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Parabolic partial differential equations

One-dimensional problems

The most simple reaction-diffusion equation involves the
concentration u of a single substance in one spatial dimension

du = DA2u + F(u),

and is also referred to as the Kolmogorov-Petrovsky-Piscounov
equation. Specific forms appear in the litterature:

@ the choice F(u) = 0 yields the heat equation;

@ the choice F(u) = u(1 — u) yields Fisher's equation and is
used to describe the spreading of biological populations;

@ the choice F(u) = u(1 — u?) describes Rayleigh-Benard
convection;

@ the choice F(u) = u(1 —u)(u — a) with 0 < a < 1 arises in
combustion theory and is referred to as Zeldovich’equation.
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Parabolic partial differential equations

More general problems

More dimensions

Several component systems allow for a much larger range of
possible phenomena. They can be represented as

Oiup D; Aug Fi(ui,...,uq)
: = f + :
8tud Dd Aun Fd(Ul,...,Ud)

|

Diffusion operator with a complex number  § € C

For instance, the complex Ginzburg-Landau equation with a
polynomial non-linearity has the form

K

ou i

ﬁ:ozAu—Ejﬂ,-|u|21u, KeN, (B,...,0)cCk.
j=0
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Splitting and composition methods

Two classes of methods for two different
situations

In this work, we consider composition and splitting methods
with complex coefficients of the form

blhB alhA bth azhA bshB jashA

e e e e e e

for the following two situations:

@ Reaction-diffusion equations with real diffusion coefficient.
The important feature of A = DA here is that is has a real
spectrum: hence, any method involving complex steps with
positive real part is suitable.

@ Complex Ginzburg-Landau equation. The values of the
a; := arg(B) + arg(a;) determine the stability. It is thus of
importance to minimize the value of max;—1 s |arg(a;)|.
Methods such that all a;’s are positive reals are ideal with
that respect.
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Methods obtained by iterative compositions

Order conditions for composition

One way to raise the order is to consider composition
methods of the form

Vh =& ho...0d0 p.

Let ¢, be a method of (classical) order p. If

Mt =landPtr 4 440 =0

then ¥y, := & ho...0d, , has at least order p + 1.
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Double,triple and quadruble jump methods

Double jump methods ([HO])

Composition methods ¢Lp] of order p can be constructed by
induction:

q>Lz] — Oy, ¢[p+1] q)[P] h© ¢£YF:)]’2h forp > 2.

The method ¢Lp] requires s = 2P~1 compositions of &}, with
combined coefficients vy, ..., s Which are of the form

p—1
H'Yk,ik, ik € {1,2}.
k=2

For p = 3,4,5,6, the coefficients ~;,j = 1,...,2P~%, have
arguments less than /2.
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Double,triple and quadruble jump methods

Triple jump methods s = 3 ([HO] and [CCDG])

Symmetric composition methods chp] of even order p can be
constructed by induction:

(DLZ] =y, ¢Lp+2] — ¢[p]

[p] [p]
7.1 © d>%’2h o d>%’lh forp > 2.

The method <I>Lp] requires s = 3P/2-1 compositions of &}, with
combined coefficients ~vq, ..., 7s.

By appropriately choosing the solutions of the order condition
278’;1 + (1 — 9p.1)P*t = 0, the coefficients v;,j = 1,...,3P/271,
have arguments less than /2 forp = 2,4,6,8,10,12, 14.
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Double,triple and quadruble jump methods

Quadruple jump methods s =4 ([HO] and [CCDG])

Symmetric composition methods ¢Lp] of order p (p even) can be
constructed by induction:

Pl o ylPl oyl

ysh 72h yih» P 22

0 +2
vl = o, WPt = wllow

of order p + 2. The method \UL'O] requires s = 4P/2-1
compositions of ¢, with combined coefficients 1, ..., 7s.

Forp =2,4,6,8,10,12, 14, the coefficients ~; for
i =1,...,4P/2-1 have arguments less than 7 /2.
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Double,triple and quadruble jump methods

Triple and Quadruple jump methods ([HO] and
[CCDQ@G])

order 4 order 6 order 8

method @L‘” method ¢L6]
order 4 order 4 order 6 order 6 order 8 order 8
} / } y

method \IJE” method \IJLG] method \ULg]

Diagrams of coefficients for compositions methods
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Triple and Quadruple jump methods ([HO] and
[CCDQ@G])

e triple jump

/4 /,/// ——— triple jump o/
- quadruple jump W[’
// order p
0 | | | | | | |

2 4 6 8 10 12 14 16

Values of max;_1..s | arg~;| for various compositions methods
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Limitations

An order barrier for symmetric methods

constructed by composition

Consider a symmetric p-th order method with p > 14
constructed through the iterative symmetric composition

p+2] _ ylp p p p
\UL Iyl o ylPl ho---o\ll[wp]’zholllgp],lh,p>2

'Yp,Sph Vp,sp—1 -

starting from a symmetric method of order 2. Then one of the

coefficients
' p
H/YZk,izw i2k 6{17"'782k}7 r 6{1775}
k=1

has a strictly negative real part.
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Limitations

Methods obtained by solving directly the full order
conditions

It is hoped (and partly proved) that
© methods of order higher than 14 can be achieved

© more efficient methods can be constructed (with smaller
error constants)

© splitting methods where the a;’s are positive and of
high-order can be obtained

We now present numerical results for the methods obtained up
to now.
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Linear reaction-diffusion equation

Linear reaction-diffusion equation with periodic
potential

Ouir first test-problem is the scalar equation in one-dimension

ou(x,t)
ot

= Au(x,t) + V(x,t)u(x,t)

where:
@ V(x,t) = 2+ sin(27x) is a linear potential.
@ u(x,t) is the unknown periodic function on the x-interval
[0, 1].



Numerical experiments
0000

Linear reaction-diffusion equation

Discretization in space

After discretization in space (Ax = 1/(N + 1) and x; = iAx for
i =1,...,N), we arrive at the differential equation

U = AU + BU, (1)

where the Laplacian A has been approximated by the matrix A
of size N x N given by

-2 1 1
1 -2 1
A = (Ax)? 1 -2 1 ,
1 1 -2

and where B = Diag(V (x1), ...,V (Xn))-
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Linear reaction-diffusion equation

Discretization in time

Since the eigenvalues of A are large and negative, and those of
B small, both e"*A and e"#B are well-defined, provided
R(a) > 0.
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Linear reaction-diffusion equation

Exact solution

Solution of the linear reaction—diffusion

0.5
-0.5

Time
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Fischer’s equation

The semi-linear reaction-diffusion equation of
Fischer

Our second test-problem is the scalar equation

au(x,t)
ot

= Au(x,t) + F(u(x,t)) 2

where:
@ F(u) is now a non-linear reaction term: F(u) = u(1 —u).
@ u(x,t) is the unknown periodic function on the x-interval
[0, 1].
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Fischer’s equation

Discretization in space

After discretization in space as in the linear case, we arrive at
the ordinary differential equation

U =AU +F(U),
where
-2 1 1
1 -2 1
A = (Ax)? 1 -2 1 ,
1 1 -2

and F (V) is now defined by

F(U) = (uz(1 —uq),...,un(1 — uy)).
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Fischer’s equation

Discretization in time

The ODE is split into, on the one hand, a linear equation, and
on the other hand, the non-linear ordinary differential equation

dUi

E = ui(l—ui),

with initial condition

U(0) = (uy(0),...,un(0)).

This is a holomorphic differential equation which can be solved
analytically for each component as

(e'—1)
1+ u(0)(e' — 1)’

ui(t) = u;(0) + u; (0)(1 — u;(0))

Clearly, u;(t) is well defined for small complex time t.
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Fischer’s equation

Results for the linear equation

Error versus cost in log-log scale
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Numerical experiments
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Results for Fischer’s equation

Error

Error versus cost in log-log scale
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Complex Ginzburg-Landau equation

The semi-linear Complex Ginzburg-Landau
equation

Our third test problem is the complex Ginzburg-Landau
equation on the domain (x,t) € [-100, 100] x [0, 100]

au(x,t)

o = aAu(x,t) +eu(x,t) — Blu(x,t)]?u(x,1)

with:
@ (x,t) € [-100,100] x [0, 100]
@ a=1+4ic,f=1—icgzandc; =1,c3=-2ande = 1.

— 0.8 0.8
@ Uo(x) = cosh(x—10)? + cosh(x+10)2 "
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Complex Ginzburg-Landau equation

Exact solution (amplitude)

For the values of the parameters considered here, plane wave
solutions establish themselves quickly after a transient phase.

Solution of the Ginzburg-Landau equation (amplitude)

Time

Figure: Colormaps of the amplitude Ju(x;t)].
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Complex Ginzburg-Landau equation

Exact solution (real or imaginary parts)

Solution of the Ginzburg-Landau equation (real part)

90
100 —
-100 -80 -60 -40 -20 0 20 40 60

Figure: Colormaps of the real part ®R(u(x,t)).
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Complex Ginzburg-Landau equation

Discretization in space

After discretization in space:
@ x; =iAx fori=1,...,N with Ax =1/(N + 1);
@ U = (uy,...,uy) € CN, where u;(t) =~ u(x;, t);
one obtains the ODE:

U = aAU + U — gF(U),
where A stands as before for the Laplacian and where

F(U) = (|U1|2U1, ceey |UN|2UN),
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Complex Ginzburg-Landau equation

Discretization in time (1)

The ODE is split into, on the one hand, a linear equation
U = oAU + eU,
and on the other hand, the non-linear equation

U = —BF(U).

@ Solution U(t) = ete'*AUq (first part) can be extended to
teC.

@ Each component of the second system evolves according
to
Ui = —pJui?u
so that, for t € R small enough

ui(t) = e~ 2 P9+2u )Py, (0).
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Complex Ginzburg-Landau equation

Discretization in time (11)

Since u + |u]?u is not a holomorphic function, the “natural”
extension of u;(t) to C is not valid!

We rewrite the system for V (t) = ®(U(t)) and W (t) = I(U(t)):

V = AV - AW +eV — G(V + W)
W = ClAV + AW +eW — G(—c3V + W)

where G is the diagonal matrix with G; ; = v2 + w?.

At the cost of double dimension

we can now solve the equation for complex time t € C with
R(t) > 0.
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Complex Ginzburg-Landau equation

Discretization in time (l11)
After a linear change of variables (V,W) — (V,W) the solution

of the non-linear part reads
_ vi(o)e—glog(Hthi(O))

Vi(t) ) )
Wit) = W (o)e_g log(1+2tM; (0))

Definition of log
The logarithm refers to the principal value of log(z) for complex

numbers: if z = (a + ib) = re'? with -7 < § < =, then

M; (0) := 4iV; (0)W; (0).

9

logz = Inr+ifd=In|z|+iargz

b
= In(la+ib|) + 2i arctan | —— | .
( Y <a+\/a2+b2>

log(z) is not defined forz € R™.
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Complex Ginzburg-Landau equation

Discretization in time (V)

One step Ug — U; of a splitting method (a3, by, ..., as,bs):
O Initialize Vo = R(Up) and Wy = I(Up)
@ Compute (Vo, Wp) — (Vo, Wo)
O Setk=s
@ Compute V; , := V(bch) and Wy /, := W (bch)
© Compute V, = eah exp(hakaA)Vl/z and
W, = e“&h exp(ha, aA)W, /2
© Decrementk by 1
@ Ifk > 1, setVy = Vy, Wo = W; and go to step 4.
© Compute (V1,W3) — (V1,W;)
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Complex Ginzburg-Landau equation

Methods considered

We test here three different methods of orders 2, 4 and 6:

© Strang’s splitting
ah/2B ghAgh/28

@ P4S5, a fourth-order method of [CCDV]:

b1hB 4ahA Lb,hB LahA LbshB LahA b hB ahA .b;hB

e e "'e e "'e e’ "e e’ "e

where the b;’s are complex with positive real parts, and
a=1/4.
(% , a sixth-order method of [BCCM]:

bihV nahA  AbghV nahA.bghV nahAnbghV  nahAbihV

e e - e e’ "e e’ "e e e

where the b;’s are complex with positive real parts, and
a=1/16.
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Complex Ginzburg-Landau equation

Results for the Complex Ginzburg-Landau
equation

Error versus cost in log-log scale
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Future work

Ongoing and future work

@ further study of optimal composition methods

@ further study of methods involving complex coefficients for
only one operator

@ methods for other classes of problems

THANK YOU FOR YOUR ATTENTION
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