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a b s t r a c t 

The aim of this paper is to introduce a new numerical method for solving the nonlinear 

generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation. This method is combina- 

tion of group preserving scheme (GPS) with radial basis functions (RBFs), which takes ad- 

vantage of two powerful methods, one as geometric numerical integration method and the 

other meshless method. Thus, we introduce this method as the Lie-group method based 

on radial basis functions (LG–RBFs). In this method, we use Kansas approach to approx- 

imate the spatial derivatives and then we apply GPS method to approximate first-order 

time derivative. One of the important advantages of the developed method is that it can 

be applied to problems on arbitrary geometry with high dimensions. To demonstrate this 

point, we solve nonlinear GBBMB equation on various geometric domains in one, two and 

three dimension spaces. The results of numerical experiments are compared with analyti- 

cal solutions and the method presented in Dehghan et al. (2014) to confirm the accuracy 

and efficiency of the presented method. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

In mathematics and physics, nonlinear partial differential equations are partial differential equations with nonlinear

terms. As said in [1,2] , many phenomena in engineering and applied sciences are modeled by nonlinear evolution equa-

tions.They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in

mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture. They are hard to study: there

are almost no generic methods that work for all such equations, and usually each particular equation has to be studied as

a separate problem. The science of exact form solutions of the nonlinear partial differential equations helps the experiment

of numerical solvers, aids in the stability analysis of solutions and guides to a better conception of nonlinear phenomena

that these equations model [3] . But finding an exact solution for nonlinear PDEs is difficult. Therefore, many researchers are

studying numerical methods for solving the nonlinear PDEs. 
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One particular class of such numerical methods that have been highly regarded in recent years is formed by geometric

numerical integration methods [17,18] . The concept of a Lie group is very helpful in creating some trusty and potent nu-

merical approaches to integrate ODEs, whilst preserving their invariant features. Indeed, preserving the Lie group structure

under discretization plays an serious role in the improvement of a appropriate behavior in the error minimization [19] .

So, by subscription the geometric structure and invariance of the original ODEs, new techniques can be devised, which

are more strong, accurate and stable than the formal numerical approaches [16] . From the class of numerical Lie group

methods, the so-called group preserving scheme (GPS), introduced by Liu [20] , is a numerical approach which utilizes the

Cayley transformation and the Padé approximations in the Minkowski space. Avoiding the spurious solutions and ghost

fixed points are main benefits of this method [21–26] . 

In recent years, different techniques have been employed to apply the GPS for solving partial differential equations [27–

32] . In most of these methods, using a technique known as the method of lines, all variables in the problem except one,

are discrete and a system of ordinary differential equations is produced. Then, the GPS is applied for solving this system of

ordinary differential equations. But some problems may arise in this process. The method is very sensitive in selecting the

size of discrete step, this means that many criteria including stability, consistency and etc. should be considered. So, if the

size of the discrete step selected is very small or large the consistency and stability of the method can be problematic and

the solution will not be reliable. On the other hand, if for obtaining good results we select the length of discrete step too

small, this will result in a large number of ordinary differential equations. Thus the method requires a lot of calculations.

With these explanations, implementation of GPS on complex non-linear partial differential equations such as the nonlinear

GBBMB equation is virtually impossible. For dealing with these difficulties, in this paper we propose a technique that com-

bines the GPS with radial basis functions. We have named this scheme the Lie-group method based on radial basis functions.

1.1. A brief review of the GBBMB equation 

In this paper, we consider the nonlinear GBBMB equation of the following form 

u t − �u t − �u + ∇ .u = ∇ . (F (u )) + f, x ∈ �, 0 ≤ t ≤ T , (1) 

with initial condition 

u ( x , 0) = ω( x ) , x ∈ �, (2) 

and boundary condition 

u ( x , t) = h (t) , x ∈ ∂�, (3) 

where F ( u ) is a nonlinear function, f is a function of space and time variables, � ⊆ R 

n , � and ∇ are the Laplacian and

gradient operators, respectively. By choosing F (u ) = 

1 
2 u 

2 , Eq. (1) is called the Benjamin–Bona–Mahony–Burgers (BBMB)

equation. If remove the term �u , we have the generalized Benjamin–Bona–Mahony (GBBM) equation. If we remove the

term �u and also put F (u ) = 

1 
2 u 

2 , Eq. (1) is called the Benjamin–Bona–Mahony (BBM) equation. 

Among the applications of BBM equation we can mention the following [4–6] : 

• analysis of the surface waves of long wavelength in liquids; 

• hydromagnetic waves in cold plasma; 

• acoustic-gravity waves in compressible fluids; 

• acoustic waves in harmonic crystals. 

Different analytical and numerical methods have been used for solving the BBMB equation in the literature. Here, we

review some of them. The authors in [4] use the first integral method for getting an analytic solution of the modified BBM

equation. The BBM equation is solved using a generalization of the well-known tanh-coth method by Gómez et al. [7] . The

nonlinear stability of planar viscous shock profiles of the GBBMB equation in two dimensions is analyzed in [8] . Guo and

Fang [9] studied the optimal decay rates of solutions for the GBBM equation in multi-dimensional space n ≥ 3. Authors of

[10] showed an exponential decay rate of the solutions to the Cauchy problem of the GBBMB equation by employing the

space-time weighted energy method. The BBM and modified BBM equations are solved using the exp-function method to

obtain some new soliton solutions by Noor et al. [11] . Authors in [12] studied the convergence rate of the global solutions

of the GBBMB equation to the corresponding degenerate boundary layer solutions in the half-space. A Crank–Nicolson-type

finite difference scheme with the proof of the second-order convergence in the discrete H 

1 -norm is discussed in [13] for

solving the BBM equation. Omrani [14] presented a technique based on the standard Galerkin method and Crank–Nicolson

formula for space and time variables, respectively, and he proved the convergence of a linearized Galerkin modified scheme.

The interested readers are referred to [5,6,15] . 

2. Group preserving scheme 

Liu [20] has derived a Lie group transformation for the augmented dynamical system on the future cone, and developed

the group preserving scheme for an effective numerical solution of nonlinear ODEs. Consider a system of n ordinary

differential equations: 

u 

′ (x ) = f ( u (x ) , x ) , u (x ) ∈ R 

n , x ∈ R , (4) 
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where u (x ) is an n -dimensional vector, x is an independent variable and f is a vector-valued function of u and x (the vector

field). We can transform Eq. (4) into the following (n + 1) -dimensional augmented dynamical system: 

d 

dx 

[
u 

‖ u ‖ 

]
= 

[ 

0 n ×n 
f ( u ,x ) 
‖ u ‖ 

f 
T 
( u ,x ) 
‖ u ‖ 0 

] [
u 

‖ u ‖ 

]
. (5)

Here we assume ‖ u ‖ > 0 , and hence the above system is well-defined. 

Obviously, the first equation in Eq. (5) is the same as the original Eq. (4) , but the addition of the second equation gives

us a Minkowski structure in the set of the augmented state variables of U = ( u 

T , ‖ u ‖ ) T , satisfying the cone condition 

U 

T g U = 0 , (6)

where 

g = 

[
I n 0 n ×1 

0 1 ×n −1 

]
, (7)

is a Minkowski metric, I n is the identity matrix, and the superscript T stands for the transpose. In terms of ( u , ‖ u ‖ ) , Eq.

(6) becomes 

U 

T g U = u · u − ‖ u ‖ 

2 = ‖ u ‖ 

2 − ‖ u ‖ 

2 = 0 , (8)

where the dot between two n -dimensional vectors denotes the Euclidean inner product. The cone condition is thus the

most natural constraint that we can impose on the dynamical system (5) . 

Consequently, we have a n + 1 -dimensional augmented differential system, 

U 

′ = A U , (9)

with a constraint (6) , where 

A = 

[ 

0 n ×n 
f ( u ,x ) 
‖ u ‖ 

f 
T 
( u ,x ) 
‖ u ‖ 0 

] 

, (10)

satisfying 

A 

T g + g A = 0 , (11)

is an element of the Lie algebra so (n, 1) of the proper orthochronous Lorentz group SO 0 ( n , 1). Notice that, although not

stated explicitly, the matrix A depends indeed on U through u and ‖ u ‖ . 
Once the problem is formulated in SO 0 ( n , 1), it is crucial that any numerical scheme used to solve (9) preserve the Lie

group structure. Otherwise, the cone condition (6) is not satisfied and the numerical approximation is no longer consistent.

This can be done if one is able to generate approximations U k by 

U k +1 = G (k ) U k , (12)

where U k denotes the numerical value of U at the discrete x k , and G (k ) ∈ SO 0 (n, 1) verifies 

G 

T g G = g , (13)

det G = 1 , (14)

G 

0 
0 > 0 , (15)

where G 

0 
0 > 0 is the 00th component of G . 

A first-order approximation is obtained by taking 

U k +1 = exp 

[∫ x k +1 

x k 

A dx 

]
U k . (16)

Liu, in [20] , considers the Cayley transformation and Padé approximants. Here we propose instead the Lie-group version of

the simple forward Euler method, namely 

U k +1 = exp [ �x A (k ) ] U k . (17)

Since A (k ) ∈ so (n, 1) and U k ∈ SO 0 (n, 1) , then U k +1 ∈ SO 0 (n, 1) by construction. The exponential mapping exp [�x A (k )]

admits the closed-form representation 
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exp [�x A (k )] = 

⎡ 

⎣ 

I n + 

(αk −1) 

‖ f k ‖ 2 f k f 
T 
k 

βk f k ‖ f k ‖ 
βk f 

T 
k ‖ f k ‖ αk 

⎤ 

⎦ , (18) 

where 

αk = cosh 

(
�x ‖ f k ‖ 

‖ u k ‖ 

)
, (19) 

and 

βk = sinh 

(
�x ‖ f k ‖ 

‖ u k ‖ 

)
. (20) 

For notational convenience, we have used f k = f ( u k , x k ) . Substituting the above exp [�x A (k )] for G (k ) into Eq. (12) , we

obtain 

u k +1 = u k + 

(αk − 1) f k . u k + βk ‖ u k ‖‖ f k ‖ 

‖ f k ‖ 

2 
f k = u k + ηk f k , (21) 

‖ u k +1 ‖ = 

βk ( f k · u k ) + αk ‖ u k ‖‖ f k ‖ 

‖ f k ‖ 

. (22) 

This scheme therefore preserves group properties for all �x > 0. In the practical numerical calculation, we only need Eq.

(21) such that by knowing the initial value u 0 can obtain u k , k = 1 , 2 , 3 , . . . . 

Theorem 1. The cone condition is preserved by Eqs. (21) and (22) for every �x. 

Proof. As a matter of fact, this is a trivial consequence of the fact that U 

T 
k g U k = 0 and (12) , with G (k ) = exp [�x A (k )] .

Alternatively, one can show that 

u k +1 · u k +1 − ‖ u k +1 ‖ 

2 = 0 (23) 

as follows. From Eq. (21) , we have 

u k +1 · u k +1 = 

(
u k + 

(αk − 1) f k · u k + βk ‖ u k ‖‖ f k ‖ 

‖ f k ‖ 

2 
f k 

)
·
(

u k + 

(αk − 1) f k . u k + βk ‖ u k ‖‖ f k ‖ 

‖ f k ‖ 

2 
f k 

)
, (24) 

after doing the above inner product and possible simplifications, we obtain 

u k +1 · u k +1 = 

(
1 + β2 

k 

)‖ u k ‖ 

2 ‖ f k ‖ 

2 + 

(
α2 

k 
− 1 

)
( f k · u k ) 

2 + 2 αk βk ( f k · u k ) ‖ u k ‖‖ f k ‖ 

‖ f k ‖ 

2 
. (25) 

Therefore, according to definition αk and βk from Eqs. (19) and (20) we obtain 

u k +1 · u k +1 = 

α2 
k 
‖ u k ‖ 

2 ‖ f k ‖ 

2 + β2 
k 
( f k · u k ) 

2 + 2 αk βk ( f k · u k ) ‖ u k ‖‖ f k ‖ 

‖ f k ‖ 

2 

= 

(
αk ‖ u k ‖‖ f k ‖ + βk ( f k · u k ) 

)2 

‖ f k ‖ 

2 
= ‖ u k +1 ‖ 

2 , (26) 

where the last equal is obtaied from Eq. (22) . Thus, the proof is finished. �

Theorem 2. Scheme (21) unconditionally preserves the fixed points of the differential equation (4) and their stability properties. 

Proof. First, we prove ηk = η(x k ) > 0 for each x k . From αk > 1, ∀ �x > 0 and −‖ f k ‖ u k ‖ ≤ f k · u k ≤ ‖ f k ‖ u k ‖ , we can prove

that 

‖ u k ‖ 

‖ f k ‖ 

[
exp 

(
�x ‖ f k ‖ 

‖ u k ‖ 

)
− 1 

]
≥ ηk ≥

‖ u k ‖ 

‖ f k ‖ 

[
1 − exp 

(
−�x ‖ f k ‖ 

‖ u k ‖ 

)]
> 0 , ∀ �x > 0 . (27) 

Therefore, it is obvious that 

u k +1 = u k ⇐⇒ f k = 0 . (28) 

This means that u k is a fixed point of the discretized mapping (21) if and only if the point u k is an equilibrium (critical,

fixed) point of the system (4) . We next check the property of the fixed point. The Jacobian of the map (21) is 

J := 

∂ u k +1 

∂ u k 

= I n + f k 

(
∂ηk 

∂ u k 

)T 

+ ηk 

∂ f k 
∂ u k 

. (29) 
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At the fixed point f k = 0 , we thus have 

J = I n + ηk 

∂ f k 
∂ u k 

. (30)

Recalling that ηk > 0, the property of the fixed point is not altered by the map (21) . More precisely, the map (21) has the

same type of stability that the system (4) has. �

According to the preceding theorems, the long-term behavior of the original system can be described very well by this

numerical scheme. 

3. The LG–RBFs for solving GBBMB equation 

3.1. 1-dimensional case 

Clearly, � is now an arbitrary interval in R . We consider the following expansion of u ( x , t ) [33–41] : 

u (x, t) = 

M ∑ 

j=1 

c j (t) ϕ(r j ) + c M+1 (t) x + c M+2 (t) , (31)

in which 

ϕ(r j ) = 

√ 

(x − x j ) 2 + c 2 , (32)

where r j = {‖ x − x j ‖ , x j ∈ �} denotes the Euclidean distance between x and x j ( { x j } M 

j=1 
are usually called center nodes). As

mentioned in [42] the accuracy of many schemes for interpolating scattered data with radial basis functions depends on

a shape parameter c of the radial basis function. Most authors use the trial and error method for obtaining a good shape

parameter that results in best accuracy. In this paper we also use from this method. 

In Eq. (31) we have M + 2 nunknown variables. Besides the M equations resulting from collocating Eq. (31) at M points

{ x i } M 

i =1 
, two additional equations are required that add two condition as follows: 

M ∑ 

j=1 

c n j = 

M ∑ 

j=1 

c n j x j = 0 , (33)

where c n 
j 

≡ c j (t n ) . For the use of Kansas method, we let { x i } M 

i =1 
be M collocation points in � in which { x i } M−1 

i =2 
are interior

points and x 1 and x M 

are boundary points. For each point x i , let us denote 

ϕ(r i j ) = 

√ 

(x i − x j ) 2 + c 2 = 

√ 

r 2 + c 2 . (34)

By substituting Eq. (31) for interior points in Eq. (1) we obtain 

∂ 

∂t 

( 

M ∑ 

j=1 

c j (t) ϕ(r i j ) + c M+1 (t) x i + c M+2 (t) −
M ∑ 

j=1 

c j (t)�ϕ(r i j ) 

) 

= 

M ∑ 

j=1 

c j (t)�ϕ(r i j ) −
M ∑ 

j=1 

c j (t) ∇ϕ(r i j ) − c M+1 (t) 

+ ∇ 

( 

F 

( 

M ∑ 

j=1 

c j (t) ϕ(r i j ) + c M+1 (t) x i + c M+2 (t) 

) ) 

+ f (x i , t) , i = 2 , . . . , M − 1 , (35)

where ∇ϕ(r i j ) = { ϕ 

′ (r j ) } | x = x i and �ϕ(r i j ) = { ϕ 

′′ (r j ) } | x = x i . Now by defining the following vectors 

u (t) = 

[ 

M ∑ 

j=1 

c j (t) ϕ(r i j ) + c M+1 (t) x i + c M+2 (t) −
M ∑ 

j=1 

c j (t)�ϕ(r i j ) 

] M−1 

i =2 

, 

f (t, u (t)) = 

[ 

M ∑ 

j=1 

c j (t)�ϕ(r i j ) −
M ∑ 

j=1 

c j (t) ∇ϕ(r i j ) − c M+1 (t) 

+ ∇ 

(
F 

(
M ∑ 

j=1 

c j (t) ϕ(r i j ) + c M+1 (t) x i + c M+2 (t) 

))
+ f (x i , t) 

] M−1 

i =2 

, (36)
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Eq. (35) is converted in u 

′ (t) = f (t , u (t )) , i.e., an equation of the form (4) . Now, we use the GPS (21) and solve Eq.

(35) respect to t . We define 

t k = nτ, n = 0 , 1 , 2 , . . . , N, (37) 

where τ = T /N is the step size of time variable and T is the final time. By using Eq. (21) for n = 0 we get the following

form: 

M ∑ 

j=1 

c 1 j ϕ(r i j ) + c 1 M+1 x i + c 1 M+2 −
M ∑ 

j=1 

c 1 j �ϕ(r i j ) = 

(
ω(x i ) − ω 

′′ (x i ) 
)

+ η0 f 0 , i = 2 , . . . , M − 1 , (38) 

where f 0 = [ ω 

′′ (x i ) − ω 

′ (x i ) + F ′ (ω(x i )) + f (x i , 0)] M−1 
i =2 

and η0 is calculated from Eq. (21) . For 1 ≤ n ≤ N − 1 we have 

M ∑ 

j=1 

c n +1 
j 

ϕ(r i j ) + c n +1 
M+1 x i + c n +1 

M+2 −
M ∑ 

j=1 

c n +1 
j 

�ϕ(r i j ) 

= 

( 

M ∑ 

j=1 

c n j ϕ(r i j ) + c n M+1 x i + c n M+2 −
M ∑ 

j=1 

c n j �ϕ(r i j ) 

) 

+ ηn f n , i = 2 , . . . , M − 1 , (39) 

where 

f n = 

[
M ∑ 

j=1 

c n j �ϕ(r i j ) −
M ∑ 

j=1 

c n j ∇ϕ(r i j ) − c n M+1 + ∇ 

( 

F 

( 

M ∑ 

j=1 

c n j ϕ(r i j ) + c n M+1 x i + c n M+2 

) ) 

+ f (x i , t n ) 

]M−1 

i =2 

, 

and ηn is calculated from Eq. (21) . Using Eqs. (33) , (38) , (39) and condition boundary (3) we have the following matrix

form: 

A c n +1 = B 

n +1 
, (40) 

where 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ϕ(r 1 , 1 ) ϕ(r 1 , 2 ) · · · ϕ(r 1 ,M−1 ) ϕ(r 1 ,M 

) x 1 1 

�(ϕ(r 2 , 1 )) �(ϕ(r 2 , 2 )) · · · �(ϕ(r 2 ,M−1 )) �(ϕ(r 2 ,M 

)) x 2 1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
�(ϕ(r M−1 , 1 )) �(ϕ(r M−1 , 2 )) · · · �(ϕ(r M −1 ,M −1 )) �(ϕ(r M−1 ,M 

)) x M−1 1 

ϕ(r M, 1 ) ϕ(r M, 2 ) · · · ϕ(r M,M−1 ) ϕ(r M,M 

) x M 

1 

x 1 x 2 · · · x M−1 x M 

0 0 

1 1 · · · 1 1 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (41) 

is (M + 2) × (M + 2) matrix, the operator � is 

�(ϕ(r i, j )) = { ϕ(r j ) − �ϕ(r j ) } | x = x i , 2 ≤ i ≤ M − 1 , 1 ≤ j ≤ M, 

also we have 

c n +1 = 

[
c n +1 

1 
c n +1 

2 
· · · c n +1 

M 

c n +1 
M+1 

c n +1 
M+2 

]
T , B 

n +1 = 

[
b n +1 

1 
b n +1 

2 
· · · b n +1 

M 

0 0 

]
T , (42) 

in which 

b 1 i = 

{
ω(x ) − ω 

′′ (x ) + η0 f 0 
} | x = x i , 1 < i < M, (43) 

and also we obtain 

b n +1 
i 

= 

M ∑ 

j=1 

c n j ϕ(r i j ) + c n M+1 x i + c n M+2 −
M ∑ 

j=1 

c n j �ϕ(r i j ) + ηn f n , 1 < i < M, 1 ≤ n ≤ N − 1 , (44) 

and finally we can write 

b n +1 
1 = h (a, t n +1 ) , b n +1 

M 

= h (b, t n +1 ) , 0 ≤ n ≤ N − 1 . (45) 

After solving the algebraic system of equations A c n +1 = B 

n +1 at each time step, we can construct the solution using Eq.

(31) . We use the LU decomposition method for solving linear algebraic system of equations A c n +1 = B 

n +1 . 

3.2. n -Dimensional case ( n ≥ 2) 

Now � is an arbitrary interval in R 

n , n ≥ 2. For x = (x 1 , x 2 , . . . , x n ) ∈ R 

n , we construct an approximate expansion of

u ( x , t) of the form 

u ( x , t) = 

M ∑ 

j=1 

c j (t) ϕ( r j ) , (46) 
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in which 

ϕ( r j ) = 

√ 

( x − x j ) 2 + c 2 , (47)

where r j = {‖ x − x j ‖ , x j ∈ �} denotes the Euclidean distance between x and x j . For the use of Kansas method, we let

{ x i } M 

i =1 
be M collocation points in � in which { x i } M l 

i =1 
are boundary points and { x i } M 

i = M l +1 
are interior points. For each point

x i , let us denote 

ϕ( r i j ) = 

√ 

( x i − x j ) 2 + c 2 = 

√ 

r 2 + c 2 . (48)

By substituting Eq. (46) for interior points in Eq. (1) we obtain 

∂ 

∂t 

( 

M ∑ 

j=1 

c j (t) ϕ( r i j ) −
M ∑ 

j=1 

c j (t)�ϕ( r i j ) 

) 

= 

M ∑ 

j=1 

c j (t)�ϕ( r i j ) −
M ∑ 

j=1 

c j (t) ∇ϕ( r i j ) + ∇ 

( 

F 

( 

M ∑ 

j=1 

c j (t) ϕ( r i j ) 

) ) 

+ f ( x i , t) , i = M l + 1 , . . . , M, (49)

where ∇ϕ( r i j ) = {∇ϕ( r j ) } | x = x i and �ϕ( r i j ) = { �ϕ( r j ) } | x = x i . Now by definition the following vectors 

u (t) = 

[ 

M ∑ 

j=1 

c j (t) ϕ( r i j ) −
M ∑ 

j=1 

c j (t)�ϕ( r i j ) 

] M 

i = M l +1 

, 

f (t, u (t)) = 

[
M ∑ 

j=1 

c j (t)�ϕ( r i j ) −
M ∑ 

j=1 

c j (t) ∇ϕ( r i j ) + ∇ 

( 

F 

( 

M ∑ 

j=1 

c j (t) ϕ( r i j ) 

) ) 

+ f ( x i , t) 

]M 

i = M l +1 

, (50)

Eq. (49) has the form of Eq. (4) . We use the group preserving scheme (21) and solve Eq. (49) respect to t . We define 

t k = nτ, n = 0 , 1 , 2 , . . . , N, (51)

where τ = T /N is the step size of time variable and T is the final time. For n = 0 we get the following form: 

M ∑ 

j=1 

c 1 j ϕ( r i j ) −
M ∑ 

j=1 

c 1 j �ϕ( r i j ) = ( ω( x i ) − �ω( x i ) ) + η0 f 0 , i = M l + 1 , . . . , M, (52)

where f 0 = [�ω( x i ) − ∇ω( x i ) + ∇F (ω( x i )) + f ( x i , 0)] M 

i = M l +1 
and η0 is calculated from Eq. (21) . For 1 ≤ n ≤ N − 1 we have 

M ∑ 

j=1 

c n +1 
j 

ϕ( r i j ) −
M ∑ 

j=1 

c n +1 
j 

�ϕ( r i j ) 

= 

( 

M ∑ 

j=1 

c n j ϕ( r i j ) −
M ∑ 

j=1 

c n j �ϕ( r i j ) 

) 

+ ηn f n , i = M l + 1 , . . . , M, (53)

where 

f n = 

[
M ∑ 

j=1 

c n j �ϕ( r i j ) −
M ∑ 

j=1 

c n j ∇ϕ( r i j ) + ∇ 

( 

F 

( 

M ∑ 

j=1 

c n j ϕ( r i j ) 

) ) 

+ f ( x i , t n ) 

]
M 

i = M l +1 , 

and ηn is calculated from Eq. (21) . Using Eqs. (52) , (53) and condition boundary (3) we have the following matrix form: 

A c n +1 = B 

n +1 
, (54)

in which 
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A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ϕ( r 1 , 1 ) ϕ( r 1 , 2 ) · · · ϕ( r 1 ,M l 
) ϕ( r 1 ,M l +1 ) · · · ϕ( r 1 ,M 

) 
ϕ( r 2 , 1 ) ϕ( r 2 , 2 ) · · · ϕ( r 2 ,M l 

) ϕ( r 2 ,M l +1 ) · · · ϕ( r 2 ,M 

) 
. . . 

. . . 
. . . 

. . . 
. . . · · ·

. . . 
ϕ( r M l , 1 ) ϕ( r M l , 2 ) · · · ϕ( r M l ,M l 

) ϕ( r M l ,M l +1 ) · · · ϕ( r M l ,M 

) 
ϒ(ϕ( r M l +1 , 1 )) ϒ(ϕ( r M l +1 , 2 )) · · · ϒ(ϕ( r M l +1 ,M l 

)) ϒ(ϕ( r M l +1 ,M l +1 )) · · · ϒ(ϕ( r M l +1 ,M 

)) 

ϒ(ϕ( r M l +2 , 1 )) ϒ(ϕ( r M l +2 , 2 )) · · · ϒ(ϕ( r M l +2 ,M l 
)) ϒ(ϕ( r M l +2 ,M l +1 )) 

. . . ϒ(ϕ( r M l +2 ,M 

)) 
. . . 

. . . · · ·
. . . 

. . . · · ·
. . . 

ϒ(ϕ( r M, 1 )) ϒ(ϕ( r M, 2 )) · · · ϒ(ϕ( r M,M l 
)) ϒ(ϕ( r M,M l +1 )) · · · ϒ(ϕ( r M,M 

)) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (55) 

is M × M matrix, the operator Y is 

ϒ(ϕ( r i, j )) = { ϕ( r j ) − �ϕ( r j ) } | x = x i , M l + 1 ≤ i ≤ M, 1 ≤ j ≤ M, 

also we have 

c n +1 = 

[
c n +1 

1 
c n +1 

2 
· · · c n +1 

M 

]
T , B 

n +1 = 

[
b n +1 

1 
b n +1 

2 
· · · b n +1 

M 

]
T , (56) 

where 

b 1 i = { ω( x ) − �ω( x ) + η0 f 0 } | x = x i , M l + 1 ≤ i ≤ M, (57) 

and also we obtain 

b n +1 
i 

= 

M ∑ 

j=1 

c n j ϕ( r i j ) −
M ∑ 

j=1 

c n j �ϕ( r i j ) + ηn f n , M l + 1 ≤ i ≤ M, 1 ≤ n ≤ N − 1 , (58) 

and finally we can write 

b n +1 
i 

= h ( x i , t n +1 ) , 1 ≤ i ≤ M l , 0 ≤ n ≤ N − 1 . (59) 

After solving the algebraic system of equations A c n +1 = B 

n +1 at each time step with LU decomposition method, we can

construct the solution using Eq. (46) . 

4. Numerical results 

In this section we present the numerical results obtained with the proposed method on four test problems. We test

the accuracy and stability of the method described in this paper by applying it with different values of h (distance points

in space) and τ (length of time step). We performed our computations using Mathematica 10 software on a Pentium V,

2800 MHz CPU machine with 2 GB of memory. In particular we compute the following error norms: 

L ∞ 

= max 1 ≤i ≤M 

| u ( x i , T ) − U( x i , T ) | , L 2 = 

√ 

M ∑ 

i =1 

| u ( x i , T ) − U( x i , T ) | 2 , 

RMS = 

√ 

1 

M 

M ∑ 

i =1 

| u ( x i , T ) − U( x i , T ) | 2 , absolute error = 

M ∑ 

i =1 

N ∑ 

j=1 

| u (x i , t j ) − U(x i , t j ) | , 

where RMS means root-mean-square, T is the final time, M is the total number of points and N is the total number of time

discretization. 

4.1. Test problem 1 

We consider the 1-dimensional nonlinear GBBMB equation 

∂u (x, t) 

∂t 
− ∂ 

∂t 

(
∂ 2 u (x, t) 

∂x 2 

)
− ∂ 2 u (x, t) 

∂x 2 
+ 

∂u (x, t) 

∂x 
= u (x, t) 

∂u (x, t) 

∂x 
+ f (x, t) , (60) 

with initial condition 

u (x, 0) = sech (x ) , a < x < b, (61) 

and boundary conditions 

u (a, t) = sech (a − t ) , u (b, t ) = sech (b − t) , 0 < t ≤ T . (62) 
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Table 1 

Errors obtained for the present method on interval [0, 1] with h = 1 / 10 and T = 1 for test problem 1. 

τ RMS L ∞ L 2 c 

1/10 7 . 6989 × 10 −3 1 . 1899 × 10 −2 2 . 5534 × 10 −2 0.1 

1/20 4 . 2509 × 10 −3 6 . 4885 × 10 −3 1 . 4099 × 10 −2 0.2 

1/40 2 . 1131 × 10 −3 3 . 2224 × 10 −3 7 . 0083 × 10 −3 0.3 

1/80 1 . 0548 × 10 −3 1 . 6079 × 10 −3 3 . 4985 × 10 −3 0.4 

1/160 5 . 2964 × 10 −4 8 . 0634 × 10 −4 1 . 7566 × 10 −3 0.5 

1/320 2 . 6710 × 10 −4 4 . 0580 × 10 −4 8 . 8586 × 10 −4 0.6 

1/640 1 . 3503 × 10 −4 2 . 0463 × 10 −4 4 . 4784 × 10 −4 0.7 

1/1280 6 . 8336 × 10 −5 1 . 0328 × 10 −4 2 . 2665 × 10 −4 0.8 

1/2560 3 . 4594 × 10 −5 5 . 2139 × 10 −5 1 . 1474 × 10 −4 0.9 

Table 2 

Comparison between errors of present method and method of [6] for example 1 with h = 1 / 10 . 

τ L ∞ , T = 1 L ∞ , T = 5 

Method of [6] Present method Method of [6] Present method 

1/10 1 . 1306 × 10 −2 1 . 1899 × 10 −2 1 . 0335 × 10 −3 5 . 4835 × 10 −4 

1/20 5 . 6005 × 10 −3 6 . 4885 × 10 −3 5 . 8509 × 10 −4 2 . 8818 × 10 −4 

1/40 2 . 7770 × 10 −3 3 . 2224 × 10 −3 2 . 9635 × 10 −4 1 . 5032 × 10 −4 

1/80 1 . 3862 × 10 −3 1 . 6079 × 10 −3 1 . 4801 × 10 −4 7 . 7386 × 10 −5 

1/160 6 . 9513 × 10 −4 8 . 0634 × 10 −4 7 . 3858 × 10 −5 3 . 9435 × 10 −5 

1/320 3 . 4956 × 10 −4 4 . 0580 × 10 −4 3 . 6874 × 10 −5 1 . 9972 × 10 −5 

Fig. 1. Graphs of approximate solution and absolute error with h = 1 / 100 , τ = 1 / 10 , 0 0 0 and c = 0 . 1 on interval [ −1 , 1] with t ∈ [0, 1] for test problem 1. 

 

 

 

 

 

 

 

with 

f (x, t) = sech (t − x ) 
(
sech 

2 
(t − x ) ( 1 − 5 tanh (t − x ) ) − sech (t − x ) tanh (t − x ) 

+ tanh 

2 
(t − x ) ( tanh (t − x ) − 1 ) 

)
. (63)

The exact solution of this problem is u (x, t) = sech (x − t) . We solve this problem with the new method presented in this

article with several values of h , τ , a and b at different final time T . We fix h = 1 / 10 and Table 1 shows errors obtained on

interval [0, 1] for the present method with T = 1 for different values of τ . We can see from this Table when τ is smaller the

errors obtained are less. To demonstrate the accuracy of the present method we compare the results obtaind of our method

with the method applied in [6] for example 1 in Table 2 . We can see the results for larger final time T = 5 is better than

method of [6] . Also, Figs. 1 and 2 show graphs of approximate solution and absolute error on interval [ −1 , 1] with t ∈ [0, 1]

and on interval [ −10 , 10] with t ∈ [0, 10], respectively, for this example. 
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Fig. 2. Graphs of approximate solution and absolute error with h = 1 / 10 , τ = 1 / 10 0 0 and c = 0 . 9 on interval [ −10 , 10] with t ∈ [0, 10] for test problem 1. 

Table 3 

Errors obtained for the present method with h = 1 / 10 and T = 5 for test problem 2 on rectangular domain [0, 1] × [0, 1]. 

τ RMS L ∞ L 2 c 

1/10 7 . 7736 × 10 −4 1 . 8468 × 10 −3 8 . 5510 × 10 −3 0.5 

1/20 3 . 03854 × 10 −4 8 . 5218 × 10 −4 3 . 3423 × 10 −3 0.5 

1/40 1 . 5630 × 10 −4 3 . 5909 × 10 −4 1 . 7194 × 10 −3 0.6 

1/80 7 . 9652 × 10 −5 1 . 8606 × 10 −4 8 . 7617 × 10 −4 0.7 

1/160 3 . 9893 × 10 −5 9 . 4986 × 10 −5 4 . 3882 × 10 −4 0.8 

1/320 1 . 9555 × 10 −5 4 . 7289 × 10 −5 2 . 1511 × 10 −4 0.9 

1/640 8 . 7013 × 10 −6 2 . 4801 × 10 −5 9 . 5714 × 10 −5 0.95 

1/1280 5 . 7507 × 10 −6 8 . 7045 × 10 −6 5 . 0258 × 10 −5 0.95 

1/2560 1 . 1250 × 10 −6 5 . 6461 × 10 −6 1 . 2375 × 10 −5 0.95 

 

 

 

 

 

 

 

 

 

4.2. Test problem 2 

Next we consider the two dimensional nonlinear GBBMB equation 

∂u (x, y, t) 

∂t 
− ∂ 

∂t 

(
∂ 2 u (x, y, t) 

∂x 2 
+ 

∂ 2 u (x, y, t) 

∂y 2 

)
− ∂ 2 u (x, y, t) 

∂x 2 
− ∂ 2 u (x, y, t) 

∂y 2 

+ 

∂u (x, y, t) 

∂x 
+ 

∂u (x, y, t) 

∂y 
= u (x, y, t) 

∂u (x, y, t) 

∂x 
+ u (x, y, t) 

∂u (x, y, t) 

∂y 
+ f (x, y, t) , (64) 

with initial condition 

u (x, y, 0) = 1 , x, y ∈ �, (65) 

and boundary conditions 

u (x, y, t) = 1 + t sin (x + y ) , x, y ∈ ∂�, 0 < t ≤ T , (66) 

with 

f (x, y, t) = sin (x + y ) 
(
3 + 2 t − 2 t 2 cos (x + y ) 

)
. (67) 

Then the exact solution of this test problem is u (x, y, t) = 1 + t sin (x + y ) . We solve this problem with LG–

RBFs with several values of h , τ at different final time on the rectangular �1 = { (x, y ) : 0 ≤ x, y ≤ 1 } , triangular

�2 = { (x, y ) : y ≥ 0 , y + x ≤ 1 , y − x ≤ 1 } , and circular �3 = { (x, y ) : x 2 + y 2 ≤ 1 } domains that are shown in Fig. 3 . Also, we

solve this problem on irregular domain that its criterion is r = 

1 
n 2 

[1 + 2 n + n 2 − (n + 1) cos (nθ )] . We plot this irregular do-

mains for n = 4 and n = 8 in Fig. 4 which are marked with �4 and �5 , respectively. Tables 3 and 5 show errors obtained for

the present method with h = 1 / 10 , T = 5 on rectangular domain and with h = 1 / 10 , T = 10 on triangular domain for differ-

ent value of τ , respectively. From this tables we can see the method is convergent when τ is smaller. In Table 4 we compare

the our results with method of [6] for final times T = 5 and T = 10 . We can see in two cases the results of our method is

better. In Fig. 5 we plot graph of approximation solution and absolute error using LG–RBFs on rectangular domain [0, 1] × [0,

1] with T = 1 . From Fig. 6 we can show graphs of approximation solution and absolute error on larger rectangular domain



M. Hajiketabi et al. / Applied Mathematics and Computation 321 (2018) 223–243 233 

Fig. 3. Nodal points distribution on rectangular, triangular and circular domains. 

Table 4 

Comparison between errors of present method and method of [6] for example 2 with h = 1 / 10 on rectangular domain [0, 1] × [0, 1]. 

τ L ∞ , T = 5 L ∞ , T = 10 

Method of [6] Present method Method of [6] Present method 

1/10 2 . 0927 × 10 −2 1 . 8468 × 10 −3 4 . 4655 × 10 −2 4 . 9445 × 10 −4 

1/20 8 . 7888 × 10 −3 8 . 5218 × 10 −4 1 . 8978 × 10 −2 2 . 5911 × 10 −4 

1/40 3 . 7341 × 10 −3 3 . 5909 × 10 −4 8 . 1482 × 10 −3 1 . 3078 × 10 −4 

1/80 1 . 6029 × 10 −3 1 . 8606 × 10 −4 3 . 5189 × 10 −3 6 . 3677 × 10 −5 

1/160 7 . 0137 × 10 −4 9 . 4986 × 10 −5 1 . 5485 × 10 −3 5 . 1413 × 10 −5 

1/320 3 . 1392 × 10 −4 4 . 7289 × 10 −5 7 . 0350 × 10 −4 3 . 9876 × 10 −5 

1/640 1 . 4378 × 10 −4 2 . 4801 × 10 −5 3 . 3268 × 10 −4 2 . 8596 × 10 −5 

1/1280 6 . 8364 × 10 −5 8 . 7045 × 10 −6 1 . 6439 × 10 −4 1 . 5596 × 10 −5 

Table 5 

Errors obtained for the present method with h = 1 / 10 and T = 10 for test problem 2 on triangular domain. 

τ RMS L ∞ L 2 c 

1 1 . 4798 × 10 −3 3 . 8469 × 10 −3 1 . 6278 × 10 −2 0.4 

1/2 7 . 4514 × 10 −4 1 . 7500 × 10 −3 8 . 1966 × 10 −3 0.5 

1/4 3 . 7388 × 10 −4 8 . 8739 × 10 −4 4 . 1127 × 10 −3 0.6 

1/8 1 . 8684 × 10 −4 4 . 6471 × 10 −4 2 . 0552 × 10 −3 0.7 

1/16 9 . 3123 × 10 −5 2 . 4038 × 10 −4 1 . 0243 × 10 −3 0.8 

1/32 4 . 6516 × 10 −5 1 . 2329 × 10 −4 5 . 1168 × 10 −4 0.9 

1/64 2 . 3639 × 10 −5 6 . 3175 × 10 −5 2 . 6003 × 10 −4 1 

1/128 1 . 2168 × 10 −5 3 . 1685 × 10 −5 1 . 3385 × 10 −4 1.1 

1/256 6 . 6453 × 10 −6 1 . 6033 × 10 −5 7 . 3098 × 10 −5 1.2 
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Fig. 4. Nodal points distribution on irregular domains. 

 

 

[ −5 , 5] × [ −5 , 5] with larger final time T = 5 . Finally, from Figs. 7 –10 we can see graphs of approximation solution and abso-

lute error using LG–RBFs on triangular, circular and irregular domains, respectively, for different final time for test problem 2.

4.3. Test problem 3 

For our next problem we take again a 2-dimensional nonlinear GBBMB equation, 

∂u (x, y, t) 

∂t 
− ∂ 

∂t 

(
∂ 2 u (x, y, t) 

∂x 2 
+ 

∂ 2 u (x, y, t) 

∂y 2 

)
− ∂ 2 u (x, y, t) 

∂x 2 
− ∂ 2 u (x, y, t) 

∂y 2 

+ 

∂u (x, y, t) 

∂x 
+ 

∂u (x, y, t) 

∂y 
= cos (u (x, y, t)) 

∂u (x, y, t) 

∂x 
+ cos (u (x, y, t)) 

∂u (x, y, t) 

∂y 
+ f (x, y, t) , (68) 
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Fig. 5. Graphs of approximate solution and absolute error with h = 1 / 20 , τ = 1 / 10 0 0 and c = 0 . 45 on rectangular domain [0, 1] × [0, 1] with T = 1 for test 

problem 2. 

Fig. 6. Graphs of approximate solution and absolute error with h = 1 / 4 , τ = 1 / 200 and c = 1 . 9 on rectangular domain [ −5 , 5] × [ −5 , 5] with T = 5 for test 

problem 2. 

Fig. 7. Graphs of approximate solution and absolute error with h = 1 / 20 , τ = 1 / 100 and c = 0 . 45 on triangular domain with T = 10 for test problem 2. 
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Fig. 8. Graphs of approximate solution and absolute error with h = 1 / 20 , τ = 1 / 200 and c = 0 . 1 on circular domain with T = 5 for test problem 2. 

Fig. 9. Graphs of approximate solution and absolute error with h = 1 / 15 , τ = 1 / 10 0 0 and c = 0 . 5 on irregular domain ( n = 4 ) with T = 1 for test 

problem 2. 

Fig. 10. Graphs of approximate solution and absolute error with h = 1 / 15 , τ = 1 / 10 0 0 and c = 0 . 5 on irregular domain ( n = 8 ) with T = 1 for test 

problem 2. 
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Table 6 

Comparison between errors of present method and method of [6] for example 3 with r = 0 , h = 1 / 5 on rectangular domain [ −2 , 2] × [ −2 , 2] . 

τ L ∞ , T = 1 L ∞ , T = 2 

Method of [6] Present method Method of [6] Present method 

1/10 1 . 2187 × 10 −1 1 . 8855 × 10 −4 7 . 7952 × 10 −1 5 . 1091 × 10 −4 

1/20 6 . 0296 × 10 −2 1 . 6804 × 10 −4 3 . 8698 × 10 −1 4 . 1586 × 10 −4 

1/40 2 . 9981 × 10 −2 1 . 3225 × 10 −4 1 . 9274 × 10 −1 2 . 1213 × 10 −4 

1/80 1 . 4939 × 10 −2 1 . 1248 × 10 −4 9 . 6149 × 10 −2 1 . 1227 × 10 −4 

1/160 7 . 4461 × 10 −3 9 . 9553 × 10 −5 4 . 7985 × 10 −2 9 . 1236 × 10 −5 

1/320 3 . 7069 × 10 −3 7 . 2345 × 10 −5 2 . 3937 × 10 −2 8 . 1253 × 10 −5 

1/640 1 . 8389 × 10 −3 5 . 8967 × 10 −5 1 . 1920 × 10 −2 5 . 1270 × 10 −5 

Fig. 11. Graphs of approximate solution and absolute error with h = 1 / 5 , τ = 1 / 10 and c = 1 . 5 on rectangular domain [ −5 , 5] × [ −5 , 5] with r = 0 and 

T = 1 for test problem 3. 

 

 

 

 

 

 

 

 

 

 

 

but now with initial condition 

u (x, y, 0) = sech 

2 
(x + y − r) + sech 

2 
(x + y + r) , x, y ∈ �, (69)

and boundary conditions 

u (x, y, t) = exp (t)( sech 

2 
(x + y − r) + sech 

2 
(x + y + r)) , x, y ∈ ∂�, 0 < t ≤ T . (70)

We have chosen f ( x , y , t ) so that the exact solution of this test problem is u (x, y, t) = exp (t)( sech 

2 (x + y − r) + sech 

2 (x +
y + r)) . We solve this problem with the new method presented in this article with several values of h , τ and r at different

final time on the rectangular, triangular, and circular domains. Also, we solve this problem on irregular domains that

their criterion is �6 = { 1 
n 2 

(
1 + 2 n + n 2 − (n + 1) cos (nθ ) 

)
, (n = 16) } and �7 = { exp ( sin (θ )) sin 

2 (2 θ ) + exp ( cos (θ )) cos 2 (2 θ ) }
which we plot this irregular domains in Fig. 4 . To show the accuracy of the method from Table 6 we can see the comparison

between the present method and method of [6] . From Figs. 11 –18 we can show the numerical results for this problem on

different domains for various r . 

4.4. Test problem 4 

In the last example, we consider the three-dimensional nonlinear GBBMB equation 

∂u (x, y, z, t) 

∂t 
− ∂ 

∂t 

(
∂ 2 u (x, y, z, t) 

∂x 2 
+ 

∂ 2 u (x, y, z, t) 

∂y 2 

)
− ∂ 2 u (x, y, z, t) 

∂x 2 
− ∂ 2 u (x, y, z, t) 

∂y 2 

+ 

∂u (x, y, z, t) 

∂x 
+ 

∂u (x, y, z, t) 

∂y 
= u (x, y, z, t) 

∂u (x, y, z, t) 

∂x 
+ u (x, y, z, t) 

∂u (x, y, z, t) 

∂y 
+ f (x, y, z, t) , (71)

with initial condition 

u (x, y, z, 0) = 1 , x, y, z ∈ �, (72)

and boundary conditions 

u (x, y, z, t) = 1 + t sin (x + y + z) , x, y, z ∈ ∂�, 0 < t ≤ T , (73)
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Fig. 12. Graphs of approximate solution and absolute error with h = 1 / 5 , τ = 1 / 10 and c = 1 . 5 on rectangular domain [ −5 , 5] × [ −5 , 5] with r = 1 and 

T = 1 for test problem 3. 

Fig. 13. Graphs of approximate solution and absolute error with h = 1 / 5 , τ = 1 / 10 and c = 1 . 5 on rectangular domain [ −5 , 5] × [ −5 , 5] with r = 2 and 

T = 1 for test problem 3. 

Fig. 14. Graphs of approximate solution and absolute error with h = 1 / 5 , τ = 1 / 10 and c = 1 . 5 on rectangular domain [ −5 , 5] × [ −5 , 5] with r = 3 and 

T = 1 for test problem 3. 

 

 

with 

f (x, y, z, t) = (4 + 3 t) sin (x + y + z) + t cos (x + y + z) ( 1 − 2 t sin (x + y + z) ) 

− t cos (x + y + z) ( 1 + t sin (x + y + z ) . (74) 

Then the exact solution of this test problem is u (x, y, t) = 1 + t sin (x + y + z) . We solve this test problem with LG–RBFs

in the current article with several values of h and τ on the cubic and spherical domains that are shown in Fig. 19 . From
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Fig. 15. Graphs of approximate solution and absolute error with h = 1 / 20 , τ = 1 / 10 and c = 0 . 52 on triangular domain with r = 0 and T = 1 for test 

problem 3. 

Fig. 16. Graphs of approximate solution and absolute error with h = 1 / 20 , τ = 1 / 10 and c = 0 . 2 on circular domain with r = 1 and T = 1 for test 

problem 3. 

Fig. 17. Graphs of approximate solution and absolute error with h = 1 / 20 , τ = 1 / 20 and c = 0 . 4 on irregular domain ( n = 16 ) with r = 2 and T = 5 for test 

problem 3. 
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Fig. 18. Graphs of approximate solution and absolute error with h = 1 / 10 , τ = 1 / 100 and c = 0 . 8 on irregular domain with r = 3 and T = 1 for test 

problem 3. 

Table 7 

Comparison between errors of present method and method of [6] for example 4 with h = 1 / 10 and 

T = 1 at different points of domain on cubic domain. 

( x , y , z ) Method of [6] Present method 

(0.1, 0.1, 0.1) 4 . 4851 × 10 −2 2 . 91301 × 10 −4 

(0.2, 0.2, 0.2) 4 . 4363 × 10 −2 1 . 40227 × 10 −3 

(0.3, 0.3, 0.3) 4 . 6234 × 10 −2 2 . 93329 × 10 −3 

(0.4, 0.4, 0.4) 4 . 6553 × 10 −2 4 . 18388 × 10 −3 

(0.5, 0.5, 0.5) 4 . 5498 × 10 −2 4 . 61567 × 10 −3 

(0.6, 0.6, 0.6) 4 . 4917 × 10 −2 4 . 08167 × 10 −3 

(0.7, 0.7, 0.7) 4 . 4182 × 10 −2 2 . 83632 × 10 −3 

(0.8, 0.8, 0.8) 4 . 3156 × 10 −2 1 . 39163 × 10 −3 

(0.9, 0.9, 0.9) 4 . 5028 × 10 −3 3 . 23101 × 10 −4 

Table 8 

Errors obtained for the present method with h = 1 / 10 , τ = 1 / 100 , c = 0 . 9 and T = 1 in differnt times for test problem 4 on cubic domain. 

t RMS L ∞ L 2 

0.1 1 . 1410 × 10 −4 3 . 0817 × 10 −4 4 . 2556 × 10 −3 

0.2 1 . 9009 × 10 −4 5 . 1315 × 10 −4 7 . 0896 × 10 −3 

0.3 2 . 4208 × 10 −4 6 . 5332 × 10 −4 9 . 0286 × 10 −3 

0.4 2 . 7788 × 10 −4 7 . 4956 × 10 −4 1 . 0364 × 10 −2 

0.5 3 . 0225 × 10 −4 8 . 1453 × 10 −4 1 . 1273 × 10 −2 

0.6 3 . 1836 × 10 −4 8 . 5641 × 10 −4 1 . 1874 × 10 −2 

0.7 3 . 2841 × 10 −4 8 . 8066 × 10 −4 1 . 2249 × 10 −2 

0.8 3 . 3413 × 10 −4 8 . 9087 × 10 −4 1 . 2462 × 10 −2 

0.9 3 . 3711 × 10 −4 8 . 8931 × 10 −4 1 . 2573 × 10 −2 

1 3 . 3946 × 10 −4 8 . 7721 × 10 −4 1 . 2661 × 10 −2 

Table 9 

Errors obtained for the present method with h = 1 / 10 , τ = 1 / 100 , c = 0 . 15 and T = 1 in differnt 

times for test problem 4 on spherical domain. 

t RMS L ∞ L 2 

0.1 1 . 5450 × 10 −3 3 . 1080 × 10 −3 7 . 8261 × 10 −2 

0.2 1 . 5842 × 10 −3 4 . 1034 × 10 −3 8 . 0249 × 10 −2 

0.3 1 . 6373 × 10 −3 5 . 0939 × 10 −3 8 . 2939 × 10 −2 

0.4 1 . 7032 × 10 −3 6 . 0856 × 10 −3 8 . 6278 × 10 −2 

0.5 1 . 7810 × 10 −3 7 . 0936 × 10 −3 9 . 0217 × 10 −2 

0.6 1 . 8697 × 10 −3 8 . 1387 × 10 −3 9 . 4712 × 10 −2 

0.7 1 . 9686 × 10 −3 9 . 1955 × 10 −3 9 . 9719 × 10 −2 

0.8 2 . 0768 × 10 −3 1 . 0265 × 10 −2 1 . 0520 × 10 −1 

0.9 2 . 1939 × 10 −3 1 . 1348 × 10 −2 1 . 1113 × 10 −1 

1 2 . 3192 × 10 −3 1 . 24 4 4 × 10 −2 1 . 1748 × 10 −1 
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Fig. 19. Nodal points distribution on the cubic and spherical domains for test problem 4. The boundary points are red and interior points are blue. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 20. Graphs of approximation solution and absolute error using the present method with h = 1 / 10 , τ = 1 / 100 and c = 0 . 9 on cubic domain in z = 0 

and T = 1 for test problem 4. 

Fig. 21. Graphs of approximation solution and absolute error using the present method with h = 1 / 8 , τ = 1 / 100 and c = 0 . 15 on spherical domain in z = 0 

and T = 1 for test problem 4. 
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Table 7 we can see the numerical results of our method is more accurate than method of [6] at different points. From

Tables 8 and 9 we see the errors obtained for this example in different times with h = 1 / 10 and τ = 1 / 100 on cubic and

spherical domains, respectively. Also, we fixed z = 0 and T = 1 and plot the approximation solution and absolute error

using the present method for this example on the cubic and spherical domains in Figs. 20 and 21 , respectively. 

5. Conclusions 

The nonlinear GBBMB is an equation which is widely used in various sciences. In this paper, we present a technique

for solving this equation in one, two and three dimensions and different types of domains by combining a first-order

Lie-group method with radial basis functions. Numerical results show the efficiency and accuracy of the new technique

and its feasibility for solving different types of partial differential equations, in particular on domains with complicated

geometry and with high dimensions. Extensions to higher orders in time will be the subject of a subsequent study. 
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