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Quantum Mechanics (QM) presented since its very creation a view of physical
phenomena radically different to that of Classical Mechanics (CM). In many ways,
however, CM played a seminal and guiding role in the construction of the quantum
formalism. This is evident in the contributions of some of the founding fathers of
QM: for example in the famous “Drei männer arbeit” by Born, Heisenberg and
Jordan [1] in which they built the quantum perturbation theory in strong analogy
with the classical version. In addition, all three of them were able to make use
of their through knowledge of the classical theory, especially of the perturbation
schemes and the theory of canonical transformations, for extending their matrix
scheme to general quantum systems.

Since then the mutual relationship between QM and CM has been fruitful,
manyfold and has gone in both ways. A fact that is not always sufficiently em-
phasized. One of the reasons is that once QM was formulated in Hilbert space the
essentially linear character of the formalism made more evident the use of alge-
braic techniques in this context than in CM. Perturbation theory is another area
in which one can say that the quantum treatment is more popular than its classi-
cal counterpart. Here again the underlying linear structure of the quantum case
allows for a simpler presentation. This is especially true if one adheres to the old-
fashioned formulation of classical canonical perturbation theory with mixed (new
and old) coordinates in phase space. However, since the late 60’s there is a clear
alternative to this procedure. It arose in Celestial Mechanics [2] and found early
applications in plasma physics and accelerator studies. This approach is based
on the use of Lie algebraic methods in CM and originates a perturbation theory
that, while being equivalent to the classical Poincaré–Von Zeipel’s, is simpler in
presentation and richer in applications.

In this presentation we adapt the Lie–Deprit algorithm of classical mechanics
as a perturbation theory for general quantum systems. This approach has the
advantage that it allows a unifying view, in the following sense. On one hand, it
establishes a direct connection between the classical and the quantum formalism.
On the other hand, the same algorithm can be applied both to time-independent
and time-dependent quantum systems. In addition, and contrarily to the usual
time dependent perturbation theory, the scheme is unitary at any order of approx-
imation.

Suppose we are interested in a quantum system which can be described by a time
independent Hamiltonian H0 perturbed by a time-dependent H ′(t, ǫ) that depends
on a small parameter ǫ in such a way that H ′(t, ǫ = 0) = 0. The Hamiltonian
whose dynamics has to be solved reads then

(1) H(t, ǫ) = H0 +H ′(t, ǫ) ≡ H0 +

∞∑

n=1

ǫnHn(t),
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where we have assumed that H ′(t, ǫ) is analytic in ǫ. The time evolution of the
wave function Ψ(t) may be described in terms of the evolution operator, Ψ(t) =
U(t, t0)Ψ(t0), which is unitary and obeys the Schrödinger equation

(2) i~
∂

∂t
U(t, t0) = H(t)U(t, t0), U(t0, t0) = I.

Since the dynamics corresponding to H0 has been solved, one has UH0
(t, t0) =

exp(−i(t− t0)H0/~). The goal is then to construct a unitary near-identity trans-
formation T (t, ǫ) such that the transformed system

(3) i~
∂

∂t
UK(t, t0) = K(t, ǫ)UK(t, t0), UK(t0, t0) = I

is easier to solve than the original equation (2). Then it is easy to verify that
U(t, t0) is factorized as

(4) U(t, t0) = T (t, ǫ)UK(t, t0)T
†(t0, ǫ),

and the new Hamiltonian K is given by

(5) K(t, ǫ) = T †(t, ǫ)H(t, ǫ)T (t, ǫ) + i~
∂T †(t, ǫ)

∂t
T (t, ǫ).

Vey often we will take T (t0 = 0, ǫ) = I in (4). We guarantee that T is indeed
unitary is by introducing a skew-Hermitian operator L(t, ǫ) such that T (t, ǫ) is the
solution of the operator differential equation ∂

∂ǫT (t, ǫ) = −T (t, ǫ)L(t, ǫ). Equiva-
lently,

(6)
∂

∂ǫ
T †(t, ǫ) = L(t, ǫ)T †(t, ǫ), T †(t, 0) = I.

The formal solution of this equation can be obtained by applying the so-called
Magnus expansion [3], so that we can write T †(t, ǫ) = exp(Ω(t, ǫ)), where Ω is a
skew-Hermitian operator. Deriving equation (5) with respect to ǫ we arrive after
some algebra at

(7)
∂K

∂ǫ
= [L,K] + eadΩ

∂H

∂ǫ
+ i~

∂L

∂t
,

where [L,K] ≡ LK −KL and adΩB ≡ [Ω, B], with adnΩB ≡ adn−1
Ω B.

At this stage, three different issues have to be addressed:

(1) Choose the new Hamiltonian K such that equation (3) is easy to solve.
(2) Compute the skew-Hermitian generator L of the required transformation.
(3) Construct the unitary transformation T from the generator L, or equiva-

lently, the operator Ω in T = exp(−Ω).

It turns out that first two problems above enumerated can be solved perturbatively
with equation (7), whereas the third can be treated independently. To proceed,
we introduce in addition to (1), the following series expansions:

(8) K(t, ǫ) =

∞∑

n=0

ǫnKn(t), L(t, ǫ) =

∞∑

n=0

ǫnLn+1(t).
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Then, by applying the Magnus expansion, it is possible to determine Ω(t, ǫ) as a
power series in ǫ, Ω(t, ǫ) =

∑∞
n=1 ǫ

nvn(t) and the vn(t) can be expressed in terms
of Lj(t). In particular

v1 = L1, v2 =
1

2
L2, v3 =

1

3
L3 −

1

12
[L1, L2].

On the other hand, we have eadΩ ∂H
∂ǫ =

∑∞
n=0 ǫ

nwn(t) which can also be obtained
algorithmically, its first terms being

w0 = H1, w1 = 2H2+[L1, H1], w2 = 3H3+2[L1, H2]+
1

2
[L2, H1]+

1

2
[L1, [L1, H1]].

Finally, inserting these series into (7) and collecting terms of the same power in ǫ,
results in the following homological equation

(9) i~
∂Ln

∂t
+ [Ln, H0] = nKn − F̃n, n = 1, 2, . . .

with

(10) F̃n =

n−1∑

j=1

[Ln−j,Kj ] + wn−1

in addition toK0 = H0. This equation admits the formal solution (Ln(t0 = 0) = 0)

(11) Ln(t) = − i

~

∫ t

0

du e−i(t−u)H0/~
(
nKn(u)− F̃n(u)

)
ei(t−u)H0/~.

The election of a particularK is a degree of freedom of the method, and thus it can
be adapted to any particular problem one is dealing with. Perhaps the simplest
option is to take K = H0 or equivalently Kn = 0 for n ≥ 1. In this way one tries
to construct a unitary transformation in such a way that in the new image there
is no perturbation at all. In that case UK(t) = exp

(
− iH0(t− t0)/~

)
and

(12) U(t) = T (t, ǫ) e−
i
~
H0(t−t0) = e−Ω(t,ǫ) e−

i
~
H0(t−t0).

Other options are of course valid. For instance, if H0 has a pure non-degenerate
point spectrum we can choose Kn diagonal. This is the natural choice when
the original Hamiltonian (1) is time independent. It is also worth stressing that
this procedure can be generalized to any linear differential equation and thus
constitutes a novel approach to carry out perturbative analysis whereas preserving
qualitative (geometric) properties of the exact solution.
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