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Abstract. We propose a new methodology for constructing integrators to simulate Hamiltonian dynamics within Hybrid
Monte Carlo and related algorithms. The algorithms based on the new approach are minor modifications of the standard
Verlet integrator that nevertheless provide very substantial savings in computational cost.
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INTRODUCTION

The Hybrid Monte Carlo method and related algorithms [2] require the numerical simulation of Hamiltonian dynamics

d
dt

q = ∇T (p),
d
dt

p =−∇V (q), (1)

by means of a volume-preserving, time-reversible integrator. The Verlet integrator is the method of choice. In its
position version, each step i→ i+1 includes three substeps given by

q ← qi +
h
2

∇T (pi),

pi+1 ← pi−h∇V (q),

qi+1 ← q+
h
2

∇T (pi+1),

where subindexes refer to time-levels and h is the step-length. The literature contains many attempts to improve on the
Verlet method. For instance, one may consider more sophisticated algorithms that concatenate in a palindromic way
five substeps

q ← qi +a1h∇T (pi),

p ← pi−b1h∇V (q),
q ← q+a2h∇T (p),

pi+1 ← p−b1h∇V (q),
qi+1 ← q+a1h∇T (pi+1),

seven substeps, etc. Each substep corresponds to a symplectic (and therefore volumen preserving) transformation in
(p,q) space and the palindromic structure ensures time-reversibility [3]. Furthermore such concatenations are as easy
to code as the Verlet algorithm.

The standard practice in the design of numerical integrators is to determine the coefficients a j, b j by trying to boost
the order of accuracy. For instance seven substeps make it possible to achieve order 4. Once the target order has been
achieved, any remaining free coefficients are chosen so as to minimize the size of the error constants. The idea of



order of accuracy and error constants relate to Taylor expansions in the limit h→ 0, but provide no information on the
performance of the method for a fixed value of h.

In [1], we show, analytically and experimentally, that such a methodology may not make much sense in Monte
Carlo applications. It turns out that the sophisticated integrators suggested in the literature are more accurate than
Verlet (once different methods are allowed the same amount of computational effort) only for values of h so small that
the acceptance rate with Verlet is close to 100%. We therefore propose a new methodology based on analytical results
that do not assume that h→ 0.

A NEW APPROACH

We consider the standard one-dimensional oscillator with kinetic and potential energy T = p2/2, V = q2/2. Over one
time-step, a time-reversible, volume-preserving integrator is given by[

qi+1
pi+1

]
= M̃h

[
qi
pi

]
, M̃h =

[
A(h) B(h)
C(h) A(h)

]
,

for suitable real-valued functions A(h), B(h), C(h), with A(h)2−B(h)C(h)≡ 1. The average error in total energy T +V
over one step, i.e. the mathematical expectation of(

T (pi+1)+V (qi+1)
)
−
(
T (pi)+V (qi)

)
with respect to the Maxwell-Boltzmann probability density function ∝ exp

(
−T (p)−V (q)

)
, may be shown [1] to be

bounded by the quantity

ρ(h) =
(
B(h)+C(h)

)2

2
(
1−A(h)2

) .

(For stable values of h, the denominator is > 0.) Our suggestion is to ensure consistency and then to choose the
remaining free parameters so as to minimize

∥ρ∥= max
0<h<r

ρ(h),

where r denotes the number of evaluations of the force −∇V at each time-step. Thus the maximum value of h grows
linearly with r to make up for the higher computational cost per step.

NEW METHODS

By following this procedure we identify [1] the following method that comprises five substeps (two force evaluations)
per step:

a1 =
3−
√

3
6

≈ 0.21132, b1 =
1
2
, a2 = 1−2a1.

With seven substeps (three force evaluations) the optimal choice turns out to be [1]

a1 = 0.11888010966548, b1 = 0.2961950426112569, a2 = 1/2−a1, b2 = 1−2b1,

while with nine substeps (four force evaluations) one finds

a1 = 0.071353913450279725904,
a2 = 0.268548791161230105820,
b1 = 0.191667800000000000000,
b2 = 1/2−b1,

a3 = 1−2a1−2a2.

Numerical experiments involving different Hamiltonian functions H = T +V show [1] that the new methods clearly
outperform the Verlet integrator. The benefits become more marked for larger numbers of degrees of freedom, where
the saving in computational time may be very high.
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