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Institut de Matemàtiques i Aplicacions de Castelló (IMAC) and

Departament de Matemàtiques
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Abstract. A perturbative procedure based on the Lie–Deprit algorithm of
classical mechanics is proposed to compute analytic approximations to the

fundamental matrix of linear differential equations with periodic coefficients.

These approximations reproduce the structure assured by the Floquet theorem.
Alternatively, the algorithm provides explicit approximations to the Lyapunov

transformation reducing the original periodic problem to an autonomous sys-
tem and also to its characteristic exponents. The procedure is computationally

well adapted and converges for sufficiently small values of the perturbation pa-

rameter. Moreover, when the system evolves in a Lie group, the approximations
also belong to the same Lie group, thus preserving qualitative properties of the

exact solution.

1. Introduction. Given the linear system of differential equations

dY

dt
= A(t)Y, Y (0) = I, (1)

where A is a complex n × n matrix valued function whose entries are integrable
periodic functions of t with period T , the much celebrated Floquet theorem [8]
establishes that the fundamental matrix Y (t) can be factorized as [6]

Y (t) = P (t) exp(tF ). (2)

Here F and P are n × n matrices, P (t) = P (t + T ) for all t and F is constant.
As a matter of fact, this theorem combines two propositions. On the one hand, it
provides a general statement about the structure of the solution, as eq. (2) estab-
lishes. On the other hand, it also includes Lyapunov’s reducibility theorem [16]: the
matrix P (t), provided it is invertible, performs a transformation to a different set
of variables in such a way that the corresponding differential equation in the new
variables is formulated in terms of a constant coefficient matrix F . Specifically, let
us consider the transformation Y = P (t)Z with a periodic nonsingular matrix P (t).

Substituting into (1) we get Ż = FZ, where F = P−1(t)A(t)P (t) − P−1(t)Ṗ (t)
happens to be a constant matrix. In this way, exp(tF ) in (2) is the exact solution
of (1) previously transformed, by means of the periodic matrix P (t), to a repre-
sentation where the new coefficient matrix is the constant matrix F . Thus, the
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periodic system (1) is reducible to an autonomous system by means of a Lyapunov
transformation P (t) [1].

It is clear from (2) that stability properties of the solution Y (t) depend only on
the matrix F , and more specifically, on the eigenvalues of F , the so-called charac-
teristic exponents of (1), whose real parts are uniquely defined [9]. Thus, the trivial
solution of (1) is asymptotically stable if and only if all the characteristic expo-
nents of the system have negative real parts, whereas it is stable if and only if the
characteristic exponents have nonpositive real parts, with pure imaginary or zero
characteristic exponents corresponding to simple elementary divisors of the matrix
F − λI, with λ ∈ C [16]. It is then most interesting to determine the matrix F
or the monodromy matrix Y (T ) = exp(TF ). Unfortunately, the Floquet theorem
does not provide practical methods to construct F , and thus one has to resort to
approximate methods, either numerical or perturbative.

One possible technique for obtaining explicitly approximations to both F and
the Lyapunov transformation P (t) is the so-called Floquet–Magnus expansion [4].
With this procedure one can construct approximations of the form

Y (t) = exp(Λ(t)) exp(tF ) (3)

with

Λ(t) =
∑
k≥1

Λk(t), F =
∑
k≥1

Fk (4)

in such a way that: (a) the terms Λk and Fk are determined by a recursive proce-
dure, (b) the (truncated) series Λ(t) is a periodic function, so the structure (2) of
the solution prescribed by the Floquet theorem is assured at every order of approx-
imation, and (c) the series (4) are convergent at least if∫ T

0

‖A(t)‖dt < ξFM ≡ 0.2092. (5)

This expansion has been recently used in the context of solid-state nuclear magnetic
resonance (NMR) and compared with other averaging approaches [13].

In this paper we focus on linear systems involving a (small) parameter ε of the
form

∂Y

∂t
=
(
A0 + εA1(t) + ε2A2(t) + · · ·

)
Y, (6)

i.e., A(t) in (1) is given by

A(t, ε) = A0 +
∑
j≥1

εjAj(t). (7)

Here A0 is a constant n× n matrix, Aj(t) = Aj(t+ T ) (j = 1, 2, . . .) are piecewise
continuous functions integrable on the interval (0, T ) and the series (7) is assumed
to be convergent for |ε| < r0, where r0 is independent of t.

A variety of problems arising in mechanics and engineering are modeled by equa-
tion (6), often with matrices of large dimension (see e.g. [16], chapter 6). Moreover,
the coefficient matrix A(t) depends on additional parameters, so that stability (or
instability) conditions lead to relations between these parameters, which should be
determined. To do that one has to evaluate the characteristic exponents of (6) for
small ε > 0. For other problems, computing approximations to the Lyapunov trans-
formation P (t) allows one to compare with real measurements in a non-stroboscopic
way [13]. Perturbative (analytic) methods are then very useful in this setting, es-
pecially when the dimension of the problem is large.
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For equation (6) and in the spirit of the Lyapunov transformation leading to
an autonomous system, we present a new perturbative algorithm designed to build
recursively approximations of the solution as given by the Floquet theorem. It is
computationally well adapted, even for high dimension, and convergent for suffi-
ciently small values of ε. In addition, if the system evolves in a Lie group (as
happens, for instance, with Hamiltonian systems), then the approximation also be-
longs to this Lie group and consequently preserves the qualitative properties of the
exact solution. The scheme allows one not only to get approximate expressions for
the characteristic exponents up to a high order in ε (and thus it provides estimates
on the stability domain in the parameter space), but also explicit expressions for
the periodic matrix carrying out the corresponding Lyapunov transformation.

The procedure is based on the unitary perturbation formalism recently intro-
duced for time-dependent problems in quantum mechanics [5] by following the ap-
proach of the Lie–Deprit method of classical mechanics [7]. Essentially, the Lya-
punov transformation to the new variables is generated by solving a linear differ-
ential equation with ‘time’ ε involving a new operator L in such a way that the
dynamics in the new variables is easier to solve, at least to a certain order in the ε
parameter. In this sense it also differs from the Floquet–Magnus expansion intro-
duced in [4].

The plan of the paper is the following. The algorithm is first presented in section
2 for general linear systems and then applied to the specific case of constructing the
Lyapunov transformation for the periodic case in section 3, where the convergence
problem is also discussed. In section 4 we consider an alternative procedure to
compute the characteristic exponents and illustrate the technique with a pair of
examples. Finally, section 5 contains some concluding remarks.

2. Lie–Deprit perturbative algorithm for linear systems. Consider the equa-
tion

∂

∂t
Y (t, ε) = A(t, ε)Y (t, ε), Y (t0, ε) = I (8)

with

A(t, ε) = A0 +
∑
j≥1

εjAj(t),

and a nonsingular transformation P (t, ε) such that

Y (t, ε)
P (t,ε)−−−−→ Z(t, ε) = P−1(t, ε)Y (t, ε)P (t0, ε). (9)

Applying (9) to (8) we have again a linear system for the transformed matrix Z(t, ε):

∂

∂t
Z(t, ε) = K(t, ε)Z(t, ε), Z(t0, ε) = I, (10)

with

K(t, ε) = P−1(t, ε)A(t, ε)P (t, ε) +
∂P−1(t, ε)

∂t
P (t, ε). (11)

The transformation defined by (9) is called a Lyapunov transformation. The goal
here is to determine P (t, ε) so that (10) is, in some sense, easier to solve than the
original equation (8). When A(t, ε) is periodic, an obvious choice is to determine
P (t, ε) in such a way that K is constant, but other alternatives are possible [5]. In
the following, for simplicity, we will assume t0 = 0.

Since we are dealing with a small parameter ε, it is natural to take P as a
near-identity transformation, i.e., P (t, ε) = I +O(ε). Furthermore, we assume that
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P (t, ε) satisfies an evolution law with respect to the ε parameter similar to the usual
t-evolution of Y (t, ε), namely

∂

∂ε
P−1(t, ε) = L(t, ε)P−1(t, ε), P−1(t, 0) = I (12)

in terms of the (unknown) generator L(t, ε). Alternatively,

∂

∂ε
P (t, ε) = −P (t, ε)L(t, ε), P (t, 0) = I. (13)

This assumption can be justified as follows. Since the perturbed problem defined
by A(t, ε) can be interpreted as the evolution with respect to the parameter ε of the
unperturbed problem (defined by matrix A0), the idea is to express this ε-evolution
in a similar way as for the t-evolution. This evolution law for P (t, ε) is analogous
to that proposed by Deprit in [7] to construct explicitly canonical transformations
in the perturbative treatment of Hamiltonian dynamical systems.

Once the generator L has been determined, it is possible to obtain P and P−1

by formally applying the Magnus expansion [14] to the linear equation (12). As is
well known, this procedure allows one to write the solution of a general operator
linear equation dU(t)/dt = H(t)U(t) as the exponential of an infinite series [10],
each term being a linear combination of integrals and nested commutators involving
H(t) at different times (see [2] for a review). For equation (12) we can thus write

P−1(t, ε) = exp Ω(t, ε) (14)

with Ω(t, ε) =
∑∞
m=1 Ωm(t, ε). Several procedures exist in the literature to construct

the terms Ωm [11]. In particular, the recurrence

S(1)
m = [Ωm−1, L], S(j)

m =

m−j∑
n=1

[Ωn, S
(j−1)
m−n ], 2 ≤ j ≤ m− 1

Ω1 =

∫ t

0

L(t1)dt1, Ωm =

m−1∑
j=1

Bj
j!

∫ t

0

S(j)
m (t1)dt1, m ≥ 2, (15)

has been shown to be computationally efficient. Here Bj represent Bernoulli num-
bers, [·, ·] stands for the commutator, [A,B] ≡ AB −BA, and the dependence on ε
has not been made explicit for clarity.

Differentiating equation (11) with respect to ε and taking into account (12) and
(13) we get

∂K

∂ε
= [L,K] + P−1 ∂A

∂ε
P +

∂L

∂t
. (16)

Notice that (16) involves both the transformation P and its generator L. A more
convenient expression in terms only of L can be obtained by inserting (14) into (16):

∂K

∂ε
= [L,K] + eadΩ

∂A

∂ε
+
∂L

∂t
, (17)

where we have used the identity

eΩ ∂A

∂ε
e−Ω = eadΩ

∂A

∂ε
=
∑
n≥0

1

n!
adnΩ

∂A

∂ε
(18)

in terms of the adjoint operator: adΩB ≡ [Ω, B] and adnΩB ≡ [Ω, adn−1
Ω B].

Equation (17) constitutes the starting point of our perturbative treatment. It
is worth remarking that it only involves now the original matrix A(t, ε), the trans-
formed matrix K(t, ε) and the generator L(t, ε) of the transformation. In this



LIE–DEPRIT PERTURBATION ALGORITHM 963

respect, notice from (15) that Ω in (17) only depends on L(t) through linear com-
binations of integrals and nested commutators of L at different times.

We next introduce, in addition to expression (7) for the matrix A(t, ε), similar
series expansions for K(t, ε) and the (still unknown) generator L(t, ε):

K(t, ε) =

∞∑
n=0

εnKn(t), L(t, ε) =

∞∑
n=0

εnLn+1(t) (19)

and work out equation (17) to get the corresponding relationship linking Kn, Ln
and An at each power of ε. To do that we proceed by successive stages. First, we
obtain a similar series for Ω(t, ε):

Ω(t, ε) =

∞∑
n=1

εnvn(t), (20)

where vj(t) depends on Lk(t). This can be accomplished by applying the recursive
procedure (15) to the series defining L in (19) and reordering the series Ω(t, ε)
according to powers of ε. A simple calculation leads to the first terms of Ω:

v1 = L1,

v2 =
1

2
L2,

v3 =
1

3
L3 −

1

12
[L1, L2] (21)

v4 =
1

4
L4 −

1

12
[L1, L3],

whereas terms up to n = 10 have been explicitly obtained by implementing the
recurrence (15) with a symbolic algebra package [5]. By working out expression
(15) it is possible to derive the following recursive algorithm:

ω
(1)
j =

1

j
Lj , j = 1, 2, . . .

ρ
(2,1)
j =

j∑
l=1

[ω
(1)
l , Lj+1−l], ρ

(k,1)
j =

j∑
l=k

[ω
(k−1)
l , Lj+1−l], k > 2

ρ
(k,r)
j = [ω

(1)
1 , ρ

(k−1,r−1)
j−1 ] +

j−k∑
i=1

k−r∑
l=1

[ω
(l)
l+i, ρ

(k−l,r−1)
j−l−i ], r ≥ 2, k > r, j ≥ k

ω
(l)
j =

1

j

l−1∑
r=1

Br
r!
ρ

(l,r)
j−1 , l ≥ 2, j ≥ l + 1

v1 = ω
(1)
1 , vj =

j−1∑
l=1

ω
(l)
j , j ≥ 2 (22)

Second, we have to express eadΩ
∂A

∂ε
in (17) also as a power series in ε,

eadΩ
∂A

∂ε
=

∞∑
n=0

εnwn(t). (23)
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This is done by inserting the series (20) into (18). After some algebra, the successive
terms wn(t) can be determined with the following algorithm:

τ (0)
n = (n+ 1)An+1, n ≥ 0

τ
(l)
k =

1

l

k−l+1∑
i=1

[vi, τ
(l−1)
k−i ], k ≥ 1, l = 1, . . . , k

w0 = τ
(0)
0 = A1, wk =

k∑
l=1

τ
(l)
k , k ≥ 1. (24)

The first terms read explicitly

w0 = A1,

w1 = 2A2 + [L1, A1], (25)

w2 = 3A3 + 2[L1, A2] +
1

2
[L2, A1] +

1

2
[L1, [L1, A1]].

Notice that wj (j ≥ 1) only depends on Ak and Lm, with 1 ≤ k ≤ j+1, 1 ≤ m ≤ j.
Finally, we insert the series (19) and (23) into equation (17) and collect terms of
the same power in ε. In this way we arrive at

K0 = A0

dLn
dt

+ [Ln, A0] = nKn − Fn, n ≥ 1 (26)

with

F1 ≡ w0 = A1 (27)

Fn ≡
n−1∑
j=1

[Ln−j ,Kj ] + wn−1, n > 1. (28)

For a specific problem, it is computationally more efficient to apply recurrences
(22)-(24) directly to the matrix A than substituting the expression of A into the
explicit expressions (21), (25) obtained in [5].

3. Constructing the Lyapunov transformation for periodic linear sys-
tems. So far the treatment is generally valid for any differential equation (8) with
A(t, ε) given by (7) and it allows one to construct perturbatively a transformation
P (t, ε) generated by L(t, ε) such that the new variable Z(t, ε) satisfies the equation
(10) with a new coefficient matrix K(t, ε). Notice that neither K nor L have been
determined at this point. Of course, once K is fixed according to some appropriate
criterion, then L is obtained by solving iteratively (26) and then the transformation
P is constructed by exponentiating the series (20).

In the specific case of a periodic system, Aj(t) = Aj(t+T ), the obvious choice is
to construct a Lyapunov (periodic) transformation so that K is a constant matrix.
In other words, we solve (26) with the following requirements:

(i) the generator L is periodic, i.e., Ln(t + T ) = Ln(t) and Ln(0) = 0 for all
n ≥ 1. In this way Ω(t+T, ε) = Ω(t, ε), Ω(0, ε) = 0 and therefore P (0, ε) = I;

(ii) the new matrix K in (10) is independent of time. In consequence, Z(t, ε) =
exp(tK(ε)) and

Y (t, ε) = P (t, ε) etK(ε) = e−Ω(t,ε) etK(ε). (29)



LIE–DEPRIT PERTURBATION ALGORITHM 965

By satisfying these conditions we recover the structure assured by the Floquet the-
orem, and, provided equation (26) can be solved, we are able to construct explicitly
K(ε) and the transformation P (t, ε) as a power series in the parameter ε.

This constitutes in consequence our next goal. To proceed, we integrate (26)
over one period T . Since we are assuming that Ln(T ) = Ln(0) = 0, then 0 =
[A0, 〈Ln〉] + nKn − 〈Fn〉, or

nKn = 〈Fn〉 − [A0, 〈Ln〉], (30)

where

〈Fn〉 ≡
1

T

∫ T

0

Fn(t)dt, 〈Ln〉 ≡
1

T

∫ T

0

Ln(t)dt (31)

denote the average values of Fn and Ln over the period, respectively.
On the other hand, equation (26) can be written as

dLn
dt

= adA0Ln + nKn − Fn (32)

in terms of the linear operator adA0 , so that its formal solution with Ln(0) = 0
reads

Ln(t) = et adA0

∫ t

0

e−s adA0 (nKn − Fn(s)) ds.

Inserting (30) in this expression and integrating we get

Ln(t) = (I − et adA0 )〈Ln〉+

∫ t

0

e(t−s) adA0 (〈Fn〉 − Fn(s)) ds. (33)

Now, since Ln(T ) = 0, it is clear that∫ T

0

e(T−s) adA0 (〈Fn〉 − Fn(s)) ds = (eT adA0 − I)〈Ln〉.

In other words, we may choose 〈Ln〉 as any solution Cn of the matrix equation

(eT adA0 − I)Cn =

∫ T

0

e(T−s) adA0 (〈Fn〉 − Fn(s)) ds (34)

(the solution is not unique [16]). In summary, the problem is solved by taking

Kn =
1

n
〈Fn〉 −

1

n
[A0, Cn] (35)

Ln(t) = Cn + etA0

(∫ t

0

e−sA0(〈Fn〉 − Fn(s)) esA0ds− Cn
)

e−tA0 ,

where Cn is a particular solution of (34), or alternatively,

Cn − e−TA0CneTA0 =

∫ T

0

e−sA0(〈Fn〉 − Fn(s))esA0 ds (36)

and 〈Fn〉 is given by (31). In this way we guarantee that Ln(t + T ) = Ln(t) and
Ln(0) = 0. If A0 is a multiple of the identity matrix, then clearly the integral on the
r.h.s. of (36) vanishes and so we may take Cn = 0 and Kn = (1/n)〈Fn〉. In any case,
equations (35)-(36) allow one to construct the series for the new constant coefficient
matrix K(ε) and the generator L(t, ε) up to any order n and finally Y (t, ε) as (29)
with Ω(t, ε) computed through the series (20).
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3.1. Example: Quantum harmonic oscillator. At this stage it is appropriate
to illustrate the main features of the previous algorithm by applying it to a simple
example. To this end we consider the quantum mechanical description of a linearly
driven harmonic oscillator with Hamiltonian (~ = 1)

H(t) =
1

2
ω0(p̂2 + q̂2) + β cosωt q̂,

where ω0, β and ω are real parameters, with ω 6= ω0. The position and momentum
operators q̂ and p̂ obey the commutation relation [q̂, p̂] = i. Alternatively,

H(t) = ω0

(
a†a+

1

2

)
+

β√
2

cosωt (a† + a)

in terms of the ladder operators a = (q + ip)/
√

2, a† = (q − ip)/
√

2 satisfying
[a, a†] = 1. The time evolution of this system is described by a unitary operator
U(t) verifying the Schrödinger equation

i
dU

dt
= H(t)U, U(0) = I, (37)

which is a particular operator realization of equation (1) with A(t) = −iH(t). We
introduce a parameter ε so that A(t, ε) = A0 + εA1(t), with

A0 = −iω0

(
a†a+

1

2

)
, A1(t) = −i β√

2
cosωt (a† + a).

In this way we can apply the previous perturbative algorithm and eventually recover
the exact solution of the problem. This is so even when equation (37) is formulated
in terms of operators. The important point here, however, is the fact that a and a†

generate a Lie algebra of finite dimension.
The starting point is, as usual, to take K0 = A0. Next we determine the average

value of F1 = A1 over the period T = 2π/ω, which is obviously zero. Then we fix
C1 so as to satisfy (36):

C1 =
βω0√

2(ω2 − ω2
0)

(a† − a)

and obtain K1 and the generator L1(t) from equation (35):

K1 =
iβω2

0√
2(ω2 − ω2

0)
(a† + a)

L1(t) =
β√

2(ω2 − ω2
0)

(
iω sinωt (a† + a) + 2ω0 sin2 ωt

2
(a† − a)

)
.

Proceeding in the same way for n = 2 we get

K2 =
−iβ2ω0(ω2 + ω2

0)

4(ω2 − ω2
0)2

L2(t) =
−iβ2ω0

2ω(ω2 − ω2
0)2

(
2ω2 − (ω2 − ω2

0) cosωt
)
,

whereas Kn = 0 and Ln = 0 for n ≥ 3. Therefore K(ε) = K0 + εK1 + ε2K2, or in
terms of (q̂, p̂),

K = −iω0

2

((
q̂ − β

ω0(ρ2 − 1)

)2

+ p̂2

)
− i β2

4ω0(ρ2 − 1)
, (38)
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where ρ ≡ ω/ω0 and we have taken ε = 1. As for the transformation, we have
Ω(t, ε) = εL1(t) + ε2L2(t)/2. The corresponding expressions agree with those ob-
tained by applying the Floquet–Magnus expansion (3)-(4) in [4] and reproduce the
exact unitary evolution operator,

U(t) = e−Ω(t) etK .

An important difference exists, however, between both schemes. Whereas in the
Floquet–Magnus expansion the whole series (4) has to be computed to get the
exact solution, the new perturbative scheme (35) needs only to be carried out up
to n = 2. In other words, the term Kn in (19) is in general different from Fn in (4),
n ≥ 1.

3.2. On the convergence of the procedure. With the previous formalism we
have formally constructed the fundamental matrix of the periodic linear system (8)
as

Y (t, ε) = P (t, ε) exp(tK(ε)) = exp(−Ω(t, ε)) exp(tK(ε)), (39)

with K(ε) =
∑
i≥0 ε

iKi, and Ω(t, ε) =
∑
i≥1 ε

ivi(t) periodic of period T . The
convergence of the procedure when the parameter ε takes values in the complex
plane can be established in two steps. In the first, the analyticity of P (t, ε) and
K(ε) in a disk |ε| < |ε0| ≤ r0, where r0 is the radius of convergence of the series
defining the coefficient matrix A(t, ε), is established. In the second, P is expressed
as the exponential of an analytic function Ω(t, ε).

Let us denote by α1, . . . , αn the eigenvalues of the matrix A0, counting multi-
plicities. Since

Y (T, 0) = eTA0 , (40)

then αj = 1
T log ρj(0), j = 1, . . . , n, where ρj(ε) stand for the eigenvalues of Y (T, ε).

The treatment requires that for each multiple eigenvalue ρl of Y (T, 0) of multiplicity
r there exists an eigenvalue αl of A0 of the same multiplicity. Alternatively, the
eigenvalues of A0 are such that

αj − αk 6=
2πil

T
, j 6= k, l = ±1,±2, . . . (41)

In [16] it is shown that a preliminary transformation always renders the unperturbed
matrix to this situation.

The fundamental matrix Y (t, ε) of (8) is analytic in ε. Then it follows that the
matrix

K(ε) =
1

T
log Y (T, ε)

is also an analytic function of ε at ε = 0 and K(0) = A0 [16, pag. 61]. Moreover,
K(ε) is analytic in the disk |ε| < |ε0| ≤ r0 for some ε0. Equivalently,

Y (T, ε) = eTK(ε), (42)

with K(ε) analytic in |ε| < |ε0|. An estimate for ε0 can be obtained by considering
the sufficient conditions for convergence of the Magnus expansion. Specifically, if
ε0 is the smallest value (in module) such that∫ T

0

‖A(t, ε0)‖dt = π, (43)

then (42) holds for |ε| < |ε0| [2]. A standard argument shows that P (t, ε) is analytic
in ε in the disk |ε| < |ε0| for a fixed t (0 ≤ t ≤ T ), P (t + T, ε) = P (t, ε), and can
be expressed as P (t, ε) = exp(−Ω(t, ε)), with Ω(t, ε) an analytic function of ε in a
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disk |ε| < |ε1| ≤ |ε0| [16]. In fact, a bound for ε1 can be obtained from (5). These
bounds turn out to be rather conservative, however, for the examples considered.

4. A simplified procedure to compute the characteristic exponents.

4.1. The procedure. The algorithm outlined in section 3 to determine explicitly
the matrices Ω(t, ε) and K(ε) as power series in the factorization (29) requires fixing
at each order a constant matrix Cn satisfying equation (36) and then computing
the new coefficient matrix Kn and the generator Ln(t) with equation (35). This
task can be simplified in some situations by relaxing the requirements one imposes
on the generator Ln(t). We next analyze one case which is relevant in applications,
in particular when one is only interested in computing the characteristic exponents
of the system.

It is clear that the general (formal) solution of equation (32) is given by

Ln(t) = et adA0Ln(0) + et adA0

∫ t

0

e−s adA0 (nKn − Fn(s)) ds,

or, in short,

Ln(t) = et adA0 (Ln(0) +Gn(t)−Gn(0)) , (44)

where Gn(t) is the antiderivative of e−t adA0 (nKn − Fn(t)). Now we choose

Kn = (1/n)〈Fn〉 (45)

and impose Ln(t) to be periodic. Then, evaluating (44) at t = T , we have Ln(T ) =
Ln(0) = eT adA0 (Ln(0) +Gn(T )−Gn(0)) or equivalently

e−T adA0Ln(0)− Ln(0) = Gn(T )−Gn(0) =

∫ T

0

e−sA0 (〈Fn〉 − Fn(s)) esA0 ds,

where we have used (45). In consequence, by choosing Ln(0) = −Cn we get the
generator of a periodic transformation to a new representation where the coefficient
matrix is given by

K(ε) = A0 +
∑
n≥1

εnKn, with Kn =
1

n
〈Fn〉.

Notice that, since the terms Kn in the new representation have changed, the gen-
erators Ln of the corresponding transformation are also different.

Are there simpler ways to choose Ln(0) satisfying these requirements? Suppose
we have determined the terms Fn and the function Gn(t) verifies

Gn(T ) = e−T adA0Gn(0). (46)

Then it makes sense to choose Ln(0) = Gn(0) and finally, from (44), we have
Ln(t) = et adA0Gn(t). Unfortunately, it is not evident how to know in advance
whether eq. (46) is satisfied for a given problem.

In summary, for systems verifying (46), with Gn(t) denoting the indefinite inte-
gral

Gn(t) =

∫
e−t adA0 (〈Fn〉 − Fn(t)) dt, (47)

algorithm (35)-(36) may be replaced by the simpler procedure

Kn =
1

n
〈Fn〉 (48)

Ln(t) = et adA0Gn(t).
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In any case, notice that, since Ln(0) 6= 0, the fundamental matrix of system (8)
reads, according to (9),

Y (t, ε) = e−Ω(t,ε) etK(ε) eΩ(0,ε), (49)

where Ω(t+ T, ε) = Ω(t, ε) is computed with the new generator (48). Therefore, in
this case one has

Y (t+ T, ε) = Y (t, ε) e−Ω(0,ε) eTK(ε) eΩ(0,ε).

In other words, although the structure given by the Floquet theorem is no longer
reproduced, M ≡ e−Ω(0,ε) eTK(ε) eΩ(0,ε) is a monodromy matrix, with the same
eigenvalues as eTK(ε). In consequence, the eigenvalues of the new matrix K(ε)
obtained with the procedure (48) are precisely the characteristic exponents of the
system, so that their computation can be simplified a good deal.

4.2. Illustrative examples. We next illustrate how this simpler procedure can be
carried out up to a very high order in the expansion parameter by computing the
characteristic exponents of two 2× 2 systems. It is worth stressing that the whole
process involves the algebraic structure of the problem rather than its particular
dimension.
Example 1. First we consider the system

ẏ1 = ε(−1 + 2 sin t)y1 + ε y2

ẏ2 = −y2 + ε y1 (50)

worked out by Malkin [1]. Here ε is a real parameter and T = 2π. Using the method
of small parameters, he showed that the characteristic exponents of the system are
negative at least for ε < 1/9, whereas in [16] the domain of values of ε that ensure
asymptotic stability is extended up to ε < 2/3.

The fundamental matrix Y (t, ε) corresponding to system (50) verifies equation
(8) with

A(t, ε) = A0 + εA1(t) ≡
(

0 0
0 −1

)
+ ε

(
−1 + 2 sin t 1

1 0

)
. (51)

In this case (46) holds, and thus the perturbation scheme (48) can be applied. We
have carried out the procedure up to n = 22 with a symbolic algebra package, thus
obtaining

K(ε) = −
(

1

2
+ ε

)
I + k1(ε)σ1 + k3(ε)σ3

in terms of the identity I and the matrices

σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
,

whereas the series defining k1(ε) and k2(ε) are

k1(ε) = ε+
2ε3

3
+
ε4

3
− 23ε5

20
− 37ε6

20
+

29ε7

6300
+

293779ε8

84000
+O(ε9)

k3(ε) =
1

2
− ε

2
− ε4

3
+

43ε6

45
+

473ε7

450
− 23971ε8

31500
+O(ε9).

up to terms of order ε8. We then compute the eigenvalues of K(ε) as a function
of ε obtained with our perturbative approach for different orders of ε and compare
with the exact result (as determined by the numerical integration of equation (50)
with 25 digits of accuracy). One of the eigenvalues turns out to be always negative,
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whereas the second one is negative only for ε < 0.745023, so that it is this value
which determines the stability region of the system.

In Figure 1, top panel, we represent this exact eigenvalue (solid line) together
with the results rendered by the perturbative algorithm of order ε10 (dot-dashed
line), ε15 (dashed line) and ε22 (dotted line) for different values of ε, whereas in
the bottom diagram we show, in logarithmic scale, the corresponding error with
respect to the exact value (with the same code for the lines). Here we also collect
the result given by the approximation of order ε6 (solid line). Notice that higher
order approximations provide results that are indistinguishable from the exact value
for increasingly larger values of the perturbation parameter ε. This is so even
convergence is not assured for these values of ε.
Example 2. As a second illustration we take the Mathieu equation

ẍ+ (a+ ε cos 2t)x = 0, a > 0, (52)

with period T = π. Expressing this equation as a first order system, we get

dy

dt
= (A0 + εA1(t)) y (53)

where

y = (x, ẋ)T , A0 =

(
0 1
−a 0

)
, A1 =

(
0 0

− cos 2t 0

)
. (54)

Floquet theory shows that the (complex) number ν is a characteristic exponent of
the system if and only if there exists a nontrivial solution of the form eνtp(t), where
p(t + T ) = p(t), and that the transition curves (also called characteristic curves)
in the a-ε plane separating stable from unstable solutions, correspond to periodic
solutions of (52) [9]. Our purpose here is to determine the first of such transition
curves by computing approximately the characteristic exponents with the previous
perturbative procedure.

It is worth remarking that the obtained approximate solutions (29) and (49) are
both symplectic by construction, as the exact fundamental matrix Y (t, ε) corre-
sponding to (53).

The eigenvalues of the matrix A0 are α1 = −
√
ai, α2 =

√
ai, and thus α2−α1 6=

2πi
T m (where m is an integer) as long as a 6= m2, which we herewith assume. This

is consistent with condition (41).
In this example we can also apply the simplified procedure (48) since (46) holds

at each order. We have carried out the scheme up to n = 8, determining both the
new matrix K(ε) and the transformation. It turns out that the odd terms in the
expansion vanish, i.e., K2n+1 = 0, so that

K(ε) = A0 +

4∑
j=1

ε2jK2j +O(ε10) =

(
0 k12(ε)

k21(ε) 0

)
≡ K [8](ε), (55)

with

k12(ε) = 1− 3ε4

2048(a− 4)(a− 1)2
+
ε6(−5579 + 3426a− 447a2 + 8a3)

589824(a− 9)(a− 4)2(a− 1)4

k21(ε) = −a+
ε2

8(a− 1)
− ε4(100− 55a+ 3a2)

2048(a− 4)(a− 1)3
+

ε6(−164448 + 182303a− 67721a2 + 8733a3 − 347a4 + 8a5)

589824(a− 9)(a− 4)2(a− 1)5
.
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Here, for clarity in the presentation, we have omitted terms of order ε8. The
characteristic exponents are just ν1,2 = ±

√
−detK(ε) = ±

√
k12(ε)k21(ε). To

determine the first transition curve we have to find the ω, ε values for which ν1,2 = 0

or equivalently, detK [8](ε) = 0. Series expansions for this curve can be found in
the literature (see e.g. [15]) in terms of the parameters a and q ≡ −ε/2. Thus, up
to O(ε8), it is given by

a0(ε) = −1

8
ε2 +

7

2048
ε4 − 29

147456
ε6 +

68687

4831838208
ε8 + · · · (56)

We have substituted expression (56) into detK [8](ε) and verified that, as required
by consistency of the approximation, detK [8](ε) = O(ε10). We mention in passing
that by repeating this procedure with the approximation for detK(ε) obtained in
[16, pag. 363], one already has a non-vanishing coefficient multiplying ε6. This
seems to indicate the existence of some misprints in the formulae collected in [16,
pag. 363], which is consistent with the observed differences with our own results.

As a second test, we compute the first transition curve with the Mathemat-
ica function MathieuCharacteristicA[0, −ε/2], and compare with the power
series (56) and our perturbative scheme, displaying graphically the points where
detK(ε) = 0 for different orders of ε. The corresponding results are collected in
Figure 2. Dotted, dot-dashed and dashed lines correspond, respectively, to the 4th,
6th and 8th order approximations obtained from (55), whereas the black solid line
(lowest curve in the right hand side of the figure) stands for the exact result ren-
dered by Mathematica. The 8th-order polynomial approximation for a0(ε) is clearly
visible in the figure as the gray solid line. Notice how higher order approximations
in the perturbative scheme render more accurate results over increasingly large in-
tervals of the parameter ε. This is so although the considered values of ε are such
that convergence of the procedure is not guaranteed.

The same procedure can be repeated of course to determine other transition
curves. In that case it is convenient to consider instead a = m2 + µ, (m = 1, 2, . . .)
and work with the new parameter µ.

5. Concluding remarks. We have adapted a variant of the Lie–Deprit algorithm
to construct analytic approximations for both the constant matrix K(ε) and the
periodic matrix P (t, ε) in the Floquet factorization (29) of the fundamental matrix
of a linear differential equation with periodic coefficients involving a small parameter
ε. It constitutes in fact a novel way to obtain the Lyapunov transformation order
by order in ε leading to an autonomous system. The procedure can be easily
implemented in a symbolic algebra package and is convergent for sufficiently small
values of ε.

Furthermore, when the exact solution of the problem evolves in a Lie group
the successive approximations rendered by the scheme also belong to the same Lie
group, since all the equations one has to solve within this framework to get the
generator L of the Lyapunov transformation (i.e., equations (26)) evolve in the cor-
responding Lie algebra and the transformation itself is obtained by exponentiating
a linear combination of Lk and nested commutators. This feature has important
consequences regarding preservation properties of the exact solution by the resulting
approximations.

Stability analysis of problems appearing in mechanics and engineering leads nat-
urally to the study of equation (6), very often with the coefficient matrix belonging
to a Lie algebra, so that the solution evolves in the corresponding Lie group. Thus,
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in the study of Hamiltonian classical dynamics Y (t) is a symplectic matrix, in
rigid mechanics Y (t) is orthogonal, whereas in quantum mechanical problems Y (t)
is a unitary matrix. In all cases, this leads to the preservation of some relevant
qualitative properties along the exact evolution: the symplectic form in Hamilton-
ian dynamics (in particular, the volume in phase space), transition probabilities in
quantum mechanics, etc. Moreover, in practical applications the coefficient matrix
involves several parameters, so that it is important to have analytic approximations
to try to determine perturbatively the stability domain in the space of parameters.
It makes sense then to determine the transformation P (t, ε) as an element in the
same Lie group, and this is automatically accomplished if L(t, ε) in (12) belongs to
the corresponding Lie algebra. Our formalism not only determines the monodromy
matrix but also is able to approximate the solution at intermediate times t < T .

Although the convergence of the algorithm is assured for sufficiently small values
of ε, the examples we have included seem to indicate that a larger convergence
domain takes place indeed, and that by considering higher order approximations we
are able to reproduce the exact solution in an increasingly large range of values of
ε.

The algorithm we propose here can also be useful to compute the Lyapunov
transformation for non-homogeneous periodic systems of the form

ẏ = A(t, ε)y + f(y, t) (57)

with a periodic function f [3]. In that case the periodic transformation y(t) =
P (t, ε)z(t) changes (57) into

ż = K(ε)z + P−1(t, ε) f(P (t, ε)z, t) (58)

and the problem of analyzing the stability of the trivial solution of (57) is equivalent
to the stability of the trivial solution of (58). In this respect, the computation of
P−1 is particularly easy in this approach: we need only to exponentiate Ω(t, ε).
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Figure 1. Top: one of the characteristic exponents of system (50),
obtained by direct numerical integration (solid line), and by the pertur-
bative algorithm of order ε10 (dot-dashed line), ε15 (dashed line) and ε22

(dotted line), as a function of ε. Bottom: error with respect to the exact
result in logarithmic scale. Solid line corresponds to the approximation
of order ε6. For the remaining lines the same code applies.
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Figure 2. Different approximations for the first characteristic curve of

the Mathieu equation ẍ + (a + ε cos 2t)x = 0 in the space of parameters

(a, ε). Black solid line corresponds to the exact result. Gray solid line

stands for the power series (56), whereas dotted, dot-dashed and dashed

lines correspond, respectively, to the 4th, 6th and 8th order approxima-

tions obtained from (55).
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