CONTROL OF CHAOS: IMPACT
OSCILLATORS AND TARGETING

Ernest Barreto®', Fernando Casast, Celso Grebogi®¥il,
and Eric J. KostelichY
University of Maryland, College Park, MD 20742

Abstract

We present two applications of chaos control techniques that can be
of importance in mechanical systems. First, we apply chaos control to
select a desired sequence of impacts in a map that captures the universal
properties of impact oscillators near grazing. Next we describe a targeting
method that can significantly reduce the chaotic transients that precede

stabilization when these control methods are used.
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1 Introduction

Recently, the application of chaos control techniques to physical systems has
commanded increasing attention. In this work we describe the application of
these methods to the impact oscillator, a mechanical system of great importance.
We also describe a targeting method that can improve the utility of control
techniques when applied to higher dimensional chaotic systems.

An impact oscillator is a forced vibrating mechanical system which under-
goes a sequence of contacts with motion-limiting constraints. The dynamics is
therefore smooth motion, governed by a differential equation, interrupted by a
series of non-smooth collisions. The collisions introduce nonlinearity into the
system. Impact oscillators are used to model a variety of different systems
arising in engiﬁeering (for example, moored ships colliding with fenders, forced
mechanical systems with clearances such as rattling gears, and railway vehicles
1, 2)

Mathematically, impact oscillators constitute a subclass of dynamical sys-
tems that do not satisfy the usual smoothness assumptions. These discontinu-
~ ities are responsible for new forms of behavior not found in smooth dynamical
systems, particularly in the limit of low velocity or grazing impacts [1-8].

In engineering, systems are modelled and investigated in order to identify
and avoid unacceptable responses. For iinpact systems, it is necessary to avoid
high velocity impacts as these cause the greatest wear or damage to components.
This can be accomplished by the weli-known techniques of chaos control [9]. The
flexibility provided by chaos allows us to select particular trajectories with a
desirable sequence of impacts. This can be advantageous in many technological
applications of impact oscillators.

In this work we apply the method of Ott, Grebogi and Yorke to control
chaotic impacts in the Nordmark map (3, 10, 11] (Zn+1,Yn+1) = Fo(Zn, Yn),
where
(az +y+ p,—vz) for z<0

1
(—~vVZ +y+p,—y7%z) for z>0. @
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This is a piecewise continuously differentiable map that models the behavior of

a sinusoidally forced linear oscillator experiencing impacts at a hard wall. It is



obtained by expanding solutions of the system in the neighborhood of a grazing
orbit [3], i.e., of an orbit that just touches the wall with zero velocity. The map
captures the universal properties of the dynamics in the regime of low velocity
impacts. The equivalence with the physical system is as follows: z,, and y, are
transformed coordinates in the position-velocity space (£, £) evaluated at times
tn = 2n7/w, where w is the frequency of the external forcing. The quantity 72
is the restitution coefficient of the impacts, and p is related to Fy, the amplitude
of the external force. The parameters « and v depend on the intrinsic properties
of the oscillator such that the limit v — 0 corresponds to a large coefficient of
friction, and 72 = 1 gives the opposite limit of zero dissipation. For physical

systems (with positive friction) we have {10-12]
0<y<l, “2/7<a<l+r. (2)

The top expression in (1), valid for z < 0, governs the system if there is no
impact between time ¢, and t,,;,. Otherwise, z > 0 and the second expression
applies. Thus, the effect of impacts in the system is modelled by a square root

nonlinearity.

2 Control of the Impact Oscillator

The control technique of Ott, Grebogi and Yorke has the feature that it enables
one to select a predetennined?»time—periodic behavior embedded in a chaotic
attractor by making only small time-dependent perturbations to a set of ac-
cessible parameters of the system. The basic idea is as follows [9). First one
chooses a desirable unstable periodic orbit embedded in the chaotic attractor
according to some set of performance criteria. Second, one defines a small re-
gion around the desired periodic orbit. A trajectory starting with almost any
initial condition eventually falls into this small region by ergodicity. When this
occurs, one applies perturbations to available control parameters so as to move
the orbit onto the stable manifold of the desired unstable orbit. The flexibility
of the method allows for the stabilization of different. periodic orbits. for the
same set of nominal values of the parameter. This is possible because a chaotic

attractor typically has embedded within it a large number of different unstable




periodic orbits. We choose a single control parameter, p. This characterizes the
strength of the driving. The grazing state corresponds to p = 0, and dynamics
in the neighborhood of grazing is given for |p| << 1. Bifurcations occur as the
parameter p is increased through p = 0 with v and « held fixed.

By applying the OGY algorithm to the Nordmark map, one can stabilize
periodic trajectories with an arbitrary number and an arbitrary distribution
of impacts per period. This is so even if it is not possible to get analytic
expressions for the position of the physical components. Also, the necessary
information needed for applying control can be extracted purely from measured
data [9, 13]. Here, for simplicity, we consider only maximal periodic orbits [10],
i.e., periodic trajectories for which there is exactly one impact per period.

For systems with parameters in the region 4'y+% <a< %7-!— %, windows of
stable maximal periodic orbits are encountered as p is decreased from positive
values {10, 11]. In particular, a window of period p is separated from the suc-
ceeding window, of period p+1, by a band of chaos. There is an infinite cascade
of such windows of decreasing width in p and increasing périod, accumulating
on p = 0F. This is illustrated by the bifurcation diagram of Fig. 1, obtained for
(v,@) = (0.05,0.65) and 72 = 1 for small positive p values. Here we can avoid
the presence of chaotic impacts for p > 0 by applying control. As an example we
take p = exp(—9.2), on the left band of chaos in Fig. 1. Here we have unstable
maximal orbits up to period M = 8 embedded in the chaotic attractor.

Fig. 2 illustrates control of-these periodic orbits. We plot the z-coordinate
of a trajectory as a function of time. The parameter perturbations were pro-
grammed to successively control the seven different periodic orbits. Coutrol for
the M = 2 maximal orbit was turm;d on after 3000 free iterations. Each win-
dow was controlled for 500 iterations before switching to the next orbit. The
figure shows that the time to achieve control is almost negligible in this case,
with no apparent transients between switches. The maxitum allowed parame-
ter perturbation is § = 10™%. Thus it is possible to convert chaotic impacts to
controlled periodic orbits by applying only small perturbations {§p| < 107 to
the parameter p.

For parameters in the region %fy + % < a < 1 ++, there is an interval of

p values occupied entirely by a chaotic attractor. As p increases from zero,




Figure 1: Bifurcation diagram for (v,a) = (0.05,0.65) and 72 = 1 for small

positive p values.
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Figure 2: Successive control of unstable maximal periodic orbits for p =
exp(—9.2), starting with period M = 2. The maximum parameter perturbation
is 6 =107
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- Figure 3: Bifurcation diagram for v = 0.15, « = 1 and 7% = 1.

this interval terminates at a stable maximal orbit of some period M, [10]. This
attractor has embedded within it unstable maximal periodic orbits of increasing
period as p approaches zero. An example of a bifurcation diagram for this case is
shown in Fig. 3, obtained for (v,a) = (0.15,1) and 72 = 1. Here we can control
chaos by stabilizing any of the maximal orbits which are present for positive
values of p. For p = 0.05, we have unstable maximal orbits up to period M = 5.
The control of these periodic o;bits is accomplished as described above for Fig.
2.

3 Targeting of Periodic Orbits

The method described above relies on the natural ergodicity of chaotic dynamics
to bring a trajectory into the vicinity of a desired unstable perioié orbit w.here it
can be actively controlled. In applications involving higher dimensional systems,
the times required for this to happen may be prohibitively long. For example,
Romeiras et al. [9] have have applied the method to a four-dimensional map

that describes a kicked double rotor [14], shown in Figure 5. They showed
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Figure 4: Successive control of the unstable maximal periodic orbits embedded
in the chaotic attractor for p = 0.05, starting with period M = 2. The maximumn

parameter perturbation is § = 1073,

that control can be achieved by using only one control parameter (even when
the attractor has two positive Lyapunov exponents). However, some unstable
periodic orbits require several hundred thousand iterations before stabilization
is achieved [15].

Targeting is a slightly different version of the control problem. We assume
that we are given some initial condition on the attractor, and we wish to rapidly
direct the resulting trajectory to a small region about some specified point on
the attractor. Because of the inherent exponential sensitivity of chaotic time
evolutions to perturbations, one expects that this can be accomplished using
only small controlling adjustments of one or more available system parameters.

This was demonstrated theoretically and in numerical experiments for the
case of a two-dimensional map by Shinbrot et al. [16], and also in a laboratory
experiment for which the dynamics were approximated by a one dimensional
map [17]. Kostelich et al. [18] developed an extension of the targeting procedure

that can be applied to higher dimensional systems, such as the double rotor map;
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Figure 5: The Kicked Double Rotor. A massless rod of length [, pivots about the
stationary point Py. A second massless rod of length 2, is mounted on pivot
Py, which in turn is mounted at the end of the first rod. Periodic impulsive
kicks f(t) = 307 pnd(t — n) are applied at an angle ¢ as shown. Tle state of
the system immediately after the (n + 1)th kick is given by a four dimensional
map of the form X,y = MY;L + X, and Yop = LY, + G(X,41), where
X = (61,6)7 are the two angular position coordinates, ¥ = (61,62)T are the
corresponding angular velocities, au:l G(X) is a nonlinear function. M and
L are both constant matricies which involve the coefficients of friction at the
two pivots and the moments of inertia of the rotor. Gravity is absent. Control
parameters at time n are p, = 9.04+Ap, and ¢, = 0.0+Ad,, with [Ap|/ps < 0.1
and {Ag| < 0.5. We take I; = 1/v/2, and set all other parameters to 1. For
further details, see Ref. [14].




Because the dimension of the double rotor attractor (for the set of parameters
chosen in Romeiras, et al) is about 2.8, the average distance between nearest
neighbors in a subset of N points on the attractor scales as N~1/2%, This
implies that, on average, 10'! iterations of the map are required to come within
10~ of the target without the control. Since the control procedure described
in [18] can steer the initial condition to within 10™% of the target in less than
102 steps, the method can achieve the target about 10° times faster than the
uncontrolled chaotic process.

The method works in two steps. First, information is learned about the
system by observing a very long chaotic orbit, and constructing targeting trees
as follows. The map is iterated from a random initial condition while keeping in
memory a short history of the iterates encountered (for example, 10 consecutive
points), until the orbit lands within a suitable tolerance distance of the target.
This point, together with the recorded pre-iterates, comprise the frunk path
of the tree, and are stored in memory. The map is then iterated again, still
keeping track of a brief iterate history, until the orbit lands near any one of the
points already in the tree. When this happens, a new path is added as a branch.
Countinuing in this way, a tree is built with a hierarchy of branches: the trunk
path is level 1; level 2 branches are those that are rooted at some point in the
trunk path; level 3 branches are rooted at a level 2 branch, and so on. The
objective is to build a tree with enough branches such that a typical chaotic
orbit lands near a point in the.tree after a small number of iterations.

Once a sufficiently large tafgeting tree has been built, a chaotic orbit can
be steered along the tree to the target. One applies small changes to available
parameters to steer the orbit to the stable manifold of a point in the tree. (The
stable manifold S associated with a typical point z is stable in the sense that
[(F*(z) — F*(y)|| - 0 as n — oo whenever y € S.) When the method is
successful, the dynamics of the system carry the orbit of the perturbed point
close to an orbit that leads directly to the target. Additional details on the
method are given in [18].

The targeting algorithm can be combined with the OGY control method to
provide a means to rapidly switch a given chaotic process between prespecified

periodic orbits. That is, the targeting procedure can be used to steer a given
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Figure 6: Graphs illustrating switching between five different fixed points. The
8, coordinate of the state is plotted versus iteration. Here we rely on ergodicity
to bring the orbit close to the desired UPO. The fifth fixed point required

153, 485 iterations to be stabilized, and is not shown.

initial condition on the attractor to a neighborhood of one of the periodic orbits,
then the OGY control method can be used to stabilize the system near the
periodic orbit. The combined method is discussed in [15], and the results of its

application to the double rotor are shown in Figures 6 and 7 .

4 Conclusions

In summary, we have shown that chqotic dynamics in impact oscillators can be
converted into motion on a desired beriodic orbit by using only small param-
eter perturbations. In higher dimensional systems, it is possible to employ a
targeting technique to reduce the length of the chaotic transients that precede

stabilization. These results can be of importance in technological applications.
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Figure 7: Iinprovements of up to four orders of magnitude in the switching times
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