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Abstract. For systems of the form \.q=M - 1p, \.p= - Aq+f(q), common in many applications, we
analyze splitting integrators based on the (linear/nonlinear) split systems \.q = M - 1p, \.p =  - Aq and
\.q = 0, \.p= f(q). We show that the well-known Strang splitting is optimally stable in the sense that,
when applied to a relevant model problem, it has a larger stability region than alternative integrators.
This generalizes a well-known property of the common St\"ormer/Verlet/leapfrog algorithm, which of
course arises from Strang splitting based on the (kinetic/potential) split systems \.q = M - 1p, \.p = 0
and \.q= 0, \.p= - Aq+ f(q).
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1. Introduction. We are concerned with numerical integrators for second-order
systems in \BbbR d

M \"q= - Aq+ f(q),(1.1)

where M and A are constant d\times d matrices (M invertible), or equivalently for first-
order systems in \BbbR 2d

\.q=M - 1p, \.p= - Aq+ f(q).

Our aim is to prove that the Strang splitting integrator [32] based on the (lin-
ear/nonlinear) split systems

\.q=M - 1p, \.p= - Aq(1.2)

and

\.q= 0, \.p= f(q)(1.3)

possesses an optimal stability property.
The format (1.1) is a particular instance of the system

M \"q= g(q)(1.4)
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1370 F. CASAS, J. M. SANZ-SERNA, AND L. SHAW

that appears very frequently in many applications. The best-known integrator for
(1.4) is perhaps the St\"ormer/leapfrog/Verlet algorithm [20]. In its Verlet formulation,
the integrator is constructed by applying Strang's splitting to the first-order system

\.q=M - 1p, \.p= g(q),

with the (kinetic/potential) split systems

\.q=M - 1p, \.p= 0,(1.5)

and

\.q= 0, \.p= g(q).(1.6)

More precisely, let us denote by \varphi 
[D]
t the solution flow of (1.5), t\in \BbbR ,

\varphi 
[D]
t (q, p) = (q+ tM - 1p, p),

and by \varphi 
[K]
t the solution flow of (1.6),

\varphi 
[K]
t (q, p) = (q, p+ tg(q));

then a timestep of length h> 0 of the position Verlet algorithm is given by the map

\psi 
[pos]
h =\varphi 

[D]
h/2 \circ \varphi 

[K]
h \circ \varphi [D]

h/2

and a step of the velocity Verlet algorithm is defined by the map

\psi 
[vel]
h =\varphi 

[K]
h/2 \circ \varphi 

[D]
h \circ \varphi [K]

h/2,

where the roles of \varphi [D] and \varphi [K] have been swapped. The labels D and K we have
used correspond to the words drift and kick , commonly used in molecular dynamics
to refer to \varphi [D] and \varphi [K], respectively [18].

In spite of its simplicity, the Verlet integrator is the method of choice in many
applications [24]. One of the advantages of the (position or velocity) Verlet integrator
is that it possesses, among a wide class of explicit integrators, an optimal stability
interval [22, 16, 30, 10]. In fact, Verlet strictly maximizes the scaled length of the
stability interval, i.e., the quotient \Lambda /m, where \Lambda is the length of the stability interval
and m the number of evaluations of g per step. In other words, for any explicit
competitor integrator using m evaluations per step, there are values of h such that
Verlet integrations with steplength h are stable while the (equally costly) integrations
of the competitor with steplengthmh are unstable. In short, the Verlet algorithm may
be operated with longer (scaled) timesteps than any of its explicit competitors; this
makes it appealing in applications, including molecular dynamics, where integrations
are performed with values of h close to the stability limit because high accuracy is
either not required or impossible to achieve due to the complexity of the problem (for
instance in cases where g is very expensive to evaluate).

When, in (1.4), g takes the particular form g(q) = - Aq+f(q) as in (1.1), instead of
splitting the given system as (1.5)--(1.6), it may be advantageous to split as (1.2)--(1.3)
and consider the Strang integrators RKR and KRK

\psi 
[RKR]
h =\varphi 

[R]
h/2 \circ \varphi 

[K]
h \circ \varphi [R]

h/2(1.7)

and
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A NEW OPTIMALITY PROPERTY OF STRANG'S SPLITTING 1371

\psi 
[KRK]
h =\varphi 

[K]
h/2 \circ \varphi 

[R]
h \circ \varphi [K]

h/2,(1.8)

where \varphi 
[R]
t and \varphi 

[K]
t denote, respectively, the solution flows of the systems (1.2) and

(1.3). (Of course, kicks are now based on f rather than on g.) We use the identifier
R from rotation because in typical applications the matrices M and A are symmetric
and positive definite and then the solution map\biggl[ 

q
p

\biggr] 
\mapsto \rightarrow exp

\biggl( 
t

\biggl[ 
0 M - 1

 - A 0

\biggr] \biggr) \biggl[ 
q
p

\biggr] 
of (1.2) describes, after a suitable linear change of variables, d rotations in the (two-
dimensional) planes (qi, pi), i= 1, . . . , d, where qi and pi are the scalar components of q
and p. The splitting (1.2)--(1.3) is particularly appealing when, in g(q) = - Aq+f(q),
f(q) is a small perturbation of  - Aq: RKR, KRK, and other splitting algorithms
using sequences of rotations and kicks are exact if the perturbation vanishes. The
main contribution of this paper is to show that, as is the case for the velocity and
position Verlet integrators, the RKR and KRK integrators (1.7)--(1.8) possess an
optimal stability property. Roughly speaking, we show that for a model test problem,
for each given steplength, RKR and KRK remain stable for larger perturbations f
than any other rotation/kick splitting integrator (see section 3 for a precise statement).

Motivation. Our interest in problems of the form (1.1) originated when studying
integrators for the Hamiltonian Monte Carlo (HMC) method, a sampling technique
widely used in statistics and statistical physics [26, 28]. The bulk of the computational
effort in HMC is in integrating systems of the form (1.4) where g(q) is the negative
gradient of the logarithm of the target probability density function andM is a positive-
definite symmetric matrix chosen by the user . Therefore devising suitable efficient
integrators is of key importance to HMC [8, 10]. In many situations of interest [31],
the target density is a perturbation of a Gaussian density, and then g(q) = - Aq+f(q)
with A the symmetric positive-definite precision matrix of the Gaussian distribution
and f(q) a perturbation. As shown in [15], it is then very advantageous to choose
M =A, and then (1.1) becomes

\"q= - q+ \=f(q), \=f(q) =A - 1f(q).(1.9)

It is also shown in [15] that to integrate (1.1) or (1.9) the Strang splitting is far more
efficient when applied to (1.2)--(1.3) than when applied to the kinetic/potential split-
ting (1.5)--(1.6). This suggests the investigation of rotation/kick splitting algorithms
for (1.1) or (1.9). Furthermore, for reasons detailed in [5, 4], as a rule, integrations of
(1.9) within HMC simulations are best carried out with values of h close to the stabil-
ity limit of the integrator. Therefore it is of clear interest to identify the rotation/kick
splitting integrators with an optimal stability interval. In fact the motivation for the
present research originated when our multiple attempts to construct integrators that
improved on KRK or RKR failed [15].

Exponential integrators [21] are a well-known class of algorithms that, as splitting
methods, exploit the structure of (1.1) or (1.9). However, they are not relevant to
HMC applications where symplecticness and time-reversibility are essential [10].

Contents. The article has five sections. Section 2 contains preliminary material.
The main optimality result is presented and proved in section 3. Section 4 provides
complementary results to compare the size of the stability regions of the Strang split-
ting algorithms and some possible competitors. The final section contains a technical
proposition.
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1372 F. CASAS, J. M. SANZ-SERNA, AND L. SHAW

2. Preliminaries. In this section we present a number of facts that are required
to formulate and prove the main result presented in the next section.

2.1. Splitting integrators. The importance of splitting integrators in different
applications has increased substantially in recent decades [6], often in connection
with preservation of geometric properties, such as symplecticness [29]. Of course,
the RKR and KRK methods (1.7) and (1.8) are not the only splitting algorithms to
integrate (1.1) with the help of the split systems (1.2) and (1.3). One may considerm-
stage integrators by interleaving rotations and kicks, beginning with either R or K as
follows:

\psi h =\varphi 
[R]
rm+1h

\circ \varphi [K]
kmh \circ \varphi [R]

rmh \circ \cdot \cdot \cdot \circ \varphi [K]
k1h

\circ \varphi [R]
r1h
,

\psi h =\varphi 
[K]
km+1h

\circ \varphi [R]
rmh \circ \varphi [K]

kmh \circ \cdot \cdot \cdot \circ \varphi [R]
r1h

\circ \varphi [K]
k1h

.(2.1)

We always assume the consistency requirements
\sum 

i ri = 1 and
\sum 

i ki = 1. Some
of the coefficients ri or ki are allowed to vanish, as this simplifies the presentation.
Note that the first format in (2.1) uses (at most) m kicks and therefore (at most) \leq m
evaluations of f per step; the second format uses \leq m+ 1 kicks, but if km+1 \not = 0 and
k1 \not = 0, the value of f at the last kick of the current timestep may be used to perform
the first kick of the next timestep and also requires essentially \leq m evaluations of f
per timestep.

IfM and A are symmetric and positive definite and f(q) = - \nabla V (q) for a suitable
scalar function V , then (1.1) is equivalent to the Hamiltonian system with Hamiltonian
function (1/2)pTM - 1p+ (1/2)qTAq + V (q). In this case the split systems (1.2) and

(1.3) are also Hamiltonian and therefore \varphi 
[R]
t and \varphi 

[K]
t are, for each t\in \BbbR , symplectic

maps as flows of Hamiltonian systems. It follows that the splitting integrators in (2.1)
will be symplectic, as is required in HMC applications [10].

It is often the case that the coefficients ri, ki in (2.1) are chosen palindromically ,
i.e., for compositions starting with R, rm+2 - i = ri, i= 1, . . . ,m+1, and km+1 - j = kj ,
j = 1, . . . ,m, and similarly for compositions starting with K. RKR and KRK are both
palindromic. Palindromic splitting integrators have at least second order of accuracy
and, in addition, are time-reversible, as required in HMC applications [10].

2.2. Conjugate integrators. Given two integrators \psi h and \=\psi h of the form
(2.1), we say that they are conjugate if there is an invertible map \chi h such that

\=\psi h = \chi h \circ \psi h \circ \chi  - 1
h .

This notion goes back to Butcher's algebraic theory of Runge--Kutta methods [11,
12, 13]. The n-fold composition map \=\psi n

h used to advance n steps with method \=\psi h

may be written as

\=\psi n
h = (\chi h \circ \psi h \circ \chi  - 1

h ) \circ (\chi h \circ \psi h \circ \chi  - 1
h ) \circ \cdot \cdot \cdot \circ (\chi h \circ \psi h \circ \chi  - 1

h ) = \chi h \circ \psi n
h \circ \chi  - 1

h ,

and therefore to advance n steps with method \=\psi h one may (i) apply once the map
\chi  - 1
h (preprocessing), (ii) advance n steps with the integrator \psi h, and (iii) apply

once the map \chi h (postprocessing). Butcher was interested in the case where \=\psi h

has an order of consistency higher than \psi h, since then pre-/postprocessing make it
possible to perform high-order integrations with \=\psi h by implementing the low-order
integrator \psi h.

An example of conjugate methods is afforded by the integrators RKR and KRK
with the postprocessor \chi h =\varphi 

[R]
h/2 \circ \varphi 

[K]
h/2:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A NEW OPTIMALITY PROPERTY OF STRANG'S SPLITTING 1373

\psi 
[RKR]
h =\varphi 

[R]
h/2 \circ \varphi 

[K]
h \circ \varphi [R]

h/2

=
\Bigl( 
\varphi 
[R]
h/2 \circ \varphi 

[K]
h/2

\Bigr) 
\circ 
\Bigl( 
\varphi 
[K]
h/2 \circ \varphi 

[R]
h \circ \varphi [K]

h/2

\Bigr) 
\circ 
\Bigl( 
\varphi 
[R]
h/2 \circ \varphi 

[K]
h/2

\Bigr)  - 1

= \chi h \circ \psi [KRK]
h \circ \chi  - 1

h .

One may prove by means of similar manipulations that all (consistent) one-stage

integrators, including the non-palindromic, first-order Lie--Trotter integrators \varphi 
[R]
h \circ 

\varphi 
[K]
h and \varphi 

[K]
h \circ \varphi [R]

h may be conjugated to either RKR or KRK, which are palindromic

and second-order. Clearly, \varphi 
[R]
h \circ \varphi [K]

h is obtained by setting r2 = 1, k1 = 1, r1 = 0 in

the first equality in (2.1); \varphi 
[K]
h \circ \varphi [R]

h results from the choice r2 = 0, k1 = 1, r1 = 1 in
the same equality. Both integrators may also be obtained by using the format in the
second equality in (2.1).

It is proved in [7] that every integrator may be conjugated to a palindromic
integrator.

For each problem (1.1), the numerical trajectory \psi n
h(q, p), n = 0,1,2, . . . , gener-

ated by \psi h with initial condition (q, p) is mapped by \chi h into the trajectory \=\psi n
h(q

\ast , p\ast ),
n = 0,1,2, . . . , with initial condition (q\ast , p\ast ) = \chi h(q, p). For this reason, the long-
time properties of the numerical solutions generated by \psi h and \=\psi h may be expected
to be similar (for instance, bounded/unbounded trajectories of \psi h correspond to
bounded/unbounded trajectories of \=\psi h).

2.3. The model problem. Roughly speaking, a numerical integration with a
given integrator and steplength h is said to be unstable if the numerical solution shows
unphysical growth as the number of computed timesteps increases. In order to make
this notion mathematically precise, it is standard to restrict attention to integrations
performed on an easy-to-analyze model problem chosen in such a way that conclusions
based on the model are relevant when dealing with more general problems.

For (1.4), it is standard to use the model scalar problem \"q =  - \omega 2q, i.e., the
familiar harmonic oscillator. The relevance of this choice of model problem may be
justified as follows. Let us assume, for simplicity, that M , as is the case in most
applications, is symmetric and positive definite (this hypothesis may be relaxed).
Writing M = LLT and introducing new variables \=q = LT q, equation (1.4) becomes
\"\=q=L - 1g(L - T \=q). Furthermore, if g is linear, g(q) = - Aq, then \"\=q= - L - 1AL - T \=q. The
important case, with oscillatory solutions, is that where L - 1AL - T is diagonalizable
with positive eigenvalues (which happens if, in particular, A is symmetric and positive
definite). Then a new change of variables reduces the system to a set of d uncoupled
scalar harmonic oscillators \"q= - \omega 2q (the eigenvalues of L - 1AL - T provide the values
of \omega 2). For this construction to be useful, it is required that the transformations that
diagonalize the system being integrated also diagonalize the integrator, something
that invariably happens for all integrators of practical interest.

In order to identify a suitable model problem for integrators for (1.1), we proceed
similarly. We consider the case where f is linear f(q) = - Bq; the change of variables
\=q = LT q brings the system to the form \"\=q =  - L - 1(A+B)L - T \=q. Under the hypoth-
esis that there is a linear transformation that brings both L - 1AL - T and L - 1BL - T

to diagonal form, after a new change of variables the system is transformed into d
uncoupled scalar equations of the form

\"q= - (\lambda + \mu )q,(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1374 F. CASAS, J. M. SANZ-SERNA, AND L. SHAW

where \lambda and \mu are eigenvalues of L - 1AL - T and L - 1BL - T associated with the same
eigenvector. We are interested in problems with \lambda > 0 and \lambda + \mu > 0 (something
which happens in the important case where A and A+B are symmetric and positive
definite), so that (2.2) corresponds to harmonic oscillators. The analysis of (2.2) is
simplified if we introduce a new time variable t/

\surd 
\lambda , so as to have, after denoting

\varepsilon = \mu /\lambda ,

\"q= - q - \varepsilon q, \varepsilon > - 1.(2.3)

This model problem, which we refer to hereafter as ``the model problem,"" has
appeared, e.g., in [9].

In the particular situation of the system (1.9) arising in the HMC method, the
derivation just outlined of the model (2.3) may be greatly simplified. In fact, if f is
linear, f(u) =  - Bu so that \=f(u) = A - 1Bu, and A - 1B diagonalizes with eigenvalues
\varepsilon >  - 1, then a single change of variables reduces (1.9) to d uncoupled harmonic
oscillators of the form (2.3). In the case where f(u) = - Bu is a small perturbation of
Au, the eigenvalues \varepsilon will actually have small magnitude.

2.4. Integrating the model problem. Stability. For the model problem
(2.3),

\varphi 
[R]
t (q, p) =

\biggl[ 
cos(t) sin(t)
 - sin(t) cos(t)

\biggr] \biggl[ 
q
p

\biggr] 
, \varphi 

[K]
t (q, p) =

\biggl[ 
1 0

 - t\varepsilon 1

\biggr] \biggl[ 
q
p

\biggr] 
,

where we note that both transformations have unit determinant, as each corresponds
to the flow of a Hamiltonian system. By multiplying the matrices that represent the
flows being composed in (2.1), we obtain the matrices representing one step of the
splitting integrator \psi h. In particular for the Strang splittings (1.7) and (1.8), we find
that the matrices that perform a timestep of length h are\biggl[ 

cos(h) - h\varepsilon 
2 sin(h) sin(h) - \varepsilon h sin2

\bigl( 
h
2

\bigr) 
 - sin(h) - \varepsilon h cos2

\bigl( 
h
2

\bigr) 
cos(h) - h\varepsilon 

2 sin(h)

\biggr] 
for \psi 

[RKR]
\varepsilon ,h(2.4)

and \Biggl[ 
cos(h) - h\varepsilon 

2 sin(h) sin(h)

 - \varepsilon h cos(h) - (1 - 
\bigl( 
h\varepsilon 
2

\bigr) 2
) sin(h) cos(h) - h\varepsilon 

2 sin(h)

\Biggr] 
for \psi 

[KRK]
\varepsilon ,h .(2.5)

For the integrators in (2.1), the (real) matrix takes the form

M\varepsilon ,h =

\biggl[ 
A\varepsilon ,h B\varepsilon ,h

C\varepsilon ,h D\varepsilon ,h

\biggr] 
.

The dependence of the coefficients A - D on \varepsilon is polynomial and with m stages A
and D are polynomials of degree \leq m in \varepsilon (this is easily proved by induction). The
dependence on h, on the other hand, involves both powers of h and trigonometric
functions, as illustrated by (2.4) and (2.5). For palindromic compositions, A\varepsilon ,h =D\varepsilon ,h

(see, e.g., [8, 14]).
The matrix M\varepsilon ,h has unit determinant, as it results from multiplying rotations

and kicks of unit determinant. Then its (possibly complex) eigenvalues are inverse
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A NEW OPTIMALITY PROPERTY OF STRANG'S SPLITTING 1375

to one another, \lambda \varepsilon ,h and 1/\lambda \varepsilon ,h, and it is well known that one of the three following
situations obtains:

1. The modulus of the trace A\varepsilon ,h +D\varepsilon ,h = \lambda \varepsilon ,h + 1/\lambda \varepsilon ,h of M\varepsilon ,h is < 2. This
corresponds to two different complex eigenvalues of unit modulus. As n in-
creases, the powers Mn

\varepsilon ,h remain bounded and the integration is stable.
2. The modulus of the trace is = 2. Then there is a double real eigenvalue
\lambda = 1/\lambda \in \{  - 1,1\} . If, in addition, M\varepsilon ,h diagonalizes, then M\varepsilon ,h is either
I (the identity matrix) or  - I, with bounded powers, and the integration is
stable. When M\varepsilon ,h does not diagonalize, its powers grow linearly and the
integration is linearly unstable.

3. The modulus of the trace is > 2. Then there is one real eigenvalue of modulus
> 1, leading to exponential instability .

Cases 1 and 3 above are robust against perturbations, in the sense that if, for a
given integrator, the pair (\varepsilon ,h) is in case 1 (respectively, case 3), all sufficiently close
pairs are also in case 1 (respectively, case 3). Perturbations of case 2, on the contrary,
will generically lead to either case 1 or case 3. The stability region of an integrator is
the set in the (\varepsilon ,h) plane where it is stable.

The semitrace

P (\varepsilon ,h) = (1/2)(A\varepsilon ,h +D\varepsilon ,h) = (1/2)(\lambda \varepsilon ,h + 1/\lambda \varepsilon ,h)

ofM\varepsilon ,h will be called, using a not very precise terminology, the stability polynomial of
the integrator; recall that it is a polynomial in \varepsilon of degree \leq m but its dependence on
h includes trigonometric functions. Exponentially unstable integrations correspond
then to | P (\varepsilon ,h)| > 1.

If the integrators \psi h and \=\psi h are conjugate to each other, then the corresponding
matrices satisfy the similarity condition

\=M\varepsilon ,h = S\varepsilon ,hM\varepsilon ,hS
 - 1
\varepsilon ,h,

where the matrix S\varepsilon ,h corresponds to the postprocessor. As a consequence, \=M\varepsilon ,h and
M\varepsilon ,h share the same pair of eigenvalues \lambda \varepsilon ,h, 1/\lambda \varepsilon ,h and therefore conjugate integrators
share a common stability polynomial. This property is illustrated by the RKR, KRK
pair in (2.4)--(2.5). The property was perhaps to be expected, because it was pointed
out above that for any two conjugate integrators the numerical trajectories of one of
them are mapped by the processor into numerical trajectories of the other.

2.5. A property of the stability polynomial. The following result will be
essential to prove our main result.

Proposition 2.1. For each (consistent) integrator (2.1), the stability polynomial
satisfies

P (\varepsilon ,h) =
1

2
(A\varepsilon ,h +D\varepsilon ,h) = cos(h) - \varepsilon h

2
sin(h) +\scrO (\varepsilon 2), \varepsilon \rightarrow 0.(2.6)

Proof. It is sufficient to consider the R-first format in the first equality in (2.1); a
K-first integrator may be rewritten in the R-first format by adding dummy rotations
of duration 0h at the beginning and end of the step. We introduce the matrices

R=

\biggl[ 
0 1
 - 1 0

\biggr] 
, K =

\biggl[ 
0 0
 - 1 0

\biggr] 
,
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1376 F. CASAS, J. M. SANZ-SERNA, AND L. SHAW

whose exponentials represent the rotation and the kick

exp(tR) =

\biggl[ 
cos(t) sin(t)
 - sin(t) cos(t)

\biggr] 
, exp(tK) = I + tK =

\biggl[ 
1 0
 - t 1

\biggr] 
.

Then the matrix associated with the integrator is

M\varepsilon ,h= exp(hrm+1R)(I+\varepsilon hkmK) exp(hrmR)(I+\varepsilon hkm - 1K)\cdot \cdot \cdot (I+\varepsilon hk1K) exp(hr1R),
(2.7)

which leads to

M\varepsilon ,h = exp(h\theta m+1R) + \varepsilon h

m\sum 
i=1

ki exp(h(1 - \theta i)R)K exp(h\theta iR) +\scrO (\varepsilon 2),

where \theta i =
\sum i

j=1 rj . By consistency, \theta m+1 = 1 and therefore the semitrace of
exp(h\theta m+1R) is cos(h); this gives the term independent of \varepsilon in the stability poly-
nomial, as was to be established in order to prove (2.6). The term of first degree in \varepsilon 
in the last display may be computed as

 - \varepsilon h
m\sum 
i=1

ki

\biggl[ 
sin(h\theta i) cos(h(1 - \theta i)) sin(h\theta i) sin(h(1 - \theta i))
cos(h\theta i) cos(h(1 - \theta i)) cos(h\theta i) sin(h(1 - \theta i))

\biggr] 
.

Thus the coefficient of \varepsilon in the stability polynomial is

 - h
2

m\sum 
i=1

ki

\Bigl( 
sin(h\theta i) cos(h(1 - \theta i))+cos(h\theta i) sin(h(1 - \theta i)

\Bigr) 
= - h

2

m\sum 
i=1

ki sin(h)= - h
2
sin(h),

as was to be proved.

2.6. Stability of the integrators RKR and KRK. We now study the sta-
bility of RKR/KRK with stability polynomial/semitrace (see (2.4)--(2.5)):

P (\varepsilon ,h) = cos(h) - h\varepsilon 

2
sin(h).(2.8)

The conditions P (\varepsilon ,h) = 1 and P (\varepsilon ,h) =  - 1 correspond to \varepsilon = \alpha (h) and \varepsilon = \beta (h),
respectively, with

\alpha (h) = - 2

h
tan

\biggl( 
h

2

\biggr) 
, \beta (h) =

2

h
cot

\biggl( 
h

2

\biggr) 
.(2.9)

If we restrict our attention to 0 < h < \pi , then the condition | P (\varepsilon ,h)| \leq 1 holds if
and only if \varepsilon \in [\alpha (h), \beta (h)]; also, for such values of h, \alpha (h) <  - 1, 0 < \beta (h). When
integrating the model problem (where \varepsilon >  - 1) we have stability for \varepsilon \in ( - 1, \beta (h))
and exponential instability for \varepsilon > \beta (h). The case \varepsilon = \beta (h) yields linear instability.
The function \beta (h) decreases monotonically for h \in (0, \pi ) and therefore increasing h
results in a decrease of the interval (0, \beta (h)) of positive values of \varepsilon leading to a stable
integration. As h \uparrow \pi , we have \beta (h) \downarrow 0 and the interval (0, \beta (h)) approaches the
empty set, and thus there is little interest in considering h \geq \pi when dealing with
RKR and KRK. This coincides with the analysis in [24, section 4.2.1], where it is
shown that h= \pi is unstable for any nonzero \varepsilon .

Since, as pointed out before, all (consistent) one-stage integrators are conjugate to
RKR or KRK, the discussion above also applies to them. In particular, their stability
polynomial is also given by (2.8) (a conclusion that may be reached alternatively from
Proposition 2.1, after taking into account that for m = 1 the stability polynomial is
of first degree in \varepsilon , so that the term \scrO (\varepsilon 2) in (2.6) must vanish).
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A NEW OPTIMALITY PROPERTY OF STRANG'S SPLITTING 1377

2.7. The RKRm and KRKm integrators. To avoid duplications, the pre-
sentation in this subsection is limited to RKR, but all the results apply to KRK in
an obvious manner.

In the analysis in the next section we shall use the auxiliary m-stage integrator

\psi 
[RKRm]
h =

\Bigl( 
\psi 
[RKR]
h/m

\Bigr) m
;

a single step of length h of \psi [RKRm] demands performing m consecutive substeps with
\psi [RKR], each of steplength h/m. As a consequence, integrations with \psi [RKRm] are in
fact nothing but \psi [RKR] integrations; \psi [RKRm] is just a mathematical construction
to facilitate the fair comparison between m-stage integrators (with m evaluations of
f per step) and the one-stage \psi [RKR] (with only one evaluation of f per step).

Clearly

M
[RKRm]
\varepsilon ,h =

\Bigl( 
M

[RKR]
\varepsilon ,h/m

\Bigr) m
,

and, for the eigenvalues, \lambda 
[RKRm]
\varepsilon ,h = (\lambda 

[RKR]
\varepsilon ,h/m )m. It follows easily from (2.9) that,

restricting one's attention to h<m\pi , | P [RKRm]| < 1 if and only if \varepsilon \in (\alpha m(h), \beta m(h))
with

\alpha m(h) = - 2m

h
tan

\biggl( 
h

2m

\biggr) 
< - 1, \beta m(h) =

2m

h
cot

\biggl( 
h

2m

\biggr) 
> 0.(2.10)

When integrating the model problem, RKRm is stable if and only if \varepsilon \in (\alpha m(h), \beta m(h))
(although, as mentioned above, only stability for \varepsilon > - 1>\alpha m(h) is significant). The
case \varepsilon > \beta m(h) yields exponential instability, and \varepsilon = \beta m(h) gives linear instability.
See Figure 1.

We now find an expression for the stability polynomial P [RKRm](\varepsilon ,h). Write

\lambda 
[RKR]
\varepsilon ,h = exp(i\theta \varepsilon ,h) (\theta is real if \lambda has unit modulus) with i the imaginary unit. Then,

recalling (2.8), we may write

cos(h) - h\varepsilon 

2
sin(h) = P [RKR](\varepsilon ,h) =

1

2

\Biggl( 
\lambda 
[RKR]
\varepsilon ,h +

1

\lambda 
[RKR]
\varepsilon ,h

\Biggr) 

=
1

2

\bigl( 
exp(i\theta \varepsilon ,h) + exp( - i\theta \varepsilon ,h)

\bigr) 
= cos(\theta \varepsilon ,h),

π 2π 3π 4π h
−1

0

1

5

9

ε

αm(h)

βm(h)
γm(h)

hm

m = 4

Fig. 1. Proof of the main result in the case m= 4. In the model problem, \varepsilon > - 1. RKR4 and
KRK4 are stable in the open region bounded by the lines h = 0, h = m\pi , \varepsilon =  - 1, \varepsilon = \beta m(h). For
each fixed h such that h< 4\pi , h \not = \pi ,2\pi ,3\pi , a competitor integrator will have | P (\varepsilon ,h)| > 1 for some
\varepsilon \in (\gamma h, \beta h). When h< hm, those values of \varepsilon are > - 1.
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1378 F. CASAS, J. M. SANZ-SERNA, AND L. SHAW

Table 1
Values of the quantity hm used in the main theorem.

m 1 2 3 4 5 6 7 8 9 10

hm \pi 4.92 5.98 6.85 7.61 8.30 8.93 9.53 10.08 10.61

and

P [RKRm](\varepsilon ,h) =
1

2

\Biggl( 
\lambda 
[RKRm]
\varepsilon ,h +

1

\lambda 
[RKRm]
\varepsilon ,h

\Biggr) 

=
1

2

\bigl( 
exp(im\theta \varepsilon ,h/m) + exp( - im\theta \varepsilon ,h/m)

\bigr) 
= cos(m\theta \varepsilon ,h/m),

so that, introducing the standard Chebyshev polynomial of the first kind Tm with
Tm(cos(\zeta )) = cos(m\zeta ) for all (real or complex) \zeta , we conclude that

P [RKRm](\varepsilon ,h) = Tm

\biggl( 
cos

\biggl( 
h

m

\biggr) 
 - h\varepsilon 

2m
sin

\biggl( 
h

m

\biggr) \biggr) 
.(2.11)

3. Main result. In the statement of the main result we denote by hm the small-
est positive root of the equation

mh

2
sin

\biggl( 
h

m

\biggr) 
= cos

\Bigl( \pi 
m

\Bigr) 
 - cos

\biggl( 
h

m

\biggr) 
.

For m = 1, hm = \pi and, for m > 1, hm < m\pi . In addition hm increases mono-
tonically with m and a straightforward Taylor expansion shows that, as m \uparrow \infty ,
hm = 121/4\pi 1/2m1/2 + o(m1/2). See Table 1.

Theorem 3.1. Define hm as above. Then the following hold:
\bullet For h < m\pi , \varepsilon >  - 1, integrations of the model problem (2.3) with either
RKRm or KRKm are exponentially unstable if and only if \varepsilon \in (\beta m(h),\infty ).

\bullet Consider an m-stage splitting integrator \psi h of the form (2.1) with the stability
polynomial different from the stability polynomial (2.11) of the integrators
RKRm/KRKm. Then, for h \not = \pi ,2\pi , . . . , (m  - 1)\pi and h < hm, the (open)
set of values of \varepsilon > - 1 that lead to exponentially unstable integrations of the
model problem is strictly larger than the interval (\beta m(h),\infty ) where RKRm
and KRKm show exponential instability.

This result may be restated by saying that for each fixed h\ast , h\ast < hm, h\ast \not =
\pi ,2\pi , . . . , (m  - 1)\pi , the intersection of the stability region with the line h = h\ast is
strictly larger for RKRm and KRKm than for integrators with the stability polynomial
different from (2.11). Before we prove Theorem 3.1, we need an auxiliary result that
we present in the following subsection.

3.1. Chebyshev polynomials. It is well known that many properties of the
Chebyshev polynomials are a consequence of the following equioscillation property:
Tm(\xi i) = ( - 1)i at the points \xi i = cos(i\pi /m), i = 0, . . . ,m, that partition [ - 1,1] as
 - 1 = \xi m < \xi m - 1 < . . . < \xi 1 < \xi 0 = 1. We shall need the following well-known,
elementary equioscillation result, whose proof we provide for completeness.

Lemma 3.2. Consider k + 1 real points x0 < x1 < . . . < xk. If Q is a real
polynomial such that either

Q(xi)\geq 0, i even and Q(xi)\leq 0, i odd,

or
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A NEW OPTIMALITY PROPERTY OF STRANG'S SPLITTING 1379

Q(xi)\leq 0, i even and Q(xi)\geq 0, i odd,

then Q(x) has \geq k zeros (counting multiplicities) in the interval [x0, xk].

Proof. Consider the k disjoint intervals

J1 = [x0, x1), J2 = [x1, x2), . . . , Jk - 1 = [xk - 2, xk - 1), Jk = [xk - 1, xk],

that partition [x0, xk]. We first point out that Q(x) must have at least a zero in
the closed interval Jk (otherwise Q(x) would be strictly > 0 or strictly < 0 for x \in 
[xk - 1, xk], in contradiction with the hypothesis). On the other hand, it is possible
that some of the semiclosed Ji, i= 1, . . . , k  - 1, contain no zero of Q(x), but, if that
is the case, then Q(xi) = 0. Furthermore, in that case, Ji+1 must contain at least two
zeros, for if it only contained a single zero at xi, then either Q(xi - 1)> 0, Q(xi+1)< 0
or Q(xi - 1) < 0, Q(xi+1) > 0. Thus, if a subinterval other than Jk carries no zero,
then the one to its right carries two, and this gives a total of at least k zeros.

The following result on Chebyshev polynomials is to our best knowledge not
available in the literature. Its proof is based on the preceding lemma.

Proposition 3.3. For given m\geq 2, let P (x) be a real polynomial of degree \leq m
different from Tm(x). Assume that P (x) - Tm(x) has a double zero \xi \in ( - 1,1) such
that \xi \not = \xi i = cos(i\pi /m) for i= 1, . . . ,m - 1. Then | P (x)| > 1 for some x \in (\xi m, \xi 1) =
( - 1, cos(\pi /m)).

Proof. Assume that | P (x)| \leq 1 in (\xi m, \xi 1), and consider the difference D(x) =
P (x) - Tm(x). For i= 1, . . . ,m with i odd, we have D(\xi i) = P (\xi i) - T (xi) = P (\xi i) - 
( - 1)\geq  - 1 + 1 = 0. Similarly, for i= 1, . . . ,m with i even, we have D(\xi i)\leq 0. There
are two cases:

1. \xi \in (\xi 1, \xi 0). Then, by the lemma, D(x) has \geq m - 1 zeros in [\xi m, \xi 1]. These
and the double zero \xi \in (\xi 1, \xi 0) provide \geq m + 1 zeros of D(x). It follows
that D(x) vanishes identically, in contradiction with the hypotheses of the
proposition.

2. \xi is in an interval (\xi j+1, \xi j) with j = 1, . . . ,m  - 1. By applying the lemma
twice, we see that D(x) has \geq j  - 1 zeros in [\xi j , \xi 1] and \geq m  - j  - 1 zeros
in [\xi m, \xi j+1]. The subinterval (\xi j+1, \xi j) must contain at least three zeros,
because, if the multiplicity of \xi were exactly 2 and there were no other zeros
in the subinterval, then D(\xi j) and D(\xi j+1) would be either both > 0 or both
< 0. We have thus found \geq j - 1+(m - j - 1)+3=m+1 zeros, which again
leads to a contradiction.

3.2. Proof of the main result. The first item in Theorem 3.1 was established
at the very end of section 2. In the second item, we only have to deal with m \geq 2,
because we also saw in section 2 that there is no consistent one-stage integrator with
the stability polynomial different from the stability polynomial (2.8) of RKR or KRK.

With fixed h satisfying the conditions of the theorem, we change variables replac-
ing \varepsilon by the new variable

x= cos

\biggl( 
h

m

\biggr) 
 - \varepsilon h

2m
sin

\biggl( 
h

m

\biggr) 
.

Since h < hm <m\pi , this transformation is bijective. It maps \varepsilon = \alpha m(h) (see (2.10))
into x= 1 and \varepsilon = \beta m(h) into x= - 1. The change of variables is chosen in such a way
that, according to (2.11), the stability polynomial of RKRm or KRKm is transformed
into the Chebyshev polynomial Tm(x).
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1380 F. CASAS, J. M. SANZ-SERNA, AND L. SHAW

Denote by P (x) the m-degree polynomial in the variable x resulting from chang-
ing variables in the stability polynomial P (\varepsilon ,h) of the integrator \psi h (note that the
dependence of P (x) on h has been left out of the notation). By hypothesis, P (x)
cannot coincide with Tm(x). From Proposition 2.1, P (\varepsilon ,h)  - P [RKRm](\varepsilon ,h), as a
polynomial in \varepsilon has a double root at \varepsilon = 0 and accordingly P (x)  - Tm(x) has a
double zero at the corresponding value of x given by \xi = cos(h/m). Since h is as-
sumed to be \not = \pi ,2\pi , . . . , (m  - 1)\pi , \xi is not one of the extrema \xi i = cos(i\pi /m),
i = 1, . . . ,m  - 1, of Tm(x). Proposition 3.3 reveals that | P (x)| has to exceed 1 as
some point x \in ( - 1, cos(\pi /m)); the corresponding \varepsilon -value will be in the interval
(\gamma m(h), \beta m(h)) with

\gamma m(h) =
2m

h sin(h/m)

\Bigl( 
cos(h/m) - cos(\pi /m)

\Bigr) 
.

The condition h< hm implies \gamma m(h)> - 1 (see Figure 1). We have thus found values
of \varepsilon \in ( - 1, \beta m(h)) that lead to instability, and the proof is complete.

4. Assessing the size of the stability region. The result we have just pre-
sented does not provide quantitative information on the size of stability regions in
the full (\varepsilon ,h) plane of the different integrators. In this section, we present a more
quantitative analysis; it turns out that Strang integrators have much larger stability
regions than their competitors.

4.1. Stability near \bfitvarepsilon = 0, \bfith = \bfitn \bfitpi . When \varepsilon = 0, all splitting integrators (2.1)
are exact and therefore M0,h is the matrix corresponding to a rotation by h radians,
with semitrace P (0, h) = cos(h). If h> 0 is not an integer multiple of \pi , the magnitude
of the trace is< 2 and the matrixM0,h is strongly stable [3, sections 25 and 42] and [23]
(see also [9]). Accordingly, the integrator is stable in a neighborhood of (0, h). On the
other hand, P (0, n\pi ) = ( - 1)n, n= 1,2, . . . , and perturbations of the parameter values
\varepsilon = 0, h= n\pi may render the integrator exponentially unstable. For instance, RKRm
and KRKm are stable, as we know, in the neighborhood of (0, \pi ), . . ., (0, (m - 1)\pi ) but
not in the neighborhood of (0,m\pi ) (see Figure 1). We now investigate the stability
of general integrators (2.1) in the neighborhood of the points (0, n\pi ), n= 1,2, . . . .

We assume that n is odd (the case n even is entirely parallel). Then P (0, n\pi ) = - 1
and a necessary condition for the method to be stable in a neighborhood of (0, n\pi )
is that this point be a minimum of P . Since, for \varepsilon = 0, P (0, h) = cos(h), we have
(\partial /\partial h)P (0, h) = - sin(h) and (\partial /\partial h)P (0, n\pi ) = 0. In addition, from Proposition 2.1,
(\partial /\partial \varepsilon )P (0, h) =  - (h/2) sin(h), and therefore (\partial /\partial \varepsilon )P (0, n\pi ) = 0; we conclude that
all integrators satisfy the first-order necessary conditions for (0, n\pi ) to be a minimum
of P . Turning now to the second-order necessary conditions, from (\partial 2/\partial h2)P (0, h) =
 - cos(h) and (\partial 2/\partial \varepsilon \partial h)P (0, h) = ( - 1/2)(sin(h) + h cos(h)), we see that the Hessian
of P at (0, n\pi ) takes the form \biggl[ 

\partial 2

\partial \varepsilon 2P (0, n\pi )
n\pi 
2

n\pi 
2 1

\biggr] 
.

(The top left entry changes with the integrator; the other three do not.) For (0, n\pi )
to be a minimum, the Hessian has to be positive semidefinite; since the bottom right
entry is > 0, positive semidefiniteness is equivalent to nonnegative determinant, i.e.,
to
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A NEW OPTIMALITY PROPERTY OF STRANG'S SPLITTING 1381

\partial 2

\partial \varepsilon 2
P (0, n\pi )\geq n2\pi 2

4
.

However, Proposition 5.1 ensures that the opposite inequality holds and we have
proved the n odd case of the following result (the n even case is proved in a parallel
way, changing minimum to maximum, etc.).

Proposition 4.1. Assume that an integrator of the form (2.1) is stable for values
of (\varepsilon ,h) in a neighborhood of (0, n\pi ), n= 1,2, . . . . Then necessarily

\partial 2

\partial \varepsilon 2
P (0, n\pi ) = ( - 1)n+1n

2\pi 2

4
.

This proposition is helpful for identifying suitable values of the parameters ri and
kj in (2.1), as will be clear in our study of the stability of the families of three-stage
integrators.

4.2. Palindromic methods with \bfitm = 3 stages. Integrators with three or
fewer stages are important because, arguably, integrators with four or more stages are
too complicated to be used in most applications. For the case of the kinetic/potential
split systems (1.5)--(1.6), there are 3-stage integrators that clearly improve on Verlet
in HMC and molecular dynamics [17, 27, 25, 2, 19, 1]. As we shall prove presently,
for the (1.2)--(1.3) splitting studied in this paper, there is little room for improving
on the Strang splitting. As explained in the introduction, this result is very relevant
when choosing the integrator for HMC algorithms to sample from target distributions
resulting from perturbing a Gaussian.

For the sake of brevity, we only present our findings for the K-first case in (2.1).
The results for the R-first case differ in the details but yield the same conclusions. As
we have noted several times, it is sufficient to study the palindromic case, for which,
after imposing consistency, integrators take the form

\psi h =\varphi 
[K]
kh \circ \varphi [R]

rh \circ \varphi [K]
(1/2 - k)h \circ \varphi [R]

(1 - 2r)h \circ \varphi [K]
(1/2 - k)h \circ \varphi [R]

rh \circ \varphi [K]
kh .(4.1)

There are two free parameters k and r. If we wish to have stability in a neighborhood
of (0, \pi ) in the (\varepsilon ,h) plane, we have to impose the necessary condition in Proposition
4.1, which for (4.1) is found to read as

4k sin2(\pi r) = - cos(2\pi r).

However, this condition is only necessary for P to have a minimum P = - 1 at \varepsilon = 0,
h = \pi . To investigate the behavior of P in the neighborhood of (0, \pi ), we proceed
as follows. We use the last display to express k in terms of r and see P as a func-
tion of (\varepsilon ,h, r). We then fix a value h\ast = 3.12 of h slightly below \pi and look at
the behavior of P (\varepsilon ,h\ast , r). For each r in a suitable range,1 we identify the value
\varepsilon \ast (h\ast , r) \approx 0 of \varepsilon for which (\partial /\partial \varepsilon )P (\varepsilon ,h\ast , r) vanishes (and therefore the function
\varepsilon \mapsto \rightarrow P (\varepsilon ,h\ast , r) may achieve a minimum) and plug this value into P to obtain a func-
tion F (r) = P (\varepsilon (h\ast , r), h\ast , r) of the real variable r. This function is plotted in the
right panel of Figure 2, where we see that for ``most"" values of r, F (r) takes values
below  - 1, indicating exponential instability of the integrator. There are, however,
three exceptional values of r, where F = - 1:

\bullet r = 1/4. This leads to k = 0 so that the first and last kicks in (4.1) are the
identity and may be suppressed. The integrator is then seen to be RKR2,
which we know is indeed stable in the neighborhood of (0, \pi ).

1We present results for r \in [0.2,0.6]. Values of r outside this interval are not of interest, as a
preliminary computer search shows they have poor stability properties near \varepsilon = - 1.
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0.2 0.3 0.4 0.5 0.6

r

1.3700

1.3725

1.3750

1.3775

1.3800

1.3825

1.3850

1.3875

1.3900

ε∗

×10−2

0.2 0.3 0.4 0.5 0.6

r

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

1
+
P

(ε
∗ ,
h
∗ )

×10−10

r = 1
3r = 1

4 r = 1
2

K-first, ∂εP = 0 (m = 3, h∗ = 3.12)

Fig. 2. Palindromic three-stage, K-first integrators. On the left, for each r, the value \varepsilon \ast of the
parameter \varepsilon that locally minimizes the stability polynomial P (\varepsilon ,h\ast , r). On the right, the minimum
value P (\varepsilon \ast , h\ast , r) as a function of r: except for three exceptional cases (see text), all integrators
show P < - 1, i.e., exponential instability.

\bullet r= 1/3. This yields KRK3, which we know is stable in the neighbouhood of
(0, \pi ) (and also in the neighborhood of (0,2\pi )).

\bullet r = 1/2. Now the central rotation in (4.1) is the identity. The integrator is
KRK2, which we know is stable in the neighborhood of (0, \pi ).

The values of \varepsilon \ast where the algorithm has been found to be exponentially unstable
are plotted in the left panel of Figure 2. This shows that, for h = 3.12, all the
integrators considered (with the exceptions of RKR2, KRK2, and KRK3) are unstable
for values of \varepsilon extremely close to 0. For comparison, using (2.10), one sees that for
h= 3.12, RKR3 and KRK3 are stable for \varepsilon \in ( - 1,3.36) and RKR2, KRK2 are stable
for \varepsilon \in ( - 1,1.30). Also, from Theorem 3.1, for fixed, very small \varepsilon > 0, RKR3 and
KRK3 are stable up to h\approx 3\pi , while most three-stage integrators have lost stability
before h reaches \pi . The conclusion is clear: three-stage splitting integrators different
from Strang have very limited stability domains.

5. A technical result. In this section we establish the following result, which
was used to prove Proposition 4.1.

Proposition 5.1. The stability polynomial P (\varepsilon ,h) of any (consistent) splitting
integrator (2.1) satisfies

\partial 2

\partial \varepsilon 2
P (0, n\pi )\leq n2\pi 2

4
, n= 1,3, . . . ,

and

\partial 2

\partial \varepsilon 2
P (0, n\pi )\geq  - n

2\pi 2

4
, n= 2,4, . . . .
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A NEW OPTIMALITY PROPERTY OF STRANG'S SPLITTING 1383

Proof. We recommence from (2.7) in the proof of Proposition 2.1. The coefficient
of \varepsilon 2 in the right-hand side of that equality is, with \eta i =

\sum m+1
n=i+1 rn, \theta j =

\sum j
n=1 rn,

h2
m\sum 
i=2

i - 1\sum 
j=1

kikj exp(\eta ihR)K exp((1 - \eta i  - \theta j)hR)K exp(\theta jhR),

where, by using the expressions for exp(tR) and K, the product of matrices in the
summation may be computed as\biggl[ 

 - 
\bigl( 
sin(h\theta j) cos(h(1 - \eta i  - \theta j)) - sin(h(1 - \eta i))

\bigr) 
sin(h\eta i) \cdot \cdot \cdot 

\cdot \cdot \cdot  - 
\bigl( 
sin(h\eta i) cos(h(1 - \eta i  - \theta j)) - sin(h(1 - \theta j))

\bigr) 
sin(h\theta j)

\biggr] 
.

We next take semitraces and recall that, from Taylor's theorem, the coefficient of \varepsilon 2

in a polynomial equals twice its second derivative evaluated at \varepsilon = 0. In this way we
find

\partial 2

\partial \varepsilon 2
P (0, h) = - h2

m\sum 
i=2

i - 1\sum 
j=1

kikj

\Bigl[ \bigl( 
sin(h\theta j) cos(h(1 - \eta i  - \theta j)) - sin(h(1 - \eta i))

\bigr) 
sin(h\eta i)

+
\bigl( 
sin(h\eta i) cos(h(1 - \eta i  - \theta j)) - sin(h(1 - \theta j))

\bigr) 
sin(h\theta j)

\Bigr] 
.

By transforming the products of trigonometric functions into sums, we obtain

\partial 2

\partial \varepsilon 2
P (0, h) =

h2

2

m\sum 
i=2

i - 1\sum 
j=1

kikj

\biggl( 
cos

\biggl( 
2h

\biggl( 
1

2
 - \eta i  - \theta j

\biggr) \biggr) 
 - cos(h)

\biggr) 
,

and evaluating at h= n\pi we find, after some additional trigonometric manipulations,

\partial 2

\partial \varepsilon 2
P (0, n\pi ) = ( - 1)n+1n2\pi 2

m\sum 
i=2

i - 1\sum 
j=1

kikj sin
2
\bigl( 
n\pi (\eta i + \theta j)

\bigr) 
.

We now note that \eta i + \theta j = 1 - (\theta i  - \theta j) and sin2(n\pi  - (\theta i  - \theta j)) = sin2(n\pi (\theta i  - \theta j)),
so that

\partial 2

\partial \varepsilon 2
P (0, n\pi ) = ( - 1)n+1n2\pi 2

m\sum 
i=2

i - 1\sum 
j=1

kikj sin
2
\bigl( 
n\pi (\theta i  - \theta j)

\bigr) 
.

The proof will be ready if we prove that

m\sum 
i=2

i - 1\sum 
j=1

kikj sin
2
\bigl( 
n\pi (\theta i  - \theta j)

\bigr) 
\leq 1

4

or, writing the double sum in a more symmetric form,

S =

m\sum 
i=1

m\sum 
j=1

kikj sin
2
\bigl( 
n\pi (\theta i  - \theta j)

\bigr) 
\leq 1

2
.

At this point, it is convenient to assume that (i) m is even and (ii) the integrator is
palindromic. As noted before, there is no loss of generality in assuming (ii). And m
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1384 F. CASAS, J. M. SANZ-SERNA, AND L. SHAW

may always be taken to be even by adding dummy stages. The double sum S may be
decomposed as

S =

m\sum 
i=1

m\sum 
j=1

=

m/2\sum 
i=1

m/2\sum 
j=1

+

m/2\sum 
i=1

m\sum 
j=m/2

+

m\sum 
i=m/2

m/2\sum 
j=1

+

m\sum 
i=m/2

m\sum 
j=m/2

,

which, by symmetry, implies

S = 2

m/2\sum 
i=1

m/2\sum 
j=1

kikj sin
2
\bigl( 
n\pi (\theta i  - \theta j)

\bigr) 
+ 2

m/2\sum 
i=1

m\sum 
j=m/2

kikj sin
2
\bigl( 
n\pi (\theta i  - \theta j)

\bigr) 
.

And, since km+1 - j = kj , \theta i - \theta m+1 - j = \theta i+\theta j - 1, sin2(n\pi (\theta i+\theta j - 1)) = sin2(n\pi (\theta i+
\theta j)),

S = 2

m/2\sum 
i=1

m/2\sum 
j=1

kikj sin
2
\bigl( 
n\pi (\theta i  - \theta j)

\bigr) 
+ 2

m/2\sum 
i=1

m/2\sum 
j=1

kikj sin
2
\bigl( 
n\pi (\theta i + \theta j)

\bigr) 
.

We finally invoke the trigonometric identity sin2(A+B) + sin2(A - B) = 1 - cos(2A)
cos(2B) and write

S = 2

m/2\sum 
i=1

m/2\sum 
j=1

kikj

\Bigl( 
1 - cos(2n\theta i) cos(2n\theta j)

\Bigr) 

= 2

\left(  m/2\sum 
i=1

ki

\right)  2

 - 2

\left(  m/2\sum 
i=1

ki cos(2n\pi \theta i)

\right)  2

\leq 2

\left(  m/2\sum 
i=1

ki

\right)  2

=
1

2
,

and the proof is complete.
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open problem of the Strang splitting's optimality for the alternative R,K integrators.

REFERENCES

[1] A. Ahmed and S. Adrian, A hybrid Monte Carlo sampling filter for non-Gaussian data as-
similation, AIMS Geosci., 3 (2015), pp. 41--78.

[2] M. Aleardi and A. Salusti, Hamiltonian Monte Carlo algorithms for target and interval-
oriented amplitude versus angle inversions, Geophysics, 85 (2020), pp. R177--R194.

[3] V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math.
60, Springer-Verlag, New York, 1989.

[4] A. Beskos, K. Kalogeropoulos, and E. Pazos, Advanced MCMC methods for sampling on
diffusion pathspace, Stochastic Process. Appl., 123 (2013), pp. 1415--1453.

[5] A. Beskos, F. J. Pinski, J. M. Sanz-Serna, and A. M. Stuart, Hybrid Monte Carlo on
Hilbert spaces, Stochastic Process. Appl., 121 (2011), pp. 2201--2230.

[6] S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration, CRC
Press, Boca Raton, FL, 2017.

[7] S. Blanes, F. Casas, and A. Murua, On the linear stability of splitting methods, Found.
Comput. Math., 8 (2008), pp. 357--393.

[8] S. Blanes, F. Casas, and J. M. Sanz-Serna, Numerical integrators for the hy-
brid Monte Carlo method , SIAM J. Sci. Comput., 36 (2014), pp. A1556--A1580,
https://doi.org/10.1137/130932740.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
23

 to
 1

92
.4

1.
11

4.
22

9 
by

 L
uk

e 
Sh

aw
 (

sh
aw

@
uj

i.e
s)

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/130932740


A NEW OPTIMALITY PROPERTY OF STRANG'S SPLITTING 1385

[9] N. Bou-Rabee, Cayley Splitting for Second-Order Langevin Stochastic Partial Differential
Equations, preprint, arXiv:1707.05603, 2017.

[10] N. Bou-Rabee and J. M. Sanz-Serna, Geometric integrators and the Hamiltonian Monte
Carlo method , Acta Numer., 27 (2018), pp. 113--206.

[11] J. C. Butcher, The effective order of Runge-Kutta methods, in Proceedings of the Confer-
ence on the Numerical Solution of Differential Equations, Lecture Notes in Math. 109,
J. L. Morris, ed., Springer, Berlin, 1969, pp. 133--139.

[12] J. C. Butcher, An algebraic theory of integration methods, Math. Comp., 26 (1972),
pp. 79--106.

[13] J. C. Butcher and J. M. Sanz-Serna, The number of conditions for a Runge-Kutta method
to have effective order p, Appl. Numer. Math., 22 (1996), pp. 103--111.

[14] C. M. Campos and J. M. Sanz-Serna, Palindromic 3-stage splitting integrators, a roadmap,
J. Comput. Phys., 346 (2017), pp. 340--355.

[15] F. Casas, J. M. Sanz-Serna, and L. Shaw, Split Hamiltonian Monte Carlo revisited , Stat.
Comput., 32 (2022), 86.

[16] M. M. Chawla and S. R. Sharma, Intervals of periodicity and absolute stability of explicit
Nystr\"om methods for y\prime \prime = f(x, y), BIT, 21 (1981), pp. 455--464.

[17] M. Fern\'andez-Pend\'as, E. Akhmatskaya, and J. M. Sanz-Serna, Adaptive multi-stage in-
tegrators for optimal energy conservation in molecular simulations, J. Comput. Phys., 327
(2016), pp. 434--449.

[18] B. Garc\'{\i}a-Archilla, J. M. Sanz-Serna, and R. D. Skeel, Long-time-step methods
for oscillatory differential equations, SIAM J. Sci. Comput., 20 (1998), pp. 930--963,
https://doi.org/10.1137/S1064827596313851.

[19] F. Goth, Higher order auxiliary field quantum Monte Carlo methods, J. Phys., 2207 (2022),
012029.

[20] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, 2nd ed., Springer,
Berlin, Heidelberg, 2006.

[21] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010),
pp. 209--286.

[22] R. Jeltsch and O. Nevanlinna, Stability of explicit time discretizations for solving initial
value problems, Numer. Math., 37 (1981), pp. 61--91.

[23] M. G. Krein, A generalization of some investigations of A. M. Lyapunov on linear differential
equations with periodic coefficients, Doklady Akad. Nauk SSSR, 73 (1950), pp. 445--448.

[24] B. Leimkuhler and C. Matthews, Molecular Dynamics, Springer, Cham, 2015.
[25] J. Mannseth, T. S. Kleppe, and H. J. Skaug, On the application of improved symplectic

integrators in Hamiltonian Monte Carlo, Comm. Statist. Simulation Comput., 47 (2018),
pp. 500--509.

[26] R. M. Neal, MCMC using Hamiltonian dynamics, in Handbook of Markov Chain Monte Carlo,
S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, eds., Chapman and Hall/CRC, Boca
Raton, FL, 2011, pp. 139--188.

[27] A. Nishimura, D. B. Dunson, and J. Lu, Discontinuous Hamiltonian Monte Carlo for discrete
parameters and discontinuous likelihoods, Biometrika, 107 (2020), pp. 365--380.

[28] J. M. Sanz-Serna, Markov chain Monte Carlo and numerical differential equations, in Cur-
rent Challenges in Stability Issues for Numerical Differential Equations, L. Dieci and
N. Guglielmi, eds., Springer, Cham, 2014, pp. 39--88.

[29] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall,
London, 1994.

[30] J. M. Sanz-Serna and M. N. Spijker, Regions of stability, equivalence theorems and the
Courant-Friedrichs-Lewy condition, Numer. Math., 49 (1986), pp. 319--329.

[31] B. Shahbaba, S. Lan, W. O. Johnson, and R. M. Neal, Split Hamiltonian Monte Carlo,
Stat. Comput., 24 (2014), pp. 339--349.

[32] G. Strang, Accurate partial difference methods I: Linear Cauchy problems, Arch. Ration.
Mech. Anal., 12 (1963), pp. 392--402.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

9/
23

 to
 1

92
.4

1.
11

4.
22

9 
by

 L
uk

e 
Sh

aw
 (

sh
aw

@
uj

i.e
s)

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/1707.05603
https://doi.org/https://doi.org/10.1137/S1064827596313851

	Introduction
	Preliminaries
	Splitting integrators
	Conjugate integrators
	The model problem
	Integrating the model problem. Stability
	A property of the stability polynomial
	Stability of the integrators RKR and KRK
	The RKRm and KRKm integrators

	Main result
	Chebyshev polynomials
	Proof of the main result

	Assessing the size of the stability region
	Stability near <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	=0?></0:tex-math></0:inline-formula>, <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	h = n ?></0:tex-math></0:inline-formula>
	Palindromic methods with <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	m=3?></0:tex-math></0:inline-formula> stages

	A technical result
	Acknowledgment
	References

