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1. INTRODUCTION

Extreme adiabatic behavior furnishes great simplification in the treatment of linear
time-dependent Hamiltonian systems. But the actual time variation of the parameters
is only finitely, rather than infinitely, slow. Then one is forced to consider corrections
to the adiabatic limit.

In this contribution a practical algorithm for that purpose is proposed. It is based
on the Magnus expansion for the classical evolution operator (Magnus, 1954; Oteo
and Ros, 1991). In our approach this expansion is carried out after an appropriate
coordinate transformation is implemented in order to make it useful in the adiabatic
regime. The first order of the resulting expansion is then applied to the evaluation of
the change of the so called adiabatic invariant.

2. THE ADIABATIC CLASSICAL MAGNUS EXPANSION

Let us consider a Ha,mﬂtoman dynamical system with one degree of freedom and let the
two-dimensional vectorf (g, p) represents its state. Trajectories in phase space can
be viewed as the action of the time-dependent evolution operator acting on the initial
state: £(1) = M(r, 70,€(70)). Here we have introduced the new variable r = et, where
1/€ sets the time scale and €—0 in the adiabatic limit.

In this formalism a linear system is characterized by the fact that the map M can
be represented by a 2 x 2 matrix M which satisfies the differential equation

M= %SM, M7, 7} =1, (1)

where § is a 2 x 2 matrix obtained from the Hamiltonian, I is the identity matrix and
the dot stands for derivative with respect to .
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Magnus expansion (ME) in the standard form (Magnus, 1954) gives a solution to
Eq.(1) of the form M(7,70) = exp 7, 70) with U70,70) = 0. Here £ is a matrix whose
matrix elements are functions of 7 and 74 but not of the phase space coordinates E It
satisfies its own differential equation which is solved in the form of a series: (0 =3 Q,.
The first term in that expansion is Q(7,70) = 1 [T dzS(z). Higher order terms can be
computed by recursive procedures.

Direct ME as a symplectic integrator for Eq.(1) has been shown (Oteo and Ros,
1991) to work particularly well when H presents sudden time dependence. The situation
is different for the adiabatic regime we are now interested in. Here we propose to use still
the same scheme but only after some phase space coordinate transformation has been
carried out. In the new coordinates the dynamics is exactly solved in the adiabatic limit
giving the Adiabatic Approximation (AA). Further corrections which take into account
the finite rate at which H varies with time are then obtained via ME.

To see how this procedure works, let us perform a nonsingular time-dependent
transformation £x(r) = R~€(r). The time evolution of the new coordinates will be
governed by

£r(T) = Mg(7, 70)€r(70). ()

Here Mg(7,70) = R~ (7)M(r,70)R(70) obeys the equation

MR = SpMp, MR(TO, 7'0) =1, (3)
with 1
Sp="R'SH- R'R. (4)

We take in the adiabatic regime R so as to instantaneously diagonalize the matrix
S(r). The diagonal of Sg should then be the dominant term. As we are going to see
this procedure leads to an interesting approximation scheme.

The diagonal part A = diag(Sg) can be easily integrated out by making the
factorization

Mg = exp ( [ d:cA(w)) M. (5)
Thus My, satisfies
My = SpMy, Sgp=exp (- /TT d:cA(:z:)) (Sg — A)exp ([: d:cA(:v)) . (6)

The AA amounts to take the simplest approximation My = I. In order to improve
this zero order step we apply ME to Eq.(6) introducing what we call Adiabatic Classical
Magnus Expansion (hereafter referred to as ACME). Then M, = expQ, with =
0+, + ... In first order

m:ﬁ@&@. )

As they will be needed in the next section we collect some explicit formulae for the
case of the Generalized Harmonic Oscillator (GHO) with Hamiltonian

LX(r)g? + 2¥ (v)ap + Z(r ). (8)

H(q,p,7) = 5

The time-dependent functions X,Y, Z will supposed to be gentle (i.e., C°°(~o0, +00)
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with L'(—o0, +00)-derivatives of any order (Wasow, 1973)), and have finite limits as
7 — Fo00. In the following we shall assume X(r)Z(r) > Y?(r) for real = although
formal results can also be obtained in the opposite case. We define w(r) = +/XZ — Y2.

A long but otherwise straightforward calculation allows one to write the matrix
Mz to first order in the form:

_ et 0 sinh 7 0 hy(7)ete
R R B )

where:

7’ hi(r)ha(7),
ha(r) = / dea(z)e (=) (10)

ha(r) = [ dop(a)erie,

with a = y[(i0+Y)Z —(iw+Y)Z], B = y[(io+ V)X - (w+Y)X], v = Riw(iw+Y)",
k(1) = [(w — 1Y) X/(w 4+ 1Y) Z}'/* and

Lo k(r) .7, (w YZ-2V
a(T,To) = EIOg k((:)) —|—3[m dz (;+W) . (11)

This scheme can be proved (Casas et al., 1993) to significantly improve the AA for
computing trajectories pretty far from the adiabatic regime. Here, instead, we turn to
the analysis of the adiabatic invariant.

3. ADIABATIC INVARIANT AND ITS VARIATION IN THE ACME
APPROACH

Under the previous hypothesis for the parameters X,Y, Z of the GHO the action J(7)
is an adiabatic invariant, i.e. it is constant in the lmit ¢ — 0. Its instantaneous value
is J(r) = H(7)/w(r) = —ipr(7)qn(r). Furthermore there exist the limit values J(+oo)
and J(—o0) so that we can define AJ = J(+o00) — J(~00) (Arnold et al., 1988). The
asymptotic behavior of AJ has been profoundly studied over the years (Lenard, 1959;
Keller and Mu, 1991). We can consider a finite time interval instead of an infinite one
and introduce §J (7570} = J(v) — J(7). We do know that J changes very little over a
period of order 1/¢ and pose the question of how much does it change during a much
longer interval. We give here a quantitative answer in the scheme described in the
previous section. )

Let m;(i,j = 1,2) be the T-dependent matrix elements of Mj,. Then the exact
expression for §J is given by

6J(r, ) = —i [mn(?')mm(’l')qz(fo) + mzz(’l")mlz(")}"z}t("'ﬂ) (12)
Hmai (7)mas(7) + man(r)ma () — Vgr(ropr(m)] .

We see from this expression that in the AA my, = myy = 1,m12 = me; = 0 and
correspondingly 8J = 0, while any method which goes beyond the AA leads in general
to nonvanishing values for §.J.
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We want to study this question from the ACME we have just introduced . The
previously given formulae allows one to write down the first order approximation for
§J(r,m0) , namely

sinh 27
27

(e, = =5 {02 [n(r)gm) + (e ()] + 2 o)
' (13)

This expression is a valid approximation provided the integrals involved are con-
vergent. In that case we can either solve them numerically or, in some cases, apply
techniques from asymptotic analysis to extract the leading term in their asymptotic
expansions.

An important aspect of our scheme worth emphasizing is its possibility to be it-
erated by evaluating higher order terms in the Magnus expansion for My and the
corresponding expressions for §J. Of course, to rigorously proceed in this way would
require a study of the convergence of the algorithm. This remains an open problem for
the standard Magnus expansion. Nevertheless, in spite of that, the procedure has been
heuristically used in different contexts in Physics and Chemistry.

When an asymptotic determination of the integrals is possible the ACME repro-
duces the exponentially small character of AJ as € — 0 when w(7) is an analytic
function of 7. This has been discussed in (Casas et al., 1993) where other asymptotic
analysis of AJ are also carried out.

4. EXAMPLES

To illustrate what has been said so far we present now the comparison between fwo ways

of computing AJ: on the one side we do it by numerical integration of the equation

of motion, on the other side we apply our first order formula from ACME given in

Eq.(13). We treat three different examples. Two of them refer to the GHO while
the other concerns the simple time-dependent harmonic oscillator. We think that the

time variation of the parameters considered cover a wide spectrum of behavior. For

computational reasons we have to take finite values 7, as the limits in the ‘infinite’

time interval. But provided their absolute values are large enough AJ does not depend

of the particular values chosen.

ACME for the Generalized Harmonic Oscillator
We treat a GHO with parameters given by:

f S b
X(r) = 4 cosh 7 + cosh7’

24
Y 2 ———bz 4
Y 1
(7) ¢ cosh® 7’ ( )
15 s b
2Ar) = (ot coshr cosht’

where a, b, c are constants a # 0,a > c. The frequency is given as

—
w(r) - Va2 -+ cojh‘r' (15)

The parameter s serves to distinguish the two cases we are considering: s = 1 and
s =0.
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Figure 1. Change in the adiabatic invariant for the example Eq.(14) with s = 1,6 = 3,b = 0.1,c =
2.97. Solid line corresponds to the exact value and dotted line to firsi-order ACME.

The asymptotic analysis depends strongly of the transition points of the function
w(r) i.e. of its roots, isolated singular points and branch points.

i)Fors =1, w(r)>0forreal 7 and w — wy = va? —¢? > 0 as 7 — +oo. The
function w?(7) is analytic in a strip along the real 7-axis, its poles being located at
T =1(2n + 1)w/2, n = 0,4%1,.... As for its zeros 7, if we introduce p = 1/(c? — a?),
we can distinguish two cases:

e ip| > 1 then 7. = log (]pl +/p? — I) +12n+ 1)1

o<t then = { {010
with cos By = —lp}, sin B8, = —sin B, = 1 = p°.

Numerical results for this example show that our first order adiabatic Magnus
expansion reproduces extremely well the exact behaviour for |p| < 1. For [p| > 1 on
the average |AJ| takes higher values and the agreement worsens, but not dramatically.
This can be seen in Figure 1, which corresponds to initial state (grypr) = (1,0) and
parameters (a,b,c) = (3,0.1,2.97). Solid line represents exact values while dotted line
(where visible) corresponds to our first order ACME. Furthermore we want to emphasize
the fact that our corrections go clearly beyond the exponential asymptotic limit. This
is seen by observing the non-exponential character of AJ over the whole range of ¢
explored. To the best of our knowledge this is a novel result.

ii) For s = 0 the frequency given by Eq.(15) is a constant w = v/a? — c2 > 0 on the
entire complex 7-plane and so no transition points exist. We have explored a wide range
of values for the parameters a, b, c,¢ and in all cases the exact value and the first order
Magnus approximation for AJ agree up to the fourth decimal place. An interesting fact
to observe here is that notwithstanding the constancy of w(7), AJ # 0. Methods based
on the analysis of singularities in the complex plane cannot cope with this situation.
On the contrary, our ACME correction very accurately reproduces the exact behavior.
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Asymptotic ACME and the Simple Harmonic Oscillator

Let us consider a simple harmonic oscillator (X = w?,Y = 0,Z = 1) in Eq.(8)) with

frequency

1 ]1 /2
?

=1+
w(7) { T 2

(186)
which was analyzed by Wasow (Wasow, 1974). Now w(7) > 0 for real 7 and its limits
at 400 ate w_ = 1, wy; = 4/2. w? is a meromorphic function with simple zeroes at
7. = #(2n + 1)7 and simple poles at 7, = log 2 +i(2n + 1)7.

Now Eq.(13) simplifies to give

ar = S g gi(-o0) - K -o0)| (- o)p(~o0)sink ], (1)
where . )
k=[ ’:’ dfi% exp [—%@(T)] , O(r)= /_ _w(z)ds. (18)

Following the asymptotic analysis of the equation of motion by Wasow (1974) and
Meyer (1975) we obtain (Casas et al., 1993) that as e — 0

AT~ %e-zw/e [ (—00) — ¢"gh(—00)] + O (7). (19)

Here ¢ is given in terms of ©(r. = —im). We see from this equation that first order
adiabatic Magnus expansion gives correctly the exponentially small character of AJ in
the limit ¢ — 0 as well as an approximation to the much more elusive pre-exponential
factor.

In Figure 2 we show the function |AJ|(e) calculated a) by numerical integration
of the equation of motion (solid line), b) from the Eq.(19) (broken line) and c) by
application of ACME, Eq.(17) (dotted line). We take as initial conditions gr{—o0) =
1,pr(—o0) = 0. We conclude that for the values of the parameter ¢ considered the
exact and ACME results practically coincide.

5. CONCLUSIONS

A previously proposed scheme for integrating the equations of motion for time-dependent
linear Hamiltonian systems has been adapted to work in the adiabatic regime. It is
based on the Magnus expansion and as such originates a practical algorithm which can
be used as a symplectic integrator to determine the {rajectories. Because it is recursive
in nature it could be systematically improved by going to higher orders. The first order
we have explicitly considered furnishes already extremely good results even far away of
the strict adiabatic limit. Nevertheless higher order contributions should be studied to
see if these results are confirmed. The scheme has been also applied to the analysis of
the adiabatic invariant. As it is well known this magnitude is not strictly speaking a
constant and the proposed form of the Magnus expansion reproduces the exponentially
small behaviour of its variation. Besides that, however, our scheme gives a way to
approximately evaluate AJ. We illustrate this point different time-dependences of the
parameters of a one-dimensional Generalized Harmonic Oscillator.
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Figure 2. Change in the adiabatic invariant for the simple harmonic oscillator with frequency Eq.(16).
Solid line correspond to an exact calculation, broken line to application of Eq.(19) and dotted line to
ACME.
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