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Application Background

Numerical simulation of unsteady reactive phenomena

@ Flames (Instabilities, dynamics, pollutants)
@ Chemical “waves” (spiral waves, scroll waves)

@ Biochemical Engineering (migraines, Rolando’s region,
strokes : clinical anomaly which follows an anatomic lesion of
one of many cerebral blood vessels)

white matter grey matter
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Dynamics involving many “species” and “reactions”

Multiple scales problems

“Complex Chemistry”

Convection-diffusion coupled to chemistry

QU+ 9;(9:(U,8,U)) = Q(U)
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Examples
@ KPP or Fischer equation

atﬁ - axxﬁ = ﬂ2(1 - ﬁ)
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Examples
@ KPP or Fischer equation
@ Belousov-Zhabotinsky system of equations

( Oa 1
p D,Aa = ;(—qa— ab + fc),
8—b—DbAb = 1(qa—ab+b(1—b)),
or €
% - DcAC - b - C,
\ OT
°
°
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Examples
@ KPP or Fischer equation
@ Belousov-Zhabotinsky system of equations
@ Compressible flame equations with complex chemistry
@ In both cases : Low diffusion (¢A)
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Strategies

Resolving the large scale spectrum coupled

@ Explicit methods in time (high order in space)
@ Fully implicit methods with adaptative time stepping
@ Method of lines coupled to a stiff ODE solver

@ Semi-implicit methods (IMEX, source/diffusion explicit in
time)

The computational cost and memory requirement have
suggested the study of alternative methods : decoupling

@ Reduction of chemistry (large litterature)
@ Operator Splitting techniques
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Operator splitting techniques

Operator splitting : separate convection-diffusion and chemistry

@ High order methods exist
@ Allow the use of dedicated solver for each step
@ Yield lower storage and optimization capability
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Basis of operator splitting - |

Reaction-diffusion system to be solved (t : time interval)

u(t) = T'U {Ua(fé; ;lAJ:)J =)

Two elementary “blocks”.

9,V —AV =0
@) =2 {twm:w

oW = QW)
W(0) = Wy

W(t) = Y'W, {

Ol
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Basis of operator splitting I

First order methods :
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Basis of operator splitting I

First order methods :

Lie Formulae.

LYUp=X"Y'"Uy LY Uy — THUy = O(£2),

LhUp=Y'X'Uy LUy — THUy = O(£3),
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Basis of operator splitting Il

Second order methods :
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Basis of operator splitting Il

Second order methods :

Strang Formulae.

St Uy = X2 Uy StUy— THUy = O(),

ShUp= X2V X120y  ShUy— T Uy = O(£%),
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Basis of operator splitting Il

Second order methods :

Strang Formulae.

St Uy = X2 Uy StUy— THUy = O(),

ShUp= X2V X120y  ShUy— T Uy = O(£%),

Higher order...
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Error estimate

Error estimate -> Lie formalism. For an ODE y = f;(y), we
denote by goﬁ the exact solution, we introduce the differential
operator (Lie derivative)

d
D; :Zf”’aT/j'
J

For a smooth function from R” to R”, we have

ccfjtF (€1 (v0)) = F' (¢1(00)) fi (¥} (¥0)) = (D1F) (¢} (¥0))
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By iterations, the Taylor’s expansion of F (¢} (yp)) in t = 0 gives
(formally)
F(#00) = X &7 (DIF) (o) = (o
v1o)) = PTRG Yo) = Yo)
k>0

With F =Id, we obtain

¢4 (yo) = e™'1d(yo).
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Moreover, if we introduce a second flow ¢, we have :

(¢5¢7) (vo) = e®1e®21d(yo).
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Then if we denote by ¢} the exact solution of y = (fy + f2)(y),
we have the following relation :

e5(¥o) — (9544 (vo) = e®1P21d(yo) — ePrePe1d(yo),

we then work with linear operators !
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Error estimate

Then if we denote by ¢} the exact solution of y = (fy + f2)(y),
we have the following relation :

e5(¥o) — (9544 (vo) = e®1P21d(yo) — ePrePe1d(yo),

we then work with linear operators ! For example, for two linear
operators A et B, we have

t2
E:t(A+B) _ etAeB E[A7B] + O(t3),

this yields,

2
©5(y0) — (wbe}) (o) = t5[[)1,D2]Id(yo) +0(8%),
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Error estimate

2
#4(30) = () (¥0) = 5 [Dr, D2J1d(y0) + O(E),

and [D4, D2] is now a Lie bracket...

- o O\ 0
[D1,D2]—Z Z(&yj fo By, fu) o

i j
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Error estimate

2
#3(y0) = (#2#4) (vo) = 5 (D1, Dalld(yo) + o(¢%),
and [D4, D2] is now a Lie bracket...

- o O\ 0
[D1,D2]—Z Z(&yj fo By, fu) o

i j

We are not limited to the finite dimension...
0
Dy = E 15—
— 1y
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Error estimate

Application to Lie et Strang formulae denoting by F the reaction
term for a scalar equation.

t2
Ttuo — YtXtuO = EF” (U())(axllo)2 + O(ts),

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation Unsteady reactive phenomena
Numerical Strategies
Splitting

Error estimate

Application to Lie et Strang formulae denoting by F the reaction
term for a scalar equation.

2
Tlug — YX'ug = %F (u0)(Bxuo)? + O(),

Tlug — YY/2X'YY2uy =
t3

o <2F(4)(u0)(8xu0)4 + 8F® (u0) (8xu0 )2 (Dxxu) + 4F” (uo)(axxu0)2>

-5 ((F(uo)F(S)(uo) + F”(uo)F’(uo)) (axuo)2> +0(t)
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Stiffness comes into play

@ Detected by the beginning of 90’
(Hairer Wanner 91, D’Angelo Larrouturou 95)

@ Numerical analysis of linear model ODEs
(Verwer Sportisse 00)
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Stiffness comes into play

@ Detected by the beginning of 90’
(Hairer Wanner 91, D’Angelo Larrouturou 95)

@ Numerical analysis of linear model ODEs
(Verwer Sportisse 00)
Various origins of stiffness
@ Large spectrum of temp. scales in chemical source
@ Large spatial gradients of the solutions

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation Unsteady reactive phenomena
Numerical Strategies
Splitting

Large spectrum of temporal scales

Descombes et al. i i aves simulation



Context and Motivation Unsteady reactive phenomena
Numerical Strategies
Splitting

Large spectrum of temporal scales

@ A “model” problem for the fast scales for U¢ = (u®, v¢)!
Ouf — Oy - (BY(uf, ve) O4U°) = , xeRd
OvE — Oy - (BY(u%, ve) O4U°) = , xecRd
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Large spectrum of temporal scales

@ A “model” problem for the fast scales for U¢ = (u®, v¢)!
Ouf — Oy - (BY(uf, ve) O4U°) = , xeRd
OvE — Oy - (BY(u%, ve) O4U°) = , xecRd

@ The entropic structure of the RD system of equations =
Dynamics on the partial equilibrium manifold

Bu — B - <B“(u,h(u)) By (h&)» -
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Large spectrum of temporal scales

@ A “model” problem for the fast scales for U¢ = (u®, v¢)!
Ouf — Oy - (BY(uf, ve) O4U°) = , xeRd
OvE — Oy - (BY(u%, ve) O4U°) = , xecRd

@ The entropic structure of the RD system of equations =
Dynamics on the partial equilibrium manifold

Bu — B - <B“(u,h(u)) By (h&)» -

@ Order reduction due to fast scales
e Diag. diffusion : Lie RD order 0O fast variable only
e Diag. d|ffu5|on Strang DRD order 0 fast variable only
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High spatial gradients

@ Initial data with high gradient (L? norm)
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High spatial gradients

@ Initial data with high gradient (L2 norm)
@ High constant in the error estimate O(t?) = C(||Ug||y1) 2
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High spatial gradients

@ Initial data with high gradient (L2 norm)

@ High constant in the error estimate O(t?) = C(||Ug||y1) 2

e Regularizing effect of diffusion
e Example of error estimate for DR

L} = T < C(/|Uol|12)£

e various asymptotics with a threshold time step
o Key issue from a numerical point of view
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Stability + Accuracy

Considering:

V=Xy = Yn1=R2)yn z = h\

We are particularly looking for:

@ A-stable methods
@ High order methods

@ L-stable methods
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Implicit Runge Kutta Methods

@ Based on Ehle’s Methods of type Il: (RadaullA)

@ Order: p = 2s — 1 (s: stage number)
@ A-stable

@ L-stable

RADAU5
(Hairer & Wanner Springer-Verlag 91)

@ Based on RadaullAwiths=3andp=5

@ Simplified Newton Method — Linear Algebra tools

@ Adaptative time integration step
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Parareal
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Multi-scale Simulation Algorithms Adaptive Multiresolution
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Some illustrating examples

Explicit Runge-Kutta methods

We want to solve the discrete heat equation
U= Au,

with an explicit s-stage Runge-Kutta method.

Because of the properties of the matrix A, we need to find a
stable Runge-Kutta method for the simple problem

u=\u,

with A real, negative and as big as possible...

Descombes et al. Multi-scale reaction waves simulation
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(Abdulle SIAM J. Sci. Comput. 02)

@ Extended Stability Domain (along R™) by increasing the
number of stages

@ Order 4 - Stability xs2.
@ Adaptative time integration step
@ Explicit Methods = NO Linear Algebra problems

@ Low Memory Demand
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Explicit/Implicit Operator Splitting

Numerical Strategy:

o;U— eAU = Q(U)
ROCK4  RaADAUS

@ Reduction in Computational Time
@ Reduction in Memory Demand
@ Same previous accuracy established by Splitting Scheme

@ Highly parallelizable - Diffusion - Reaction

Descombes et al. Multi-scale reaction waves simulation
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e Algorithms for multi-scale reaction waves simulation

@ Parallelization of the Time Direction
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One lllustrating Example
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Some illustrating examples

Multi-scale Simulation Algorithms

Background

Consider the general nonlinear system of ODEs:

u'(t) = f(u(t)
u0) = do°

onte (0, T)where f : R = RMandu : R — RM.
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Decomposition of the Time Direction

Multi-scale Simulation Algorithms

We decompose the time domain Q = (0, T) into N time
subdomains Q, = (T, Ths1) and consider for
n=0,1,...,N—1:

up(t) = f(un(1))
un(Tn) = U,

onte (Th, Thit).
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Parareal Algorithm

( Lions et al. C. R. Acad. Sci. Paris Sér. | Math. 01)
Combination of two solvers

@ Coarse Solver — fast (sequential calculation)
@ Fine Solver — slow (parallel calculation)

@ Convergence from a coarse approximation to the detailed

dynamics
@ lterative Method
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Parareal Algorithm

The parareal algorithm is based on two propagation operators :
GATn(U) and 72T (U), that provide respectively a coarse and
an accurate approximation of ¢ 7(U). In this way, the
algorithm starts with an initial approximation U3 given for
example by the sequential computation

Ud=u® UWS=g~21(U \)forn=1,... N,
and then performs for i = 1, ..., icony the correction iterations
Up=u®, UL =780 (Uh) + AT (U], ) — g2 T (UT)
forn=1,... N.
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Parareal Algorithm

Based on the works of Chartier, the time decomposition
method can be also interpreted as a multiple shooting method.
In fact, considering U = (Uy,...,Un)" as the unknowns, the
system can be written as

UO*UO
U, — ¢2To(U
F(U) = 1 ¢. (Uo)

Uy — ¢2Tn-1(Up_1)
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Parareal Algorithm

Solving this system with Newton’s method, leads after a short
calculation to

i _ 0 i ATyt
Up=u’, U,=¢>"1(U ")+ n—1 n—1

8¢AT”71.( 2—11)( P i—1)
U
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e Algorithms for multi-scale reaction waves simulation

@ One lllustrating Example
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“Toy” Model

Belousov-Zhabotinsky system of equations

( Da 1
5 D,Aa = ;(—qa —ab + fc),
ob 1
E—DbAb = Z(qa—ab+b(1—b)),
@ — DcAC == b - C,
or

e=102 ;=105 f=1,6 g=2.10"3
D,=2,510% Dp=2510"2 D,=1,510"2
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y” Model
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Some illustrating examples

“Toy” Model - Some results

Grid 129 x 129 257 x 257
Coarse solver | RDR Strang | Rock4 | RDR Strang | Rock4
Nproc 64
Nproc/Nite 16 32 16 32
Ttine/Tpara 2.16 3.21 2.02 2.88

Table: Computation time ratios, 2D BZ
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Adaptive Multiresolution

Adaptive Time-Space Strategy

Some illustrating examples

Multi-scale Simulation Algorithms

Conclusions

@ Convergence rate diminished due to Stiff phenomena
@ Parallel speedup is possible, but the speedup is modest

@ Appropriate Coarse Solvers — Cheap Stiff Integrators
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@ Space Adaptive Numerical Method
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Adaptive Multiresolution

(Cohen et al. Mathematics of Computation 01)
Principles of the MR:

@ Represent a set of function data as values on a coarser
grid plus a series of differences at different levels of nested
grids.

@ The information at consecutive scale levels are related by
inter-level transformations: projection and prediction
operators.

@ The wavelet coefficients are defined as prediction errors,
and they retain the detail information when going from a
coarse to a finer grid.

Main idea: use the decay of the wavelet coefficients to obtain
information on local regularity of the solution.
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Multiresolution Transformation

There is a one-to-one correspondence
U — (Ui1,D)),

which can be implemented using the operators P]/-;1 and Pj/.”.

By iteration of this decomposition, we obtain a multiscale
representation of U, in terms of My = (Uy, Dy, Do, - - -, Dy).
Using the local structure of the projection and prediction
operators, we can implement the multiscale transformation

MUy — My.
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Multi-scale Simulation Algorithms

Compression

Given a set A ¢ VY of indices ), we define a truncation
operator 7x, that leaves unchanged the component dy if A € A
and replaces it by 0, otherwise.

In practice, we are typically interested in sets A obtained by
thresholding: given a set of level-dependent threshold
(€0, €1, -+ ,€4), We set
A= /\(60,61,' . ,GJ) = {)\St’d)\| > Ew}.
Applying 7,5 on the multiscale decomposition of U; amounts to

building an approximation A, U, where the operator A, is
given by
Ap = M_177\M.
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Outline

e Algorithms for multi-scale reaction waves simulation

@ Adaptive Time-Space Numerical Method
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Adaptive Time-Space Numerical Strategy

Refinement Precautionary measure to account for possible
translation or presence of finer scales in the
solution.

Time Evolution Explicit/Implicit Strang RDR Operator Splitting
Method.

Thresholding Wavelet Thresholding Operation:

g = 2g(j_‘j)5, Jj€1[0,d],
in order to ensure a thresholding error of
prescribed order ¢ (d = spatial dimension).

If SA! denotes the Strang splitting time integration operator

Un+1 — SAI ./\/1_172’]7\n./\/lU"
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Implementing Configuration

Data Structure : Graded Tree

1
j=2
j=1
j =0
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Implementing Configuration

Time Integration : Phantoms

Le ot ;=i
Lol L

[ I N i L L R T j=

1

L,,,,\,,J,,;,,,,l . . !
N | i=2
j=1
J 0

=0
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Implementing Configuration

Multiscale Transformation : Projection

RS
I

[
[=R i
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Implementing Configuration

Multiscale Transformation : Projection

=7
- "
| ] ] i
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. | | .
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J 1
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Implementing Configuration

Multiscale Transformation : Projection

=7
e f
| ] ] i
;-
. | | .
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Suitable Stiff Integrators - Parallelization
Parareal
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Multi-scale Simulation Algorithms

Outline

e Algorithms for multi-scale reaction waves simulation

@ Some illustrating examples
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Suitable Stiff Integrators - Parallelization
Parareal

One lllustrating Example

Adaptive Multiresolution

Adaptive Time-Space Strategy

Some illustrating examples

Multi-scale Simulation Algorithms

BZ Model

Belousov-Zhabotinsky system of equations

( Da 1
5 D,Aa = ;(—qa —ab + fc),
ob 1
E—DbAb = Z(qa—ab+b(1—b)),
@ — DcAC == b - C,
or

e=102 ;=105 f=1,6 g=2.10"3
D,=2,510% Dp=2510"2 D,=1,510"2
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Suitable Stiff Integrators - Parallelization
Parareal

One lllustrating Example

Adaptive Multiresolution

Adaptive Time-Space Strategy

Some illustrating examples

Multi-scale Simulation Algorithms

2D Configuration

@ Time Domain : T =0, 4]

@ Spatial Domain : Q = [0, 1] x [0, 1]

@ Integration Time Step : At =4/1024

@ Tolerances of Time Integrators: tol = 1.107°

@ Finest Grid Level : J =10

@ Number of cells at Grid J: 29%/ = 1048576 = 1024 x 1024
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Suitable Stiff Integrators - Parallelization
Parareal

One lllustrating Example

Adaptive Multiresolution

Adaptive Time-Space Strategy

Some illustrating examples

Multi-scale Simulation Algorithms

L2 Error

J
luze(t) — uma(t)ll 2 < lluge(t) — Uspie(D)ll 2 + || Uugp(t) — unmr (D]l 2

Vv Vo
Total Error Splitting Error
10' .
i @ ||quasiexact-splitting| |
1wl o - B ||splitting-multiresolution|| |§
- .
= 1
g 10 ¢ B PP y PP »
o -
5 10-27 | B ]
o Il
- 3
107 E
10-4 1 2 : 3 -4
10 10 10 10
epsilon
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Suitable Stiff Integrators - Parallelization
Parareal

One lllustrating Example

Adaptive Multiresolution

Adaptive Time-Space Strategy

Some illustrating examples

Multi-scale Simulation Algorithms

3D Configuration

@ Time Domain: T =0, 2]

@ Spatial Domain : Q = [0, 1] x [0,1] x [0, 1]

@ Integration Time Step : At =2/256

@ Tolerances of Time Integrators: tol = 1.107°
@ Finest Grid Level : J =9

@ Number of cells at Grid J:
20xJ — 134217728 = 512 x 512 x 512
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Multi-scale Simulation Algorithms

Some illustrating examples

3D Configuration
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Suitable Stiff Integrators - Parallelization
Parareal

One lllustrating Example

Adaptive Multiresolution

Adaptive Time-Space Strategy

Some illustrating examples

Multi-scale Simulation Algorithms

Adaptive Grid

Compression — 4.46%
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Suitable Stiff Integrators - Parallelization
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Suitable Stiff Integrators - Parallelization
Parareal

One lllustrating Example

Adaptive Multiresolution

Adaptive Time-Space Strategy

Some illustrating examples

Multi-scale Simulation Algorithms

Memory requirements

Radau5 — Li=4x W;xW;+12x Wy +20
Rock4 — L=8x W,
W =3x512x512 x 512 ~ 4.03 x 108

Descombes et al. Multi-scale reaction waves simulation



Suitable Stiff Integrators - Parallelization
Parareal
. . . . One lllustrating Example
Multi-scale Simulation Algorithms Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Memory requirements

Radau5 — Li=4x W;xW;+12x Wy +20
Rock4 — L=8x W,

W =3x512x 512 x 512 ~ 4.03 x 108
w; Wa L="L+L,

Quasi-exact w 0 6.5 x 107

Splitting 3 w 3.2x10°

MR/Splitting 1.10~" | 3 | 0.13W | 4.2 x 108
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. . . . One lllustrating Example
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Some illustrating examples

Memory requirements

Radau5 — Li=4x W;xW;+12x Wy +20
Rock4 — L=8x W,

W =3x512x512x 512~ 4.03 x 108 — 24 Gb

W, W |L=L+ L
Quasi-exact w 0 6.5x 10" — 36Eb
Splitting 3 w 32x10° — 191 Gb
MR/Splitting 1.10-" | 3 | 0.13W | 42x108 — 25Gb
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Suitable Stiff Integrators - Parallelization
Parareal
One lllustrating Example

Multi-scale Simulation Algorithms Adaptive Multiresolution

Adaptive Time-Space Strategy
Some illustrating examples

AVC Model - Work in progress - 0-d model

System of 19 ODEs.
Unknowns :

e ions: (Nat, Kt, Ca®*, CI-, glu™) inside the neurons,
glial cells and extracell space,

o fnv fa,

@ V), et V,, potentials inside the neurons and glial cells.
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Suitable Stiff Integrators - Parallelization
Parareal
One lllustrating Example

Multi-scale Simulation Algorithms Adaptive Multiresolution

Adaptive Time-Space Strategy
Some illustrating examples

In 3D, system of reaction-diffusion

@ diffusion of ions in the astrocytes and in the extracell
space,

@ no diffusion of ions in neurons,

@ no diffusion for f,, 5, V, et Va.

System of reaction-diffusion:

au;
Ttl —&i A ui = Fi(uy, ..., Uyg).

Homogeneous Neumann boundary conditions.

Descombes et al. Multi-scale reaction waves simulation



Suitable Stiff Integrators - Parallelization
Parareal

One lllustrating Example

Adaptive Multiresolution

Adaptive Time-Space Strategy

Some illustrating examples

Multi-scale Simulation Algorithms

Configuration

@ Time Domain : T = [0,3600]

@ Spatial Domain : Q = [0,50000] x [0,50000]

@ Integration Time Step : At = 3600/360 = 10

@ Tolerances of Time Integrators: tol = 1.107°

@ Finest Grid Level : J =8

@ Number of cells at Grid J: 29%Y = 65536 = 256 x 256
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Suitable Stiff Integrators - Parallelization
Parareal

One lllustrating Example
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Multi-scale Simulation Algorithms
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Conclusions

Conclusions and perspectives

@ Convergence rate diminished due to Stiff phenomena

@ Parallel speedup is possible, but the speedup is more
modest than in space

@ Reduction of the size of the system with adaptative
muliresolution

@ Work in progress
o Detailed description of “waves”
@ Complex chemistry in a RD configuration
— detailed analysis of flame propagation
e Multi-dimensional configurations (Brain in 3D)
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Conclusions

Wavelet Representation

In the case where PIH is linear, i.e.,
Up = Z Cuy Uy,
Y

using the wavelet terminology, we can write
U’V = <U7 @7)7

where the dual scaling function ., is simply

s . —1
By =2 'xa,»
and

dﬂ =u, - UN ZCN’Y <U IZM>
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Conclusions

Wavelet Representation

The dual wavelet ¢, is given by

Y= P — Z CuuyPry-
v

To describe in a simple way the multiresolution vector, we
define V¥ := L, V; with Vo := S and write

My = (dx)revs = ((U, Px))aevv

where we have set dy = uy and ¢, = 3, if A € V.
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