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Parabolic partial differential equations

One-dimensional problems

The most simple reaction-diffusion equation involves the
concentration u of a single substance in one spatial dimension

∂tu = D∂2
x u + F (u),

and is also referred to as the Kolmogorov-Petrovsky-Piscounov
equation. Specific forms appear in the litterature:

the choice F (u) = 0 yields the heat equation;

the choice F (u) = u(1 − u) yields Fisher’s equation and is
used to describe the spreading of biological populations;

the choice F (u) = u(1 − u2) describes Rayleigh-Benard
convection;

the choice F (u) = u(1 − u)(u − α) with 0 < α < 1 arises in
combustion theory and is referred to as Zeldovich’equation.
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Parabolic partial differential equations

More general problems

More dimensions
Several component systems allow for a much larger range of
possible phenomena. They can be represented as






∂t u1
...

∂t ud






=







D1

. . .
Dd













∆u1
...

∆un






+







F1(u1, . . . , ud )
...

Fd (u1, . . . , ud )







Diffusion operator with a complex number δ ∈ C

For instance, the complex Ginzburg-Landau equation with a
polynomial non-linearity has the form

∂u
∂t

= α∆u −
K
∑

j=0

βj |u|2ju, K ∈ N, (β1, . . . , βK ) ∈ C
K
+.
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Splitting and composition methods

Two classes of methods for two different
situations

In this work, we consider composition and splitting methods
with complex coefficients of the form

eb1hBea1hAeb2hBea2hA . . . ebshBeashA

for the following two situations:
Reaction-diffusion equations with real diffusion coefficient.
The important feature of A = D∆ here is that is has a real
spectrum: hence, any method involving complex steps with
positive real part is suitable.
Complex Ginzburg-Landau equation. The values of the
ãi := arg(β) + arg(ai) determine the stability. It is thus of
importance to minimize the value of maxi=1,...,s |arg(ai)|.
Methods such that all ai ’s are positive reals are ideal with
that respect.
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Order conditions for composition

One way to raise the order is to consider composition
methods of the form

Ψh := Φγsh ◦ . . . ◦ Φγ1h.

Theorem
Let Φh be a method of (classical) order p. If

γ1 + . . .+ γs = 1 and γp+1
1 + . . . + γp+1

s = 0

then Ψh := Φγsh ◦ . . . ◦Φγ1h has at least order p + 1.
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Double,triple and quadruble jump methods

Double jump methods ([HO])

Composition methods Φ
[p]
h of order p can be constructed by

induction:

Φ
[2]
h = Φh, Φ

[p+1]
h = Φ

[p]
γp,1h ◦ Φ[p]

γp,2h for p ≥ 2.

The method Φ
[p]
h requires s = 2p−1 compositions of Φh with

combined coefficients γ1, ..., γs which are of the form

p−1
∏

k=2

γk ,ik , ik ∈ {1,2}.

Theorem

For p = 3,4,5,6, the coefficients γj , j = 1, . . . ,2p−1, have
arguments less than π/2.
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Double,triple and quadruble jump methods

Triple jump methods s = 3 ([HO] and [CCDG])

Symmetric composition methods Φ
[p]
h of even order p can be

constructed by induction:

Φ
[2]
h = Φh, Φ

[p+2]
h = Φ

[p]
γp,1h ◦Φ[p]

γp,2h ◦ Φ[p]
γp,1h for p ≥ 2.

The method Φ
[p]
h requires s = 3p/2−1 compositions of Φh with

combined coefficients γ1, ..., γs.

Theorem
By appropriately choosing the solutions of the order condition
2γp+1

p,1 + (1 − γp,1)
p+1 = 0, the coefficients γj , j = 1, . . . ,3p/2−1,

have arguments less than π/2 for p = 2,4,6,8,10,12,14.
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Double,triple and quadruble jump methods

Quadruple jump methods s = 4 ([HO] and [CCDG])

Symmetric composition methods Φ
[p]
h of order p (p even) can be

constructed by induction:

Ψ
[0]
h = Φh, Ψ

[p+2]
h = Ψ

[p]
γ4h ◦Ψ[p]

γ3h ◦Ψ[p]
γ2h ◦Ψ[p]

γ1h, p ≥ 2

of order p + 2. The method Ψ
[p]
h requires s = 4p/2−1

compositions of Φh with combined coefficients γ1, ..., γs.

Theorem
For p = 2,4,6,8,10,12,14, the coefficients γi for
i = 1, . . . ,4p/2−1, have arguments less than π/2.
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Double,triple and quadruble jump methods

Triple and Quadruple jump methods ([HO] and
[CCDG])

method Φ
[4]
h

γ1 γ2 γ1
order 4

method Φ
[6]
h

order 6

method Φ
[8]
h

order 8

method Ψ
[4]
h

order 4order 4

method Ψ
[6]
h

order 6order 6

method Ψ
[8]
h

order 8order 8

Diagrams of coefficients for compositions methods
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Double,triple and quadruble jump methods

Triple and Quadruple jump methods ([HO] and
[CCDG])

2 4 6 8 10 12 14 16

triple jump

triple jump Φ
[p]
h

quadruple jump Ψ
[p]
h

π/2

π/4

0
order p

max
j=1...s

|arg(γj)|

Values of maxj=1...s | arg γj | for various compositions methods
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Limitations

An order barrier for symmetric methods
constructed by composition

Theorem
Consider a symmetric p-th order method with p > 14
constructed through the iterative symmetric composition

Ψ
[p+2]
h = Ψ

[p]
γp,sp h ◦Ψ[p]

γp,sp−1h ◦ · · · ◦Ψ[p]
γp,2h ◦Ψ[p]

γp,1h, p ≥ 2

starting from a symmetric method of order 2. Then one of the
coefficients

r
∏

k=1

γ2k ,i2k
, i2k ∈ {1, . . . , s2k}, r ∈ {1, . . . ,

p
2
}

has a strictly negative real part.



logo

Context Methods obtained by iterative compositions Numerical experiments Future work

Limitations

Methods obtained by solving directly the full order
conditions

It is hoped (and partly proved) that
1 methods of order higher than 14 can be achieved
2 more efficient methods can be constructed (with smaller

error constants)
3 splitting methods where the ai ’s are positive and of

high-order can be obtained

We now present numerical results for the methods obtained up
to now.
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Linear reaction-diffusion equation

Linear reaction-diffusion equation with periodic
potential

Our first test-problem is the scalar equation in one-dimension

∂u(x , t)
∂t

= ∆u(x , t) + V (x , t)u(x , t)

where:

V (x , t) = 2 + sin(2πx) is a linear potential.

u(x , t) is the unknown periodic function on the x-interval
[0,1].
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Linear reaction-diffusion equation

Discretization in space

After discretization in space (∆x = 1/(N + 1) and xi = i∆x for
i = 1, . . . ,N), we arrive at the differential equation

U̇ = AU + BU, (1)

where the Laplacian ∆ has been approximated by the matrix A
of size N × N given by

A = (∆x)2















−2 1 1
1 −2 1

1 −2 1
. . . . . . . . .

1 1 −2















,

and where B = Diag(V (x1), . . . ,V (xN)).



logo

Context Methods obtained by iterative compositions Numerical experiments Future work

Linear reaction-diffusion equation

Discretization in time

Since the eigenvalues of A are large and negative, and those of
B small, both ehαA and ehβB are well-defined, provided
ℜ(α) ≥ 0.
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Linear reaction-diffusion equation

Exact solution
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Fischer’s equation

The semi-linear reaction-diffusion equation of
Fischer

Our second test-problem is the scalar equation

∂u(x , t)
∂t

= ∆u(x , t) + F (u(x , t)) (2)

where:

F (u) is now a non-linear reaction term: F (u) = u(1 − u).

u(x , t) is the unknown periodic function on the x-interval
[0,1].
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Fischer’s equation

Discretization in space

After discretization in space as in the linear case, we arrive at
the ordinary differential equation

U̇ = AU + F (U),

where

A = (∆x)2















−2 1 1
1 −2 1

1 −2 1
. . . . . . . . .

1 1 −2















,

and F (U) is now defined by

F (U) =
(

u1(1 − u1), . . . ,uN(1 − uN)
)

.
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Fischer’s equation

Discretization in time

The ODE is split into, on the one hand, a linear equation, and
on the other hand, the non-linear ordinary differential equation

dui

dt
= ui(1 − ui),

with initial condition

U(0) = (u1(0), . . . ,uN(0)).

This is a holomorphic differential equation which can be solved
analytically for each component as

ui(t) = ui(0) + ui(0)(1 − ui(0))
(et − 1)

1 + ui(0)(et − 1)
,

Clearly, ui(t) is well defined for small complex time t .
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Fischer’s equation

Results for the linear equation
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Fischer’s equation

Results for Fischer’s equation
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Complex Ginzburg-Landau equation

The semi-linear Complex Ginzburg-Landau
equation

Our third test problem is the complex Ginzburg-Landau
equation on the domain (x , t) ∈ [−100,100]× [0,100]

∂u(x , t)
∂t

= α∆u(x , t) + εu(x , t) − β|u(x , t)|2u(x , t)

with:

(x , t) ∈ [−100,100]× [0,100]

α = 1 + ic1, β = 1 − ic3 and c1 = 1, c3 = −2 and ε = 1.

u0(x) = 0.8
cosh(x−10)2 + 0.8

cosh(x+10)2 .
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Complex Ginzburg-Landau equation

Exact solution (amplitude)

For the values of the parameters considered here, plane wave
solutions establish themselves quickly after a transient phase.

Figure: Colormaps of the amplitude |u(x , t)|.
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Complex Ginzburg-Landau equation

Exact solution (real or imaginary parts)

Figure: Colormaps of the real part ℜ(u(x , t)).
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Complex Ginzburg-Landau equation

Discretization in space

After discretization in space:

xi = i∆x for i = 1, . . . ,N with ∆x = 1/(N + 1);

U = (u1, . . . ,uN) ∈ C
N , where ui(t) ≈ u(xi , t);

one obtains the ODE:

U̇ = αAU + εU − βF (U),

where A stands as before for the Laplacian and where

F (U) =
(

|u1|2u1, . . . , |uN |2uN
)

.
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Complex Ginzburg-Landau equation

Discretization in time (I)

The ODE is split into, on the one hand, a linear equation

U̇ = αAU + εU,

and on the other hand, the non-linear equation

U̇ = −βF (U).

1 Solution U(t) = eεtetαAU0 (first part) can be extended to
t ∈ C.

2 Each component of the second system evolves according
to

u̇i = −β|ui |2ui

so that, for t ∈ R small enough

ui(t) = e−β

2 log(1+2|ui(0)|2t)ui(0).
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Complex Ginzburg-Landau equation

Discretization in time (II)

Alert

Since u 7→ |u|2u is not a holomorphic function, the “natural”
extension of ui(t) to C is not valid!

We rewrite the system for V (t) = ℜ(U(t)) and W (t) = ℑ(U(t)):

{

V̇ = AV − c1AW + εV − G(V + c3W )

Ẇ = c1AV + AW + εW − G(−c3V + W )

where G is the diagonal matrix with Gi ,i = v2
i + w2

i .

At the cost of double dimension
we can now solve the equation for complex time t ∈ C with
ℜ(t) ≥ 0.
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Complex Ginzburg-Landau equation

Discretization in time (III)

After a linear change of variables (V ,W ) 7→ (Ṽ , W̃ ) the solution
of the non-linear part reads
{

ṽi(t) = ṽi(0)e
−β

2 log(1+2tM̃i (0))

w̃i(t) = w̃i(0)e− β̄

2 log(1+2tM̃i (0))
, M̃i(0) := 4i ṽi(0)w̃i(0).

Definition of log

The logarithm refers to the principal value of log(z) for complex
numbers: if z = (a + ib) = reiθ with −π < θ ≤ π, then

log z := ln r + iθ = ln |z| + i arg z

= ln(|a + ib|) + 2i arctan
(

b

a +
√

a2 + b2

)

.

log(z) is not defined for z ∈ R
−.
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Complex Ginzburg-Landau equation

Discretization in time (IV)

One step U0 7→ U1 of a splitting method (a1,b1, . . . ,as,bs):

1 Initialize V0 = ℜ(U0) and W0 = ℑ(U0)

2 Compute (V0,W0) 7→ (Ṽ0, W̃0)

3 Set k = s
4 Compute Ṽ1/2 := Ṽ (bkh) and W̃1/2 := W̃ (bkh)

5 Compute Ṽ1 = eεak h exp(hakαA)Ṽ1/2 and
W̃1 = eεak h exp(hak ᾱA)W̃1/2

6 Decrement k by 1
7 If k ≥ 1, set Ṽ0 = Ṽ1, W̃0 = W̃1 and go to step 4.
8 Compute (Ṽ1, W̃1) 7→ (V1,W1)
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Complex Ginzburg-Landau equation

Methods considered

We test here three different methods of orders 2, 4 and 6:

1 Strang’s splitting
eh/2BehAeh/2B

2 P4S5 , a fourth-order method of [CCDV]:

eb1hBeahAeb2hBeahAeb3hBeahAeb2hBeahAeb1hB

where the bi ’s are complex with positive real parts, and
a = 1/4.

3 P6S17 , a sixth-order method of [BCCM]:

eb1hV eahA · · · eb8hV eahAeb9hV eahAeb8hV · · · eahAeb1hV

where the bi ’s are complex with positive real parts, and
a = 1/16.
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Complex Ginzburg-Landau equation

Results for the Complex Ginzburg-Landau
equation
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Ongoing and future work

further study of optimal composition methods

further study of methods involving complex coefficients for
only one operator

methods for other classes of problems

THANK YOU FOR YOUR ATTENTION
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