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Abstract

When Lie-group integrators such as those based on the Magnus expansion are applied to linear systems of ODEs, it is necessary
to evaluate matrix exponentials. This leads to a reduction in their computational efficiency when the dimension of the matrix is
very large. For quadratic Lie groups it is possible to approximate the matrix exponential by a rational function and still preserve
the Lie-group structure, but this is no longer true in the important case of the special linear group. In this paper we propose a new
class of integration algorithms especially designed to avoid this problem. They are based on expressing the solution as a product of
upper and lower triangular matrices obtained explicitly in terms of quadratures. We analyse the main features of the procedure and
its feasibility as a practical numerical method.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In spite of its apparent simplicity, except for special situations, the general linear matrix differential equation:

Y ′ = A(t)Y, t �0, Y (0) = I (1)

has to be solved with numerical integration algorithms. Here A(t) is a sufficiently smooth function to ensure (a) the
existence and unicity of a solution matrix Y (t) n × n and (b) the applicability of the discretization methods to be
used. As it is well known, (1) governs the evolution of a great variety of physical systems, from stability analysis to
quantum mechanics. It is worth noticing that if A(t) belongs to a Lie algebra g, then the exact solution Y (t) evolves
in the corresponding Lie group G. For instance, in Hamiltonian dynamics G ≡ Sp(n), whereas in quantum mechanics
G ≡ SU(n). Since this is a remarkable feature of the exact solution, it seems convenient that the discretization algorithms
provide approximate solutions also evolving in G. These so-called Lie-group methods [10] constitute a special class of
geometric numerical integrators: discretization methods for differential equations preserving their known qualitative
features, such as invariant quantities and geometric structure. It is widely recognized that this class of algorithms provide
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numerical approximations which are more accurate and more stable for significant classes of differential equations in
the long term evolution [7].

Two possible (and successful) alternatives to get approximate solutions of Eq. (1) lying in G are the Magnus and Fer
expansions. In the Magnus expansion the flow is represented in the form [12,11]

Y (t) = exp(�(t)),

where � is obtained as an infinite series, �(t) = ∑∞
k=1 �k(t), whose terms are linear combinations of integrals and

nested commutators involving the matrix A at different times. The first terms read explicitly:

�1(t) =
∫ t

0
A(t1) dt1, �2(t) = 1

2

∫ t

0
dt1

∫ t1

0
dt2[A(t1), A(t2)],

where [X, Y ] ≡ XY − YX. The second approach was introduced by Fer [6] and subsequently proposed (as an
exercise!) by Bellman [1, p. 204]. Basically, it states that the solution of (1) can be put in the form

Y (t) = eP eP1 · · · ePn · · · ,

where P = ∫ t

0 A(s) ds, and Pn = ∫ t

0 Qn ds, with

Qn = e−Pn−1Qn−1ePn−1 +
∫ −1

0
esP n−1Qn−1e−sP n−1 ds

(Q0 ≡ A). The infinite product converges if t is sufficiently small [6,2].
Although both expansions originated within a non-numerical context, in recent years several numerical integrators

based on them have been proposed. In particular, methods of order 4, 6 and 8 have been constructed requiring the
minimum number of commutators and function evaluations. As a result, the new schemes have proved to be highly
competitive with other, more conventional integrators with respect to accuracy and computational effort [3,4]. This is so
even when one or several matrix exponentials have to be computed (or consistently approximated) at each integration
step.

The problem of calculating matrix exponentials has a long tradition in numerical analysis and several procedures
are available in the general setting [13]: rational approximants, Krylov-subspace methods, Schur decomposition, etc.
For Lie-group methods, however, it is crucial that the approximation used maps the Lie algebra g to the Lie group G.
This can be achieved, of course, if the exponential is computed to machine accuracy, but the procedure is expensive
for large n and the result is subject to fast error accumulation.

Another possibility consists in approximating exp(z) by a function R(z) differentiable in a neighborhood of z = 0
such that ez = R(z) + O(hp+1), where p�1 is the order of the Lie-group method and R(g) ⊆ G. This is the case, for
instance, of diagonal Padé approximants and the Cayley transform for quadratic Lie groups such as the orthogonal, the
symplectic and the Lorentz groups [10].

There are cases, however, when the approximation of exp(z) by any such function R(z) does not belong to G and
thus the overall method does not preserve the Lie-group structure. This occurs, in particular, when G = SL(n), the
special linear group [5], linked in a natural way to systems which preserve volume along their evolution [7].

In this paper we present a procedure to build new numerical integrators for Eq. (1) which do not require the
computation of matrix exponentials and nevertheless preserve the structure of the Lie group SL(n) when tr(A)=0. The
approximate solution is constructed as an infinite product of upper and lower triangular matrices obtained explicitly
as solutions of certain linear differential equations in terms of quadratures. The procedure is iterative, but only a few
iterations are required to attain methods of extremely high orders. To illustrate the technique, a fourth-order integrator
is built and tested on a numerical example. Also a possible generalization to nonlinear systems is considered.

2. The procedure

In the linear system Y ′ = A(t)Y , let us denote Y0 ≡ Y , A0 ≡ A, and split the coefficient matrix as

A0(t) = A0+(t) + A0−(t),
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where A0+ ∈ %n is strictly upper-triangular (i.e., all the elements in the main diagonal and below are zero) and
A0− ∈ �̃n is weakly lower-triangular. We represent

Y0(t) = L0(t)Z(t),

where

L′
0 = A0−(t)L0, L0(0) = I .

In consequence, L0(t) is also lower-triangular and

Z′ = C0(t)Z, Z(0) = I where C0(t) = L−1
0 (t)A0+(t)L0(t).

Further, we represent

Z(t) = U0(t)Y1(t), hence Y0(t) = L0(t)U0(t)Y1(t),

with

U ′
0 = C0+(t)U0, U0(0) = I . (2)

Here C0+ ∈ %̃n is the weakly upper-triangular part of C0, so that U0(t) is also upper-triangular and can be obtained
by solving (2). Now it is easy to show that Y1 satisfies

Y ′
1 = A1(t)Y1, Y1(0) = I ,

with

A1(t) = U−1
0 (t)C0−(t)U0(t).

This gives a single step of the solvable cycle, which can be repeated with Y1 and A1. Thus we split

A1 = A1+ + A1− , A1+ ∈ %n, A1− ∈ �̃n

and write Y1 = L1U1Y2 with L′
1 = A1−L1, L1(0) = I and so on. In the end one has the following factorization:

Y (t) ≡ Y0(t) = L0(t)U0(t)L1(t)U1(t) · · · Lk(t)Uk(t)Yk+1(t), k = 0, 1, 2, . . . (3)

with

Ak = Ak+ + Ak− , Ak+ ∈ %n, Ak− ∈ �̃n,

L′
k = Ak−Lk, Lk(0) = I ,

Ck ≡ L−1
k Ak+Lk = Ck+ + Ck− , Ck+ ∈ %̃n, Ck− ∈ �n,

U ′
k = Ck+Uk, Uk(0) = I ,

Ak+1 ≡ U−1
k Ck−Uk, Y ′

k+1 = Ak+1Yk+1, k = 0, 1, 2, . . . . (4)

Usually the factorization is truncated by taking Yk+1 = I for a given k.
In the sequel we analyse some of the features of this algorithm. To begin with, let us introduce a parameter � > 0 in

the matrix A, a common practice in perturbation theory, and consider a Taylor expansion around t = 0,

A(t) = �
∞∑
i=0

ait
i .

When this series is inserted in (4), a straightforward calculation shows that

L0(t) = I + �t�(0)
1 + 1

2 �t2�(0)
2 + · · · ,
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where �(0)
j is the weakly-triangular part of aj−1, j �1. Then, by computing the product L−1

0 A0+L0 and collecting
powers of �, t we get

C0+(t) = ��(0)
1 + t (��(0)

2 + �2�(0)
3 ) + · · · ,

C0−(t) = t�2�(0)
1 + t2(�2�(0)

2 + �3�(0)
3 ) + · · ·

for certain coefficients �(0)
j , �(0)

j depending on ai , and thus

U0(t) = I + �t�(0)
1 + t2(��(0)

2 + �2�(0)
3 ) + · · · ,

with �(0)
1 = a0 − �(0)

1 . Next we compute A1 = A1+ + A1− as

A1−(t) = t�2�(1)
1 + t2(�2�(1)

2 + �3�(1)
3 ) + · · · ,

A1+(t) = t2�3�(1)
1 + t3(�3�(1)

2 + �4�(1)
3 ) + · · · ,

where, in particular, �(1)
j = �(0)

j , j = 1, 2, 3. Proceeding by induction we have, in general,

Aj− = tnj �nj (��(j)

1 + t (��(j)

2 + �2�(j)

3 ) + O(t2)),

Aj+ = tmj �mj (��(j)

1 + t (��(j)

2 + �2�(j)

3 ) + O(t2)). (5)

By inserting (5) again in the algorithm (4) and repeating the above procedure for the jth solvable cycle one obtains

Lj (t) = I + 1

nj + 1
(t�)nj +1�(j)

1 + 1

nj + 2
tnj +2�nj (��(j)

2 + �2�(j)

3 ) + · · · ,

Uj(t) = I + 1

mj + 1
(t�)mj +1�(j)

1 + 1

mj + 2
tmj +2�mj (��(j)

2 + �2�(j)

3 ) + · · · (6)

and expressions of type (5) for A(j+1)−(t) and A(j+1)+(t), but now with

nj+1 = nj + mj + 1,

mj+1 = nj + 2mj + 2,
j = 1, 2, . . . . (7)

The first values of nj and mj are collected in the following table:

j 1 2 3 4 5

nj 1 4 12 33 88
mj 2 7 20 54 143

From the table and expressions (6) it is clear that truncating the factorization (3) at k=0 (Y1 =I ) provides a first-order
approximation in t, whereas at k = 1 one has

Y (t) = L0(t)U0(t)L1(t)U1(t) + O(t5�5). (8)

Analogously,

Y (t) ≈ L0U0L1U1L2 provides an approximation of order 7,

Y (t) ≈ L0U0L1U1L2U2 provides an approximation of order 12,

Y (t) ≈ L0U0L1U1L2U2L3 provides an approximation of order 20,

Y (t) ≈ L0U0L1U1L2U2L3U3 provides an approximation of order 33

so that with only four solvable cycles we can construct an approximate solution correct up to order 33 in time. These
results also show that algorithm (3)–(4) is particularly suitable for systems of the form Y ′ = (B0 + �B1)Y when the
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equation U ′ =B0U can be solved exactly. In that case the solution can be factorized as Y =UV with V ′ = �U−1B1UV

and the previous considerations apply to this last equation.
On the other hand, the behaviour of the procedure with respect to the preservation of the Lie-group structure is

described by the following theorem:

Theorem 1. If the coefficient matrix A(t) in Y ′ = A(t)Y belongs to sl(n), the Lie algebra of traceless n × n matrices,
then algorithm (3)–(4) provides by construction approximate solutions Y [k](t) in the corresponding Lie group SL(n).

Proof. Proceeding by induction, it is sufficient to analyse the kth step in the algorithm (k�0). Let us split Ak into
its strictly upper-triangular part Ak+ ∈ %n and its weakly lower-triangular part Ak− ∈ �̃n. Then Ak− belongs to (a
solvable subalgebra of) sl(n), since Ak is traceless. Therefore the solution Lk(t) of the initial value problem L′

k=Ak−Lk ,
Lk(0)= I , which can be explicitly obtained, lies in (a solvable subgroup of) SL(n). Next, observe that tr(Ak+)= 0 and
the trace is invariant under a similarity transformation, so that

tr(Ck) = tr(L−1
k Ak+Lk) = tr(Ak+) = 0

and thus Ck ∈ sl(n). Now this matrix is split as Ck =Ck+ +Ck− , with Ck+ ∈ %̃n and Ck− ∈ �n. By applying the same
argument as before, it is clear that the solution Uk of the initial value problem U ′

k = Ck+Uk , Uk(0) = I , also belongs
to SL(n) and Ak+1 = U−1

k Ck−Uk ∈ sl(n). �

In consequence, the factorization (3) constitutes an example of a volume preserving algorithm for linear problems.
Other properties, such as orthogonality, symplecticity, etc. associated with matrix Lie groups different from SL(n) are
preserved only up to the order of approximation of the scheme.

To establish rigorously the convergence of the procedure one should require that, in some appropriate norm,
‖Lk+1Uk+1‖ → 1 as k → ∞ in (3). In other words, one should look for conditions to be satisfied by the coeffi-
cient matrix A such that Ak+1 → 0 as k → ∞. But

‖Ak+1‖ = ‖U−1
k Ck−Uk‖�‖U−1

k ‖‖Ck−‖‖Uk‖��(Uk)‖Ck‖,

where �(U) denotes the condition number of the matrix U. By proceeding similarly from Ck , one gets

‖Ak+1‖��(Uk)�(Lk)‖Ak‖

and it is not obvious at all how to get useful bounds on A which guarantees convergence from this class of inequalities,
so it constitutes an open problem at this stage.

3. Construction of numerical integrators

Of course, a prerequisite to build numerical schemes from algorithm (3)–(4) is to compute the matrices Lk(t) and
Uk(t), k�0 by solving the corresponding differential equations.

To simplify matters, let us take in particular k = 0 and denote by aij (t) the elements of A0, i, j = 1, . . . , n, by Lij (t)

the elements of L0(t), j � i, and finally

Aii(t) ≡
∫ t

0
aii(s) ds.

The lower-triangular matrix L0(t) can be obtained by integrating in sequence the equation L′
0 = A0−(t)L0, arriving at

Lij (t) = eAii (t)

⎡
⎣�ij + (1 − �ij )

∫ t

0
e−Aii (s)

⎛
⎝ i−1∑

k=j

aik(s)Lkj (s)

⎞
⎠ ds

⎤
⎦ , (9)
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for i = 1, . . . , n and j = 1, . . . , i. The initial value problem U ′
0 =C0+(t)U0, U0(0)= I , can be treated in a similar way.

Thus, by denoting

C0(t) = (cij ), U0(t) = (Uij ), Cii(t) =
∫ t

0
cii(s) ds, (10)

a straightforward calculation shows that

Uij (t) = eCii (t)

⎡
⎣�ij + (1 − �ij )

∫ t

0
e−Cii (s)

⎛
⎝ j∑

k=i+1

cik(s)Ukj (s)

⎞
⎠ ds,

⎤
⎦ (11)

for i = 1, . . . , n and j = i, . . . , n. Eqs. (9) and (11) can now be used to calculate the elements of L0 and U0 in terms
of multivariate integrals and, by a trivial extension, all Lk and Uk . For each value of i we compute first Lii and then,
starting with i = 2, the elements Lij for j = 1, . . . , i − 1 in increasing order. A similar argument applies to U0, but
now starting with the last row and proceeding in decreasing order: we evaluate first the diagonal elements Uii and then,
starting with i = n − 1, Uij for j = i + 1, . . . , n. Observe that the process is independent and, in fact, it could be
amenable for parallel implementation in a computer.

Typically, only in very special circumstances it will be possible to obtain analytical expressions for Lk and Uk .
Otherwise, the integrals appearing in (9) and (11) have to be approximated by quadratures. To get efficient integrators
this has to be done by using as few evaluations of the matrix A per time step as possible.

In the sequel we illustrate the main issues involved in the process by constructing an integrator of order four requiring
only two A evaluations per step.

According to (8), for attaining a fourth-order approximation we need two solvable cycles. The first one is fully
determined by adopting the following computation scheme:

(1) First we approximate Aii(h), i = 1, . . . , n, up to order 4. This can be done, for instance, with Simpson’s rule,

Aii(h) =
∫ h

0
aii(t) dt = h

6
(aii(0) + 4aii(h/2) + aii(h)) + O(h5)

≡ Ãii(h) + O(h5). (12)

We also need to approximate Aii(h/2), i = 1, . . . , n − 1, at least up to order 3 to compute Lij . The same function
evaluations can be used if we take

Aii(h/2) = h

24
(5aii(0) + 8aii(h/2) − aii(h)) + O(h4)

≡ Ãii(h/2) + O(h4). (13)

(2) The computation of L0 proceeds as follows. First we determine the main diagonal elements:

Lii(h) = exp(Ãii(h)) + O(h5), i = 1, . . . , n,

Lii(h/2) = exp(Ãii(h/2)) + O(h4), i = 1, . . . , n − 1 (14)

and then the corresponding approximations to Lij (h) and Lij (h/2), j < i. From (9),

Lij (h) = eAii (h)

∫ h

0
Fij (t) dt with Fij (t) ≡ e−Aii (t)

i−1∑
k=j

aik(t)Lkj (t),

so that

Lij (h) = eÃii (h) h

6
(aij (0) + 4Fij (h/2) + Fij (h)) + O(h5),

Lij (h/2) = eÃii (h/2) h

24
(5aij (0) + 8Fij (h/2) − Fij (h)) + O(h4), (15)

where Fij (h/2) and Fij (h) have to be determined up to order h3.
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(3) Now the matrix C0 can be approximated at the quadrature nodes as

C0(0) = A0+(0),

C0(h/2) = L−1
0 (h/2)A0+(h/2)L0(h/2) with error O(h4),

C0(h) = L−1
0 (h)A0+(h)L0(h) with error O(h5).

(4) Just as in Step (1), we approximate now Cii(h) and Cii(h/2) in (10) up to order 4 and 3, respectively, by

C̃ii (h) = h

6
(cii(0) + 4cii(h/2) + cii(h)),

C̃ii (h/2) = h

24
(5cii(0) + 8cii(h/2) − cii(h)).

(5) Next, the integrals in (11) are replaced by quadratures in a similar way as Lij in Step (2) (but now starting with
the nth row). For the diagonal elements we take

Uii(h) = eC̃ii (h) + O(h5), Uii(h/2) = eC̃ii (h/2) + O(h4),

whereas for the remaining ones we have

Uij (h) = eCii (h)

∫ h

0
Gij (t) dt with Gij (t) ≡ e−Cii (t)

j∑
k=i+1

cik(t)Ukj (t),

and thus

Uij (h) = eC̃ii (h) h

6
(cij (0) + 4Gij (h/2) + Gij (h)) + O(h5),

Uij (h/2) = eC̃ii (h/2) h

24
(5cij (0) + 8Gij (h/2) − Gij (h)) + O(h4). (16)

For the second cycle we determine the matrix A1 at the quadrature nodes,

A1(0) = C0−(0),

A1(h/2) = U−1
0 (h/2)C0−(h/2)U0(h/2) with error O(h4),

A1(h) = U−1
0 (h)C0−(h)U0(h) with error O(h5)

and Steps (1)–(5) can be repeated again with A1. Finally, the product Yn+1 =L0U0L1U1Yn is computed to approximate
Y (tn+1 = tn + h). In this way we have shown explicitly that it is possible to construct a method of order 4 with only
two A evaluations (three for the first step).

To assess the amount of computational work of the previous algorithm, it is useful to estimate the number of operations
involved in each step. As is evident, the main contributions come from Steps (2), (3) and (5) of each solvable cycle, as
well as the formation of the matrix A1 and the computation of Yn+1.

The calculation of Lij (h/2) requires a total of 2(i − j) + 5 operations, whereas 2(i − j) + 4 are needed for Lij (h).
Thus the total number of operations involved in the computation of L0(h/2) and L0(h) is

n∑
i=2

i−1∑
j=1

(4i − 4j + 9) = 1

6
n(n − 1)(4n + 31),

i.e., for moderately large values of n, about (2/3)n3 + (9/2)n2 operations (counting the exponential as just one
operation). A similar estimate for U0 allows to conclude that the number is now (2/3)n3 + 13n2, whereas for L1 and
U1 one requires (2/3)n3 + (15/2)n2 and (2/3)n3 + 10n2 operations, respectively.

To accomplish Step (3) we need to compute L−1
0 and several matrix products. Since L0 is triangular, its inverse only

requires (1/3)n(n2 +2) operations, whereas the calculation of C0 can be arranged in such a way that (5/3)n3 + (1/3)n

operations are needed. The same considerations apply also to A1.
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Finally, taking into account that the product L0U0 involve (2/3)n3 + (1/3)n operations, the computation of
L0U0L1U1Yn can be done with just (16/3)n3 − 2n2. Adding up all these quantities, one concludes that the total
number of operations involved in the fourth-order integration algorithm proposed here is approximately 20n3 + 33n2,
ignoring terms of size O(n). For comparison, a fourth-order integrator based on the Magnus expansion implemented in
Matlab requires ≈ 30 − 35n3 floating point operations (if the matrix exponential is evaluated up to machine accuracy).

At this point some additional remarks are in order. Firstly, other quadrature rules could also be used (i.e., Gauss–
Legendre), but then there are not enough nodes, in general, to approximate all the multivariate integrals required to
achieve a given order. In that case it would be necessary to use also matrix evaluations from the previous and next time
steps. This is not the case with Newton–Cotes (NC) rules (although the error introduced might be important when high
orders are considered). Also for highly oscillatory problems other especially tailored quadratures could be used [9].

Secondly, by following a similar strategy as for the fourth-order method, higher order schemes can be designed. For
instance,

Y [6] = L0U0L1U1L2 (17)

provides a sixth-order integrator if the integrals are replaced by a five point NC quadrature rule (requiring four A
evaluations per step). If a seven point NC rule is used instead, the order of (17) is risen to 7. Moreover, just by
completing the third solvable cycle, Y [12] = Y [6]U2, the procedure leads to a 12th-order scheme (with a NC quadrature
rule of 11 points).

Finally, the local extrapolation technique is trivial to implement in this setting, so that the resulting scheme may
incorporate an automatic step size selection device. For instance, if we choose

Y1 ≡ L0U0L1, Ŷ1 ≡ L0U0L1U1 = Y1U1,

then

‖Ŷ1 − Y1‖ = ‖Y1U1 − Y1‖ = ‖Y1(U1 − I )‖
can be used for the purpose of step size selection when the integration is continued with the fourth-order approximation
Ŷ1 [8, p. 167].

Next, in order to illustrate the main features of the algorithm proposed and the practical efficiency of the fourth-
order integrator previously constructed, we consider a particular linear system (1) evolving in SL(n) and obtain the
corresponding efficiency diagram. Specifically, the elements of the proposed (symmetric) matrix A(t) are

Aij = sin[t (i2 − j2)], 1� i�j �n (18)

and Aji = Aij , with n = 10. Observe that Aii = 0 and thus tr(A) = 0.
The integration is carried out with constant time step h in the interval t ∈ [0, 10] and the approximate solutions are

compared with the exact one at the final time tf =10. There the corresponding error is determined for different values of
h by computing the Frobenius norm of the difference. The error is then represented as a function of the computational
effort measured in terms of the number of floating point operations required. For comparison we also include the result
obtained with the following fourth-order integrator based on the Magnus expansion [11]:

A0 = hA(tn), A1 = hA(tn + h/2), A2 = hA(tn + h),

�[4](h) = 1
6 (A0 + 4A1 + A2) − 1

12 [A0, A2],
Yn+1 = exp(�[4](h))Yn. (19)

The computation is done in Matlab 5.3 and the function expm is used to evaluate the matrix exponential exp(�[4](h)).
The number of operations is measured with the in-built function flops and also the previous estimate for the new
method. The corresponding efficiency diagrams are plotted (in a log-log scale) in Fig. 1. Lines marked with + are
obtained by the new integrator proposed here when (a) the number of operations is determined directly by flops
(broken line) and (b) by our estimate of 20n3 + 33n2 operations per step (solid line), whereas the solid line with circles
corresponds to method (19).
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Fig. 1. Efficiency diagram (in logarithmic scale) obtained with the fourth-order integrator based on Magnus (solid line with circles) and the new
algorithm (3) based on solvability and splitting when the computational effort is measured with flops (broken line with +) and with the estimate
20n3 + 33n2 (solid line with +).

Observe that, even with a direct implementation of the procedure in Matlab (i.e., generic matrices are considered) the
new scheme is slightly more efficient than the fourth-order scheme based on Magnus (which corresponds in practice
to an estimate of 23n3 operations per step for this particular example). The improvement is more noticeable when
the structure of triangular matrices is fully exploited to evaluate the matrix inversions and products involved in the
algorithm.

4. Generalization to nonlinear systems

As a matter of fact, the procedure developed in Section 2 can be generalized to the nonlinear equation

Y ′ = A(t, Y )Y, Y (0) = Y0 ∈ GL(n) (20)

in such a way that it possesses essentially the same features and also reproduces the linear case. For simplicity we take
Y0 = I and analyse only the first cycle. The starting point is to build a matrix function A− in a solvable Lie algebra
such that the system

L′
0 = A−(t, L0)L0, L0(0) = I (21)

can be integrated exactly. In other words, up to an isomorphism, A− will be lower-triangular, with the following pattern
of dependence upon the elements of L0. Let us denote the rows of L0 by

l�1 , l�2 , . . . , l�n ,
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and use a similar notation for the rows of A− (a�
i ) and I (i�i ). In addition, let us introduce the matrices

Cm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

l�1
...

l�m−1
i�m
...

i�n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, m = 1, 2, . . . , n. (22)

Observe that C1 = Y (0) = I . Now we let

a�
1 (t, L0) = [a11(t, C1), 0, . . . , 0]

and thus l�′
1 = a11(t, C1)l�1 , which is solvable by quadrature. Next we choose

a�
2 (t, L0) = [a21(t, C2), a22(t, C2), 0, . . . , 0],

rendering

l�′
2 = a21(t, C2)l�1 + a22(t, C2)l�2

solvable. In general, we let

a�
m = [am1(t, Cm), am2(t, Cm), . . . , amm(t, Cm), 0, . . . , 0], m = 1, 2, . . . , n. (23)

In this way A− is lower-triangular and Eq. (21) is solvable by quadrature, thus obtaining explicitly L0(t). Next we set

Y (t) = L0(t)Z(t), (24)

where it follows that

Z′ = L−1
0 [A(t, L0Z) − A−(t, L0)]L0Z, Z(0) = I . (25)

From the previous construction, the matrix elements of A(t, L0Z) − A−(t, L0) are

amj (t, L0Z) − amj (t, Cm), 1�j �m,

amj (t, L0Z), m + 1�j �n (26)

and m = 1, . . . , n. Eq. (25) can be written as

Z′ = C0(t, Z)Z, Z(0) = I where C0(t, Z) ≡ L−1
0 (A − A−)L0

and a similar procedure can be applied to solve it. Thus we represent Z(t) = U0(t)Y1(t), where

U ′
0 = C0+(t)U0, U0(0) = I . (27)

As before, C0+ and U0 are constructed simultaneously with the help of the matrices

Dm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

i�1
...

i�n−(m−1)

u�
n−m+2

...

u�
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, m = 1, 2, . . . , n.



812 F. Casas / Journal of Computational and Applied Mathematics 205 (2007) 802–813

Here u�
1 , . . . , u�

n denote the rows of U0 and the elements of the matrix C0+ are taken as

c�
m(t, U0) = [0, 0, . . . , cmm(t, Dn−m+1), cm,m+1(t, Dn−m+1), . . . , cmn(t, Dn−m+1)],

m=1, 2, . . . , n, where cij are the elements of C0. Observe that C0+ is an upper-triangular matrix, so that (27) is solved
by quadrature. The equation satisfied by Y1 is finally

Y ′
1 = U−1

0 (C0 − C0+)U0Y1 ≡ A1(t, Y1)Y1, Y1(0) = I (28)

and the process can be repeated again. Notice that this procedure reduces to that presented in Section 2 when (20) is a
linear equation.

5. Final comments

We have presented a new family of integration schemes for the linear differential equation (1) which provide
approximate solutions as a product of upper and lower triangular matrices written in terms of multivariate integrals.
They do not require the computation of matrix exponentials and nevertheless the approximations obtained evolve in
SL(n) when the trace of the coefficient matrix A(t) vanishes. In this sense they can be considered as a new class of
volume-preserving integrators for any dimension n.

Although their implementation is not trivial, especially for high orders, it should be stressed that these methods only
need to replace the multivariate integrals appearing in the algorithm by conveniently chosen quadrature rules. In this
work we have considered Newton–Cotes rules, but other options are perfectly valid.

The new schemes are particularly appropriate to carry out numerical integrations in the Lie group SL(n) when the
dimension n is very large. In that case they are likely to be more efficient than other classes of Lie-group methods
such as those based on Magnus and Fer expansions. Also when the matrix A(t) contains a perturbation parameter � the
approximate solutions obtained with a few solvable cycles differ from the exact one only in very high powers of �.

A possible generalization to nonlinear equations of the form Y ′ = A(t, Y )Y has been also proposed. The treatment
is certainly more involved, but it embraces in a natural way the linear case and might constitute a novel approach for
the numerical integration of nonlinear problems in SL(n).

The algorithm exposed here can equally be applied to autonomous linear systems. In that situation it might constitute
a novel procedure for approximating the matrix exponential eAt .
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