to effective order 10. Nonprocessed methods up to
order 10 are available in [26, 23, 13, 10, 8] and up to order 6 using processing in [1, 15].
Based on the symmetric (2m − 1)-stage composition (4.2) we present the following
kernels.

Sixth-order. With m = 3 (5 stages) the effective order conditions f1,1 = 1,
f3,1 = f5,1 = 0 possess two real solutions, but both of them lead to high values of
the noncorrectable error terms f7,1 and f7,2 [1]. With l = 1, . . . , 5 free parameters
we have obtained a number of methods with small values of E1 and E22. We propose
taking the 11-stage kernel given in [15] (P116) and the 13-stage kernel (P136) which,
in addition, satisfies f7,2 = 0 (see Table 6).

Eighth-order. With m ≥ 5 (at least 9 stages) one has enough variables to achieve
effective order 8, although the solutions obtained give poorly efficient schemes. Ad-
ditional stages are considered by taking up to l = 5 free parameters. We choose two
solutions, one with l = 2 (P138) and the other with l = 5 (P198). The coefficients
are collected in Table 6. The solution with l = 2 does not follow exactly the rule of
thumb, but it is quite close to it (α1 = α2 � α5).

Tenth-order. If m ≥ 8 (at least 15 stages) one has enough parameters to achieve
effective order 10. Kernels with l = 0, . . . , 5 free parameters have been analyzed, and
the schemes P1910 and P2310 whose coefficients are collected in Table 6 have been
selected.

4.4. Kernels in G4 up to effective order 12. Next we consider the symmetric
(2m− 1)-stage composition (4.3). The numerical search for methods of order q in G3

and of order q+2 in G4 is closely related because the corresponding equations are very
similar. In fact, the number of order conditions is smaller in G4, and the numerical
search is easier. Now the methods chosen exactly follow the rule of thumb.

Eighth-order. If m ≥ 3 (at least 5 stages) one has enough variables to get effective
order 8. With m = 3, solutions with large values of the noncorrectable leading error
term f9,1 are obtained [1]. The coefficients of a 9-stage kernel (P98) are collected in
Table 7. Kernels with more stages have also been analyzed, but their performance is
not clearly superior.

Tenth-order. At least 7 stages (m ≥ 4) are necessary to achieve effective order
10. Kernels with up to l = 5 free parameters have been considered, and the kernel
P1310 with coefficients given in Table 7 is finally selected.

Twelfth-order. If m ≥ 6 (at least 11 stages) a twelfth-order integrator can be ob-
tained. Kernels with up to l = 6 free parameters have been analyzed. The coefficients
for the composition with 19 stages, P1912, are collected in Table 7.
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Table 6

Coefficients in (4.2) for symmetric kernels in G3. They can be used with the respective postpro-
cessors collected in Table 9.

P116 P136 P198
α1 = α2 = α3 = α4 α1 = α2 = α3 = α4 α1 = · · · = α6

α4 = 0.1705768865009222157 α4 = 0.125696288720106 α6 = 0.09155941827296
α5 = −0.423366140892658048 α5 = 0.148070660114965 α7 = 0.36968952549113
α6 = 1 − 2(α1 + · · · + α5) α6 = −0.350856370823828 α8 = 0.06866857653282
α12−i = αi, i = 1, . . . , 5 α7 = 1 − 2(α1 + · · · + α6) α9 = −0.28931413259236

α14−i = αi, i = 1, . . . , 6 α10 = 1 − 2(α1 + · · · + α9)
α20−i = αi, i = 1, . . . , 9

P138 P2310 P1910
α1 = α2 α1 = α2 = α3 = α4 = α5 α1 = α2 = α3

α2 = 0.168 α5 = 0.121657748919383 α3 = 0.16176042393895
α3 = 0.585550530805562 α6 = −0.511318780154828 α4 = −0.71963383963697
α4 = −0.460090457516872 α7 = −0.172858614884985 α5 = 0.79594876856276
α5 = 0.172863148729731 α8 = 0.123016258833066 α6 = 0.59733925980951
α6 = 0.179664539695039 α9 = 0.441503951671565 α7 = 0.082347969317011
α7 = 1 − 2(α1 + · · · + α6) α10 = −0.327071324165477 α8 = −0.43345109677776
α14−i = αi, i = 1, . . . , 6 α11 = 0.070952700957766 α9 = 0.10313406454059

α12 = 1 − 2(α1 + · · · + α11) α10 = 1 − 2(α1 + · · · + α9)
α24−i = αi, i = 1, . . . , 11 α20−i = αi, i = 1, . . . , 9

Table 7

Coefficients in (4.3) for symmetric kernels in G4. The corresponding processed integrator is
formed with the postprocessors of Table 10.

P98 P1310 P1912
α1 = α2 = α3 α1 = α2 = α3 = α4 α1 = α2 = α3 = α4 = α5

α3 = 0.2233380451446240 α4 = 0.1578763989460225 α5 = 0.1008183703667023
α4 = −0.3739874130116841 α5 = −0.3010347145730912 α6 = 0.2659998884940344
α5 = 1 − 2(α1 + · · · + α4) α6 = 0.3577728201055250 α7 = −0.2142408955837595
α10−i = αi, i = 1, . . . , 4 α7 = 1 − 2(α1 + · · · + α6) α8 = −0.2968630395353906

α14−i = αi, i = 1, . . . , 6 α9 = 0.08741046298860494
α10 = 1 − 2(α1 + · · · + α9)
α20−i = αi, i = 1, . . . , 9

4.5. On the accuracy of the coefficients. The coefficients of the previous
kernels have been obtained with only 15 digits, even when the order of the scheme is
10 or 12. The error introduced due to the accuracy of the coefficients is propagated
along the integration, and thus one could think that a 15-digit precision is not suf-
ficient for carrying out very accurate computations. It turns out, however, that this
is not observed in practice. To explain this phenomenon notice that, since the kernel
is self-adjoint, the asymptotic expansion of the error contains only odd powers of h:
hf1,i1 , h

3f3,i3 , h
5f5,i5 , . . . , and the step size h has to be small enough to guarantee

convergence and sufficiently high accuracy. Now the consistency conditions for f1,i1

are exactly satisfied (up to roundoff), and the error in the lowest-order conditions
N3,i(α) = 0 and N5,i(α) = 0 is approximately h310−15 and h510−15, respectively,
which is sufficiently accurate for most problems. If, for a given method, one is inter-
ested in obtaining more precise coefficients, the process illustrated by the following
example can be applied.

Example. Suppose that the coefficients of the kernel for the processed method
P2310 in G3 are desired with higher accuracy. We show how to increase the actual
precision from h310−15 to h510−15 just by adding some extra digits to one of the
coefficients αj .
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First we consider the lowest effective order conditions f1,1 =
∑

i αi = 1, N3,1(α) =
f3,1 =

∑
i α

3
i = 0. Let us fix all values of αi from Table 6 except one, say α11

(as well as α12 to ensure that condition f1,1 = 1 is exactly satisfied). Next, solve
N3,1(α) = 0 with as many digits as desired. For example, with 25 digits one gets
α11 = 0.0709527009577666581583926, and the error of the method due to the accuracy
of the coefficients is h310−25 + h510−15 ∼ h510−15. This process can also be used to
increase the accuracy to h710−15 just by taking two parameters to solve N3,1(α) = 0
and N5,1(α) = f5,1 = 0.

5. Numerical examples. In this section we test the performance of the new
processed methods on some numerical examples. A rigorous test is very difficult be-
cause the relative performance between the methods usually depend on the particular
problem analyzed. If the vector field considered involves some parameters, this rela-
tive performance may depend also on them as well as on the particular splitting or
basic method used for the integration. It may also depend on the initial conditions
and even on the final time at which the comparison is done (although this depen-
dence can be minimized taking an average of the error along the integration). For
this reason our experiments involve several problems depending on parameters and a
comparison of the processed integrators with other schemes available in the literature
for different values of parameters, initial conditions, and splitting or basic methods
used. In particular, we compare with the following methods (the order, number of
stages, and the class Gl to which they belong is indicated):

• Order 4.
G1, G2 (BM64): the 6-stage method (optimized in G1) given in [5];
G3 (Y34): the well-known 3-stage method of [26] (only used as a reference);
G3 (S54): the 5-stage method of [22].

• Order 6.
G1, G2 (BM106): the 10-stage method (optimized in G1) given in [5];
G3 (M96): the optimized 9-stage method (S,m = 9) of [13].

• Order 8.
G3 (M178): the 17-stage method (S,m = 17) of [13];
G4 (B78): the 7-stage method of [1].

• Order 10.
G3 (R3310): the 33-stage method (s33odr10c) of [10];
G3 (G3310): the 33-stage method of [8].
G4 (O1310): the 13-stage method of [20].

• Order 12.
G4 (O2312): the 23-stage method of [20].

In the comparison, the computational cost (or the number of evaluations) of the
kernel is taken as the cost of the processed method. All computations are always

started with the most accurate composition preprocessor (π
(c)
h )−1 available. For post-

processing we take π
(c)
h , although very similar results are obtained when the alternative

cheap postprocessor π̂h is used instead, in agreement with the results exposed in [2].
Example 1. We consider the Lotka–Volterra system

u′ = u(v − 2), v′ = v(1 − u),(5.1)

which has as first integral I(u, v) = ln(uv2)−(u+v). For simplicity, we split the vector
field as f = fa+fb, with fa = (u(v−2), 0) and fb = (0, v(1−u)), which allows us to con-
sider explicit methods which preserve the Poisson structure. This implies, in particu-
lar, that the first integral I(u, v) is approximately preserved (for in that case, splitting
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Fig. 1. Average relative error in position for the methods in G1 (G2) and for different initial
conditions: (u0, v0) = (α, 2α), 0 < α < 1. The methods Y34, S54, and M96, belonging to G3,
are included as reference since they are frequently used. Time steps used are h = m/270 for the
fourth-order methods denoted by Xm4 with X=Y, S, BM, P, so that the four methods require the
same number of function evaluations. Similarly, for the sixth-order methods Xm6 with X=M, BM,
P, we have taken h = m/180.

methods are, with an appropriate change of variables, symplectic methods applied to
a Hamiltonian system with Hamiltonian function H(p, q) := I(u(p, q), v(p, q))). The
problem can be integrated by schemes in G1/G2. In the region 0 < u, v the sys-
tem has periodic trajectories around (u, v) = (1, 2). We take as initial conditions
(u0, v0) = (α, 2α) for different values of α ∈ (0, 1), and integrate for t ∈ [0, 50]. In this
way all periodic trajectories are considered. For each initial condition we compute
the error at t = 1, 2, . . . , 50 and measure the average relative error in phase space.
The time step is chosen in such a way that (i) all the methods of the same order in
the same figure require approximately the same number of function evaluations and
(ii) the relative performance between them does not change qualitatively when h is
reduced. Figure 1 shows the results obtained for the fourth- and sixth-order methods
in G1 and G2. We observe that the relative performance between the methods highly
depend on the initial conditions but, in general, the new processed methods are more
efficient.

To compare the performance of the methods in G3 we take S [2]
h = ϕ

[a]
h/2 ◦ ϕ

[b]
h ◦

ϕ
[a]
h/2 as the basic self-adjoint second-order integrator. The corresponding results are

shown in Figure 2. Again, the processed methods are clearly superior. When the

symmetric second-order implicit midpoint rule is taken as S [2]
h , we have observed that

the results of the schemes are more sensitive to initial conditions giving, in general,
more accurate results when α is close to 1. Then, depending on the value of α and
the qualitative properties which we desire to preserve, one has to choose the most
appropriate basic integrator. However, what it is important for our analysis is that
the relative performance of the compared methods does not change considerably.

Finally, to compare the behavior of methods of different orders we plot efficiency
diagrams. For this test we fix α to a representative value of the performance of the
methods: in view of Figures 1 and 2, we take α = 1/3. Figure 3 shows the average
relative error in phase space as a function of the number of function evaluations for
different time steps. The high efficiency achieved by the processed methods P96 and
P138 is apparent.
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Fig. 2. Same as Figure 1 but for methods in G3 taking h = m/396 for Xm6, h = m/(13×17) for
Xm8 (X=M, P), h = 1/8 for G3310, R3310, and h = 1/12 for P2310, so that all methods separately
in each plot require, approximately, the same number of function evaluations.
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Fig. 3. Average error in phase space versus the number of evaluations for the methods of
Figures 1 and 2 taking different time steps and α = 1/3.

Example 2. Let us consider now the ABC-flow [8, 16], with equations

x′ = B cos y + C sin z, y′ = C cos z + A sinx, z′ = A cosx + B sin y,(5.2)

which has been studied as a model volume-preserving three-dimensional flow. The
vector field f is separable into three solvable parts, namely

f = fa + fb + fc = A(0, sinx, cosx) + B(cos y, 0, sin y) + C(sin z, cos z, 0).

For B = C = 1, A = α we take as initial condition (x0, y0, z0) = (3.14, 2.77, 0) and
integrate until t = 20 for different values of α ∈ [0, 1]. The α-dependent vector field
can be used to test integrators in Gl, l = 2, 3, 4. We choose the following explicit

basic methods: (i) in G2, the first-order scheme χh = ϕ
[a]
h ◦ ϕ[b]

h ◦ ϕ[c]
h and its adjoint

χ∗
h = ϕ

[c]
h ◦ ϕ[b]

h ◦ ϕ[a]
h ; (ii) in G3, the symmetric composition S [2]

h = χh/2 ◦ χ∗
h/2; and

(iii) in G4, the well-known 3-stage fourth-order scheme S [4]
h = S [2]

α1h
◦S [2]

α2h
◦S [2]

α1h
, with

α1 = 1/(2−21/3) and α2 = 1−2α1. Obviously, more efficient self-adjoint fourth-order

basic methods S [4]
h could improve the accuracy of the results, but at this stage, we

are mainly interested in the relative performance of the different integrators, and this
does not change considerably with the basic method.
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Fig. 4. Error in position for the ABC-flow with B = C = 1 at the same computational cost
for the fourth- (left) and sixth-order methods (right) in G2 taking different values of the parameter
A = α, 0 ≤ α ≤ 1, and initial condition (x0, y0, z0) = (3.14, 2.77, 0).

The time step size used for each method is such that all the integrators of the
same order appearing in the same figure require approximately the same number of
evaluations, and the results have the expected asymptotic behavior corresponding
to the respective order. Figure 4 shows the results obtained with the fourth- and
sixth-order methods in G2, whereas Figure 5 corresponds to the sixth-, eighth-, and
tenth-order methods in G3. We have repeated the experiment with different initial
conditions, and the relative performance of the methods also changes. However, we
have observed a superiority of the processed integrators which, on average, is well
represented by Figures 4 and 5.

On the other hand, since we have taken B = C, the system has a reversing sym-
metry group with 16 elements [16], not preserved by the preceding splitting. However,
if we consider

f = fa + fb = B(cos y + sin z, 0, 0) + (0,B cos z + A sinx,A cosx + B sin y),(5.3)

this splitting does preserve the reversing symmetry group. Notice that fa is explicitly

integrable, but fb is not. We can integrate fb, ϕ
[b]
h , with the midpoint rule, ϕ̃

[b]
h , which

preserves all the properties [16]. We repeated the experiments shown in Figure 5

using as the basic method S [2]
h = ϕ

[a]
h/2 ◦ ϕ̃

[b]
h ◦ ϕ

[a]
h/2 and the same time steps. The

midpoint rule was implemented with the Newton method (three iterations usually
gave enough accuracy). The results are shown in Figure 6, where we observe that
the relative performance between the methods change, but the processed methods are
more accurate.

Finally, Figure 7 shows the results obtained by the methods in G4 using the
explicit methods. Now the processed integrators are always between three and four
orders of magnitude more accurate at the same cost, in agreement with the size of
the leading order error coefficients.

Example 3. Finally, to illustrate the interest of using methods in G4, we consider
the two-body gravitational problem. The corresponding evolution equation may be
written as

x′′
i = − xi

(x2
1 + x2

2)
3/2

, i = 1, 2,(5.4)



1836 S. BLANES, F. CASAS, AND A. MURUA

0 0.5 1
−12

−11

−10

−9

−8

−7

−6

α

LOG
(ER

RO
R)

M
9
6

P
11

6

0 0.5 1
−11

−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

α

LOG
(ER

RO
R)

M
17

8

P
13

8

0 0.5 1
−14

−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

−9.5

−9

α

LOG
(ER

RO
R)

R
33

10

G
33

10

P
23

10

Fig. 5. Same as Figure 4 for the sixth-, eighth-, and tenth-order methods in G3 taking h = m/99
for Xm6, h = 4m/(13 × 17) for Xm8 (X=M, P), h = 5/23 for G3310, R3310, and h = 5/33 for
P2310.
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Fig. 6. Same as Figure 4 for the sixth-, eighth-, and tenth-order methods in G3 for the splitting
given in (5.3) and using the implicit midpoint rule to solve the equation for fb.

and we take as initial condition x1(0) = 1−e, x2(0) = x′
1(0) = 0, x′

2(0) = [(1+e)/(1−
e)]1/2, which produces an orbit with eccentricity e. With the value e = 1/4, the orbit
is determined numerically for 100 periods and the mean error in positions is computed.
This problem is suited to integration by symplectic Runge–Kutta–Nyström methods
[21], and moreover, modified potentials can also be used [4, 12]. In particular, Koseleff
[11] designed an efficient self-adjoint fourth-order scheme, which can be used as the
basic method:

S [4]
h = ϕ

[b]
h/6 ◦ ϕ

[a]
h/2 ◦ ϕ

[b,c]
2h/3,h3/72 ◦ ϕ

[a]
h/2 ◦ ϕ

[b]
h/6.(5.5)

Here

ϕ
[a]
αh(xi) = xi + αhx′

i, ϕ
[b,c]
βh,γh3(x

′
i) = x′

i − xiG (β + γ̂ G) , i = 1, 2,(5.6)

with γ̂ = 4γh, G = h/(x2
1 + x2

2)
3/2, and ϕ

[b]
βh corresponds to taking γ = 0 in the

modified flow ϕ
[b,c]
βh,γh3 . Notice that the cost of evaluating ϕ

[b,c]
βh,γh3 instead of ϕ

[b]
βh

increases only by one addition and one multiplication, so that it can be neglected.
We compare the new processed methods in G4, taking (5.5) as the basic integrator

with the nonprocessed schemes M178 and G3310 in G3 and using as basic second-
order symmetric integrator the well-known Störmer–Verlet/leapfrog method. Figure
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Fig. 7. Same as Figure 4 for the eighth-, tenth-, and twelfth-order methods in G4.

8 shows the average relative error in position versus the number of ϕ
[b]
βh evaluations

(one evaluation of (5.5) is considered to involve two ϕ
[b]
βh evaluations due to the FSAL

property). It is worth noticing the excellent performance of the processed methods
P98 and P1310. In particular, for the step sizes considered in the figure P1310 behaves
as a twelfth-order integrator: in fact, one has to take a much smaller h to recover the
asymptotic behavior expected for a tenth-order method. A similar pattern can be
observed in the diagram corresponding to P98.

This example clearly shows that in certain circumstances and depending on the
particular structure of the system at hand, it can be advantageous to design an efficient

fourth-order scheme S [4]
h and then build by composition higher-order integrators based

on it. Obviously, the performance of the methods highly depend on the particular
fourth-order basic scheme and a more detailed analysis of this could even improve the
performance observed in Figure 8.

We must also remark that after 100 revolutions it is still possible to obtain an
accuracy of 18 digits. However, the coefficients for the numerical methods in Table
7 are given with only 15 digits. This is so because the lowest-order condition is
multiplied by h5, which is also a small number. In other words, the comments of
section 4.5 are valid here.

6. Conclusions. In this paper we have constructed numerical integrators for
differential equations up to order twelve by composition of basic integrators and using
the processing technique. Four families of integrators are considered: (i) fourth- and
sixth-order composition methods for a system separable into two solvable parts or (ii)
using as basic methods a first-order integrator and its adjoint; (iii) sixth-, eighth-,
and tenth-order composition methods using second-order self-adjoint methods; and
(iv) eighth-, tenth-, and twelfth-order composition methods using fourth-order self-
adjoint methods.

Our starting point is a theoretical analysis of the processing technique for the cases
considered here, which allows us to obtain in a relatively simple way the number and
explicit form of the order conditions for the kernel. The analysis clearly shows that the
processing technique is a very promising procedure to obtain efficient methods when
implemented with constant time step. In that case, the cost of the postprocessor can
be neglected even if the output has to be frequently computed since, if desired, it can
be approximated using intermediate stages of the kernel.

Next, we have carried out a numerical search of the coefficients of different com-
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Fig. 8. Average error in position versus number of evaluations. P98, P1310, and P1912 are
processed methods in G4 using (5.5) as the basic method (considered as two evaluations of the poten-
tial). M178 and G3310 are methods in G3 using the Störmer–Verlet leapfrog method (one evaluation
of the potential).

positions to get efficient kernels for the cases considered. Compositions with more
stages than strictly required to solve the order conditions are considered for optimiza-
tion purposes by following, mainly, the rule of thumb proposed in [15]. In this way,
the higher accuracy obtained compensates the increase in the computational cost of
the methods.

A large number of numerical experiments have been carried out to compare the
performance of the new processed methods with other well-established nonprocessed
methods, and some representative results are shown. We have considered different
initial conditions, values of the parameters, basic methods, and splittings to better
appreciate the performance of the methods.

We think that some comments about the choice and applicability of the different
methods proposed here could be of interest for the potential user. If a given problem
can be integrated using methods in G1, then it is clear that it can also be integrated
with methods in G2,G3, and G4, but for the same order, methods in G1 and G2 are
more efficient than schemes in G3 and G4. Thus, if one is interested in fourth- or
sixth-order methods, it is, in general, preferable to consider methods in G1 or G2; for
orders 8 or 10 we recommend methods in G3, and only for higher-order methods or
when a very efficient fourth-order scheme is available do we recommend methods in
G4. The same comments are valid for a problem which can be integrated in G2 but
not in G1.

Although the processing technique has become, during the past few years, a
standard technique for constructing efficient high-order composition integrators, there
are still some issues which need to be clarified.

• Which is the most appropriate objective function to minimize leading to the
most efficient methods for a given class of problems?

• We have considered self-adjoint kernels with more stages than necessary to
solve the effective order conditions. On the other hand, for nonsymmetric
kernels such a number of stages would contain a larger number of free pa-
rameters. The question is, With such assumptions, could other interesting
solutions not contemplated in this work exist?
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• Could there exist other possible symmetries for the coefficients and different
rules of thumb which would allow one to obtain more efficient methods?

• How can one build specific fourth-order methods for a given problem that
when used as a basic scheme in G4 would lead to very efficient higher-order
composition methods?

• Would it be possible to construct more efficient composition methods for
particular problems of physical relevance for which the Lie algebra involved
presents a simpler structure than those analyzed in this work?

Appendix A. Construction of specific postprocessors. Next we present
several composition and cheap postprocessors for some of the kernels collected in
section 4. The resulting integrators provide the most efficient results on different test
examples (analyzed in section 5).

With respect to composition postprocessors, in accordance with the comments in

section 4.1, we take π
(c)
h = w

[i]
h ◦ w[i]

−h, i = 2, 3, 4, for the composition postprocessor,
with

w
[2]
h = χγ2rh ◦ χ∗

γ2r−1h ◦ · · · ◦ χγ2h ◦ χ∗
γ1h,(A.1)

w
[3]
h = S [2]

γrh
◦ · · · ◦ S [2]

γ1h
,(A.2)

w
[4]
h = S [4]

γrh
◦ · · · ◦ S [4]

γ1h
(A.3)

and require that π
(c)
h ∈ Pq−1, although in some cases a more accurate composition

π
(c)
h ∈ Pq is also built, particularly when the number of stages required is not too

large. On the other hand, the cheap postprocessors are constructed by following the
procedure outlined in section 3.2.

Postprocessors in G1 and G2. Condition p1,1 =
∑

i γi = 0 produces a composition

π
(c)
h = w

[2]
h ◦ w

[2]
−h ∈ P2, whereas 4 and 15 order conditions have to be satisfied

if π
(c)
h ∈ Pj , j = 4, 6, respectively. In Table 8 we give coefficients for π

(c)
h in P4

(P64). Since the kernel P96 of effective order 6 is the most efficient in practice, we
present two possible postprocessors: one in P5 (r = 4) and a more accurate one in
P6 (r = 9), which is recommended for use in both G1 and G2. Finally, we provide a
cheap postprocessor π̂h ∈ P3 for P64.

Postprocessors in G3. For a sixth-order processed integrator it is required that
πh ∈ P5 and, according to Table 3, this is accomplished if p4,1 = −f5,2 and p1,1 =

p3,1 = p5,1 = p5,2 = 0. In fact, with π
(c)
h = w

[3]
h ◦ w

[3]
−h, w

[3]
h given by (A.2) and

satisfying
∑r

i=1 γi = 0, we need only to enforce p4,1 = −f5,2. If, in addition, p6,1 =

−f7,3 and p6,2 = −f7,4 hold, then π
(c)
h ∈ P6, whereas if condition

∑r
i=1 γ

3
i = 0 is

satisfied, then π
(c)
h ∈ P7: this is, in fact, the composition postprocessor collected

in Table 9 for P116 and P136, preserving time-symmetry up to O(h9). Taking into

account the conditions on p8,i, i = 1, . . . , 5, one gets π
(c)
h ∈ P8, and so on. For

P138 (which works in practice more efficiently than P198) we provide a composition

postprocessor in P8 and a 24-stage π
(c)
h ∈ P9 for P2310. One could get a postprocessor

in P10 for the tenth-order case, but this would require 11 new conditions to be satisfied

by w
[3]
h , giving a 46-stage postprocessor. We also present the coefficients of cheap

processors π̂h ∈ Pq−1, q = 6, 8, valid for P116 and P138, respectively. A similar π̂h

could be obtained for P2310, but from Table 4, it would need at least 33 coefficients
wi.
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Table 8

Postprocessor coefficients in (A.1) and (3.5) for some kernels in G1/G2.

P64 : π
(c)
h

∈ P4 P64 : π̂h ∈ P3 P96 : π
(c)
h

∈ P5

γ1 = 0 w0 = 1 − 2(w1 + w5 + w6 + w7) γ1 = 0.01012220322650864
γ2 = −(γ3 + · · · + γ6) w1 = 0.46640472356735 γ2 = −0.2840923693556972
γ3 = −0.1612056894758833 w5 = −0.02125258839849 γ3 = −0.0739474688028612
γ4 = −0.2694936673582758 w6 = −0.04899563905006 γ4 = 0.00007025760293332
γ5 = 0.2736158718483377 w7 = 0.00811211574986 γ5 = −0.02385471740106014
γ6 = 0.1832420262145362 γ6 = 0.08878308313058653

γ7 = −(γ1 + · · · + γ6)
γ8 = 0

P96 : π
(c)
h

∈ P6

γ1 = −0.2013206758948216 γ2 = −0.1281761283096599 γ3 = 0.0570146336015926
γ4 = −0.0359500915398769 γ5 = 0.0498478378426457 γ6 = 0.1725721056066613
γ7 = −0.0654901907171583 γ8 = −0.0576378685707717 γ9 = 0.1817517334193077
γ10 = 0.1672419181837143 γ11 = 0.2111126647112377 γ12 = −0.0733409487114027
γ13 = −0.1420023272628973 γ14 = 0.1215976276874689 γ15 = 0.0329874370062511
γ16 = −0.2361731625865831 γ17 = −(γ1 + · · · + γ16) γ18 = 0

Table 9

Postprocessor coefficients in (A.2) and (3.5) for some kernels in G3.

P116 : π
(c)
h

∈ P6 P116 : π̂h ∈ P5 P136 : π
(c)
h

∈ P6

γ6 = −(γ1 + · · · + γ5) w0 = 1 − 2(w1 + w5 + w6 + w7) γ6 = 0.1
γ5 = −0.20621953139126 w1 = 0.35601475536028 γ5 = 0.225080298761176
γ4 = 0.23651387483203 w5 = 0.12246549694690 γ4 = 0.191244694511161
γ3 = 0.09086982276241 w6 = 0.00415291514453 γ3 = −0.212763792194890
γ2 = 0.24687306977659 w7 = −0.20658995116781 γ2 = −0.09660157306582295
γ1 = −0.1 γ1 = −(γ2 + · · · + γ6)

P138 : π
(c)
h

∈ P8 P138 : π̂h ∈ P7 P2310 : π
(c)
h

∈ P9

γ10 = −(γ1 + · · · + γ9) w0 = 1 − 2(w1 + · · · + w12) γ12 = −(γ1 + · · · + γ11)
γ9 = −0.008488123494574411 w1 = −3.6976426586421067 γ11 = 0.4727142080578221
γ8 = −0.337188967354338 w2 = 1.0615669344875514 γ10 = 0.01344750613191108
γ7 = 0.333987768164597 w3 = 0.040377839731292050 γ9 = −0.4637104712987078
γ6 = 0.588351189003849 w4 = 0.0830491660507623 γ8 = −0.3045590922565247
γ5 = 0.162324207599241 w5 = −0.0221811460897851 γ7 = −0.5382945821834320
γ4 = −0.511744926116413 w6 = −0.1398573630328631 γ6 = −0.1899795533199732
γ3 = 0.236885952363384 w7 = −0.0074999124845547055 γ5 = 0.1548256472553489
γ2 = 0.598212975943381 w8 = 0.21992320817724267 γ4 = −0.3594148033156072
γ1 = −0.543415765371656 w9 = −0.21401705459232256 γ3 = 0.3430345669677392

w10 = −0.014339878804936956 γ2 = 0.5334030283695922
w11 = 0.09819025594252939 γ1 = 0.009116042043427756
w12 = 0.034452779507214946

Postprocessors in G4. In Table 10 we present accurate composition postprocessors

π
(c)
h = w

[4]
h ◦ w

[4]
−h belonging to P8 and P10 for P98 and P1310, respectively, whereas

the postprocessor for the twelfth-order method belongs to P11.

Appendix B. Here we illustrate the validity of the criteria adopted in section
4 for the choice of the particular kernels collected there. We fix our attention, in
particular, on the compositions of effective order 6 in G2 and effective order 8 in G3.
In the first case we take the symmetric composition (4.1) with the minimum number
of maps required to satisfy the effective order conditions (m = 5) ψ(m), and then we
introduce l ≤ 5 additional maps with free parameters α1, . . . , αl in the composition.
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Table 10

Postprocessor coefficients for kernels in G4.

P98 : π
(c)
h

∈ P8 P1310 : π
(c)
h

∈ P10 P1912 : π
(c)
h

∈ P11

γ5 = −(γ1 + · · · + γ4) γ7 = −(γ1 + · · · + γ6) γ8 = −(γ1 + · · · + γ7)
γ4 = −0.2196648965658254 γ6 = 0.2834714107596056 γ7 = 0.2505061593209141
γ3 = 0.2405373742563472 γ5 = −0.2553426863586816 γ6 = −0.01365235094631587
γ2 = 0.1406336264566169 γ4 = −0.03297486475329144 γ5 = 0.1795942654148864
γ1 = 0.1 γ3 = 0.2298746411002190 γ4 = −0.1860801553027685

γ2 = −0.2869384247718548 γ3 = −0.2526234033672912
γ1 = −0.2110578773704694 γ2 = 0.01093309142620025

γ1 = −0.1873261189973930
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Fig. 9. Values of E1 and E22 for self-adjoint kernels using l free parameters when they are
chosen randomly (small dots), applying the generalized rule of thumb (medium dots) and using
McLachlan’s rule of thumb (big dots). Only the results for the kernels of effective order 6 in G1/G2

with l = 3, 4, 5 (left) and the results for the kernels of effective order 8 in G3 with l = 1, 2, 3 (right)
are shown.

For instance, when l = 4 the kernel has the form

ψ
[2]
h = χα1h ◦ χ∗

α2h ◦ χα3h ◦ χ∗
α4h ◦ ψ(m) ◦ χα4h ◦ χ∗

α3h ◦ χα2h ◦ χ∗
α1h.

Next, for each l and given values of α1, . . . , αl, we solve the effective order conditions
and compute the objective functions E1 and E22. In Figure 9 (left) we collect the
results obtained when (i) the free parameters α1, . . . , αl are chosen at random (small
dots); (ii) α1 = · · · = αl = α for different values of α (medium dots); and (iii)
applying McLachlan’s rule of thumb, i.e., α1 = · · · = αl = αl+1 (big dots). For
clarity, only the results with l = 3, 4, 5 and a small fraction of points in (i) are
shown. It is worth noticing that a random selection of α1, . . . , αl does not lead to
smaller values of E1 and E22 than those obtained by applying the rule of thumb
or its generalization. In fact, the medium dots lie on curves, whereas the big dots
are located in the neighborhood of their minima. For comparison, we also include
the values obtained with the nonprocessed 10-stage method BM106 (optimized as a

method in G1) given in [5] when χh = ϕ
[a]
h ◦ϕ[b]

h and the optimized method M96 with

S [2]
h = χh/2 ◦ χ∗

h/2 (stars).
This figure should be interpreted with caution: from the obtained values of E1 and

E22, M96 should be more efficient than BM106, but in practice it is just the opposite.
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In fact, the value of E21 (using a basis of L in G1) is smaller with BM106. This
example indicates some of the difficulties involved in the choice of the best objective
functions for methods in G1 and G2. Among the different solutions in the lower left
corner of the figure we have selected two of them: P106 (providing the minimum of
E1 and E22) and P96 (with the smallest value of E21). In practice, the kernel P96
shows the best performance.

In Figure 9 (right) we show the results obtained with the kernel of effective order
8 in G3. Now l = 1, 2, 3 free parameters are considered. We also include the values
given by the 17-stage method M178 and the 19-stage kernel P198 of Table 6.
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