~ Letters

International Journal of Bifurcation and Chaos, Vol. 7, No. 4 (1997) 951-955

© World Scientific Publishing Company

CONTROL OF CHAOTIC IMPACTS

FERNANDO CASAS* and CELSO GREBOGI'
Institute for Plasma Research, University of Maryland,
College Park, MD 20742, USA

Received September 14, 1995

We apply controlling chaos techniques to select the desired sequence of impacts in a map that
captures universal properties of impact oscillators near grazing. For instance, we can choose the
period and then stabilize an unstable periodic orbit with, say, one impact per period involved
in the grazing bifurcations that take place in the system.

1. Introduction

In recent years there has been a growing interest
in the study of impact oscillators both 1n the en-
gineering and mathematical literature. This is the
term commonly used to represent forced vibrating
mechanical systems which also undergo an intermit-
tent or a continuous sequence of contacts with mo-
tion limiting constraints. The motion of the com-
ponents of the system is then a combination of a
smooth motion governed by a differential equation
interrupted by a series of non-smooth collisions.
Even if the smooth motion is linear, the constraints
introduce nonlinearity into the overall system. Im-
pact oscillators can be used to model a variety of
different systems arising in engineering. Examples
include ships moored colliding with fenders, rattling
gears and other forced mechanical systems with
clearances {Foale & Bishop, 1992]. |
Mathematically, impact oscillators constitute a
subclass of the dynamical systems that do not sat-
isfy the usual smoothness assumptions. These dis-
continuities are responsible for new forms of behav-
ior [Nordmark, 1991; Budd & Dux, 1994] not found
in smooth dynamical systems, particularly in the

limit of low velocity or grazing impacts [Foale &
Bishop, 1992; Budd & Dux, 1994; Shaw & Holmes,

1983; Shaw, 1985; Nusse & Yorke, 1992; Budd
et al., 1995].

In engineering, systems are modeled and inves-
tigated to identify, and thus avoid, unacceptable
responses. In the case of impacting systems, para-
metric studies are necessary in order to identify, in
particular, regions with high velocity impacts which
cause the greatest wear or damage to 1ts compo-
nents. It is also important to locate regions where
chaotic solutions exist so as to avoid the irregular
nature of the resulting motion. This could be ac-
complished, for instance, by the well-known tech-
niques of controlling chaos [Ott et al., 1990]. On the
other hand, the same flexibility provided by chaos
allows us to select particular trajectories with a de-
sirable sequence of impacts produced in an arbitrary
order. This would be advantageous in many tech-
nological applications of impact oscillators.

In this paper we apply the method by Ott
et al. [1990] to control chaotic impacts in the so-

called Nordmark map (Zp+1, Ynt1) = FolZn, Yn)
[Nordmark, 1991; Chin et al., 1994, 1995|, with

(ax + 9y + p, —yx) forx <0

Fp(xay)z _ , ; 2
(=T +y+p, —yr°z) forxz >0
(1)
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Fig. 1. Physical system modeled by the Nordmark map near
grazing.

This 15 a pilecewise continuously differentiable map
from R? into itself that models the behavior of the
sinusoidally forced linear oscillator experiencing im-
pacts at a hard wall as shown in Fig. 1. It is ob-
tained by expanding (to first order) solutions of
the system in the neighborhood of a grazing orbit
[Nordmark, 1991], i.e. of an orbit that just touches
the wall with zero velocity. Thus the map is ex-
pected to capture the universal properties of the
dynamics in the regime of low velocity impacts. The
equivalence with the physical system is established
as tollows: z, and y, are transformed coordinates
in the position-velocity space (£, &) of the impact
oscillator evaluated at times ¢, = 2nn/w, where w
is the frequency of the external forcing. The quan-
tity 72 is the restitution coefficient of the impacts,
whereas p is related to Fp, the amplitude of the ex-
ternal force. The parameters o and v depend on
the intrinsic properties of the oscillator in such a
way that the limit v — 0 corresponds to a large
friction coefficient 1 and 72 = 1 gives the opposite
limit of zero dissipation. For physical systems (with
positive friction) we have [Chin ef al., 1994, 1995;
Casas et al., 1995]

0<y <1,

-2 /y<a<l+4y. (2)

The linear part of the map (1) governs the system
if there is no impact between time ¢, and t,4;.
Otherwise, 1f an impact takes place between ¢, and
tnt1, the system is described by the second equa-
tion. Thus, the effect of impacts in the system is
modeled by a square root nonlinearity. The Nord-
mark map is a stroboscopic map. It captures every
asymptotic steady state of the physical system, al-
though there is no direct information in the posi-
tion of a point with respect to the severity of the
impacts.

The map (1) is continuously differentiable ex-
cept at £ = 0, where its Jacobian matrix is not

defined. In this system the grazing state corre-
sponds to p = 0, so it describes the dynamics of
an orbit in the neighborhood of grazing if |p| < 1,
and grazing bifurcations occur as the parameter p
18 increased through p = 0 with v and « held fixed.
These bifurcations, along with the regions in the
(v, o) parameter space where they take place, have
been studied by Chin et al. [1994, 1995], and Casas
et al. [1995]. In particular, for parameter values in
the region

4y + . <a< > -+ : (3)
it has been shown that there is a grazing bifurca-
tion from a stable period-1 attractor to a reversed
infinite period adding cascade, with chaos between

successive windows, whereas In the region

g’y+g<a<1—l—’y (4)
2 3
there is a bifurcation from a stable period-1 orbit in
p < 0 to a chaotic attractor as p increases through
zero. Thus, for o > 4y + 1/4, there is an immedi-
ate jump to chaos as part of an orbit grazing at the
hard wall and, as a result of the bifurcation, the sys-
tem undergoes a rapid jJump to motions with large
amplitude [Foale & Bishop, 1992|. The resulting
trajectory involves many impact events distributed

in a chaotic way.

2. Control of Impacts

Bventually, one may be interested in controlling the
irregular behavior that takes place in the Nordmark
map. A possible mechanism for doing so (without
altering significantly the system) is to apply some
controlling chaos technique. In this respect, the ap-
proach by Ott et al. [1990] has the unique feature
that it enables one to select a predetermined time-
periodic behavior embedded in. a chaotic attractor
by making only small time-dependent perturbations
to a parameter of the system. The basic idea is
as follows [Ott et al., 1990; Romeiras et al., 1992].
First one chooses an unstable periodic orbit em-
bedded in the chaotic attractor according to some
specific criterion. Second, one defines a small re-
gion around the desired periodic orbit. A trajectory
starting with almost any initial condition eventually
falls into this small region due to the ergodicity of
the chaotic attractor. When this occurs one applies
feedback control to force the trajectory to approach



the unstable periodic orbit. This method is very
flexible because 1t allows for the stabilization of dif-
ferent periodic orbits for the same set of nominal
values of the parameter. For the Nordmark map,
we choose p to be the accessible control parameter
because it characterizes the strength of the driving
periodic forcing.

When we apply the algorithm of Ott et al
[1990] to the Nordmark map, one can, in princi-
ple, stabilize periodic trajectories with an arbitrary
number and distribution of impacts per period.
This 1s so even 1f 1t 1s not possible to get analytic
expressions for the position of the points along the
periodic orbits (for instance, the necessary informa-
tion needed for applying control can all be extracted
purely from observations [Ott et al., 1990; Romeiras
et al., 1992]). Here, for simplicity, we consider only
maximal periodic orbits [{Chin et al., 1994], i.e. pe-
riodic trajectories for which there is exactly one im-
pact per period. In this case it is easy to determine
analytically the position of the orbit (only one point
per period is in the region x > 0). For a maximal
orbit of pertod M we can assume, without loss of
generality, z; > 0, so that zo, x3,..., Tps are neg-
ative and z374,1 = z1. The positions of the points
along the trajectory can be obtained upon repeated
iteration of Eq. (1) and are given by

1
wet = 35 [(F = 250 - vaD)
L CO D Lo PSR BN G
A1 A9

Ypt1 = (A5~ = AT D (3 ~ 1)
Al — A2
~ (A5 = AT )z + do (6)

with k=1, 2,..., M and

1 1
A1=§(Of+\/a'2-4'y), )\gx-i(a-—\/az-élfy)
— 1 — _
Co pll_)q( A7) 1— A (1 — A3
o (125 _1-X (7)
(R T VR

If we make zp711 = 21 and ypro1 = 1 in Egs. (5)
and (6) we obtain a quadratic equation for /z7,
whose positive solution gives us the coordinate x4
of the maximal orbit. From Eq. (5) it can be shown
that £ < z3 < -++ < 2. Hence a period-M maxi-
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mal orbit can exist only if z; < 0, or equivalently,
by Eq. (1), if ypr41 = y1 = —yr2zp > 0 [Chin
et al., 1994]. This leads to the existence condition
for a period-M maximal orbit

)\1 . AZ +'}’T2(Ak“i . /\k—l)
Y1 = /%1 E ;k 22z
1 2

Cg

> 0. (8)
M = A3

From Egs. (5) and (6) it is possible to construct the
Jacobian matrix and to compute both the eigen-
values of the periodic orbit and the corresponding
eigenvectors at each point of the trajectory. Thus,
when o > 4v + 1/4 we are ready to apply the con-
trol algorithm of Ott et al. [1990] to stabilize these
unstable maximal orbits for small positive values
of p.

In particular, for systems with parameters in
the region 4v + % < a < %’}’ + %,* it was found
[Chin ef al., 1994, 1995] that as p is decreased from
positive values, windows of stable maximal periodic
orbits are encountered, and each such window 1is
followed by a band of chaos and then by a win-
dow of a stable maximal orbit whose period is one
higher then the period in the previous window. As
p decreases, there is an infinite caseade of such win-
dows of decreasing width in p and increasing pe-
riod, accumulating on p = 0. This is illustrated
by the bifurcation diagram of Fig. 2{a), obtained for
(v, &) = (0.05, 0.65) and 7% = 1 for small positive
p values. Here we can avoid the presence of chaotic
impacts for p > 0 by applying control. As an ex-
ample we take p = exp(—9.2), on the left band of
chaos in Fig. 2(a). Here we have unstable maximal
orbits up to period M = 8 embedded in the chaotic
attractor.

Figure 2(b) illustrates the control of these pe-
riodic orbits. The control of the M = 2 maximal
orbit was turned on atter 3000 iterations. We piot
the z-coordinate of a trajectory as a function of
(discrete) time. The parameter perturbations were
programmed to successively control seven different
periodic orbits. We switched the control from sta-
bilizing one periodic orbit to another atter 500 it-
erations. The figure shows that the time to achieve
control is almost negligible in this case {no appar-
ent transients between switches). Here the maxi-
mum allowed parameter perturbation is § = 1074,
We observe that it is possible to convert a chaotic
impacts- regime to periodic orbits with only one
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Fig. 2. (a) Bifurcation diagram for (v, ) = (0.05, 0.65) and

2 = 1 for small positive p'values. {b) Successive control of

unstable maximal periodic orbits for p = exp(—9.2), starting

with period M = 2. The maximum parameter perturbation
is 6 = 107%.

impact per period by applying small perturbations
16p| < 107* to the parameter p.

When parameter values in the region %7 + % <
« < 1+ ~ are considered, as p increases from zero
(corresponding to the occurrence of impacts in

Fig. 1) there is an interval of p values occupied en-
tirely by a chaotic attractor, and this interval termi-

nates at the appearance of a stable maximal orbit
of some period My [Chin et al., 1994]. We have,
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Fig. 3. (a) Bifurcation diagram for v = 0.15, o = 1 and
72 = 1. (b) Successive control of the unstable maximal pe-
riodic orbits embedded in the chaotic attractor for p = 0.0,
starting with period M = 2. The maximum parameter per-
turbation is § = 1073,




in particular, unstable maximal orbits embedded in
the chaotic attractor with increasing period as p
approaches zero. An example of a bifurcation dia-
gram for this case is shown in Fig. 3(a), obtained
for (v, o) = (0.15, 1) and 72 = 1. Here we can con-
trol chaos by stabilizing any of the maximal orbits
which are present for positive values of p. In partic-
ular, for p = 0.05 we have unstable maximal orbits
up to period M = 5. The control of these periodic
orbits is illustrated in Fig. 3(b), where a identical
procedure as for Fig. 2(b) has been employed. Now
the time to achieve control depends on the partic-
ular orbit counsidered, but the same considerations

apply.

3. Conclusions

In summary, we have shown that chaotic dynam-
ics in impact oscillators can be converted, by us-
ing only small parameter perturbations, to motion
on a desired periodic orbit with a given sequence
of impacts. More specifically, it is possible to con-
trol chaotic impacts on the hard wall for the system
shown in Fig. 1 by adjusting slightly the parame-
ter related to the external force. It is also possible
to switch the asymptotic behavior from one periodic
orbit to another according to some performance cri-
terion. These results could be of interest in techno-

logical applications.
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