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Numerical simulation of unsteady reactive phenomena

Flames (Instabilities, dynamics, pollutants)

Chemical “waves” (spiral waves, scroll waves)
Biochemical Engineering (migraines, Rolando’s region,
strokes : clinical anomaly which follows an anatomic lesion of
one of many cerebral blood vessels)
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To summarize

Dynamics involving many “species” and “reactions”

Multiple scales problems

“Complex Chemistry”

Convection-diffusion coupled to chemistry

∂tU +
∑

∂i
(
Φi(U, ∂xU)

)
= Ω(U)
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Examples
KPP or Fischer equation

∂tβ − ∂xxβ = β2(1− β)

Belousov-Zhabotinsky system of equations
Compressible flame equations with complex chemistry
In both cases : Low diffusion (ε∆)
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KPP or Fischer equation
Belousov-Zhabotinsky system of equations

∂a
∂τ
− Da∆a =

1
µ

(−qa− ab + fc),

∂b
∂τ
− Db∆b =

1
ε

(qa− ab + b(1− b)) ,

∂c
∂τ
− Dc∆c = b − c,

Compressible flame equations with complex chemistry
In both cases : Low diffusion (ε∆)
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Strategies

Resolving the large scale spectrum coupled

Explicit methods in time (high order in space)
Fully implicit methods with adaptative time stepping
Method of lines coupled to a stiff ODE solver
Semi-implicit methods (IMEX, source/diffusion explicit in
time)

The computational cost and memory requirement have
suggested the study of alternative methods : decoupling

Reduction of chemistry (large litterature)
Operator Splitting techniques

Descombes et al. Multi-scale reaction waves simulation
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Operator splitting techniques

Operator splitting : separate convection-diffusion and chemistry

High order methods exist
Allow the use of dedicated solver for each step
Yield lower storage and optimization capability
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Basis of operator splitting - I

Reaction-diffusion system to be solved (t : time interval)

U(t) = T tU0

{
∂tU −∆U = Ω(U)

U(0) = U0

Two elementary “blocks”.

V (t) = X tV0

{
∂tV −∆V = 0

V (0) = V0

W (t) = Y tW0

{
∂tW = Ω(W )

W (0) = W0

Descombes et al. Multi-scale reaction waves simulation
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Basis of operator splitting II

First order methods :

Lie Formulae.

Lt
1 U0 = X t Y t U0 Lt

1 U0 − T t U0 = O(t2),

Lt
2 U0 = Y t X t U0 Lt

2 U0 − T t U0 = O(t2),

Descombes et al. Multi-scale reaction waves simulation
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Basis of operator splitting III

Second order methods :

Strang Formulae.

St
1 U0 = Y t/2 X t Y t/2 U0 St

1 U0 − T t U0 = O(t3),

St
2 U0 = X t/2 Y t X t/2 U0 St

2 U0 − T t U0 = O(t3),

Higher order...
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Error estimate

Error estimate -> Lie formalism. For an ODE ẏ = f1(y), we
denote by ϕt

1 the exact solution, we introduce the differential
operator (Lie derivative)

D1 =
∑

j

f1,j
∂

∂yj
.

For a smooth function from Rn to Rn, we have

d
dt

F
(
ϕt

1(y0)
)

= F ′ (ϕt
1(y0)

)
f1

(
ϕt

1(y0)
)

= (D1F )
(
ϕt

1(y0)
)

Descombes et al. Multi-scale reaction waves simulation
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By iterations, the Taylor’s expansion of F
(
ϕt

1(y0)
)

in t = 0 gives
(formally)

F
(
ϕt

1(y0)
)

=
∑
k≥0

tk

k !

(
Dk

1F
)

(y0) = etD1F (y0).

With F =Id, we obtain

ϕt
1(y0) = etD1Id(y0).

Descombes et al. Multi-scale reaction waves simulation
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Moreover, if we introduce a second flow ϕt
2, we have :(

ϕt
2ϕ

t
1
)
(y0) = etD1etD2Id(y0).

Descombes et al. Multi-scale reaction waves simulation
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Then if we denote by ϕt
3 the exact solution of ẏ = (f1 + f2)(y),

we have the following relation :

ϕt
3(y0)−

(
ϕt

2ϕ
t
1
)
(y0) = et(D1+D2)Id(y0)− etD1etD2Id(y0),

we then work with linear operators ! For example, for two linear
operators A et B, we have

et(A+B) − etAetB =
t2

2
[A,B] + O(t3),

this yields,

ϕt
3(y0)−

(
ϕt

2ϕ
t
1
)
(y0) =

t2

2
[D1,D2]Id(y0) + O(t3),

Descombes et al. Multi-scale reaction waves simulation
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Error estimate

ϕt
3(y0)−

(
ϕt

2ϕ
t
1
)
(y0) =

t2

2
[D1,D2]Id(y0) + O(t3),

and [D1,D2] is now a Lie bracket...

[D1,D2] =
∑

i

∑
j

(
∂f1,i

∂yj
f2,j −

∂f2,i

∂yj
f1,j

) ∂

∂yi

We are not limited to the finite dimension...D1 =
∑

j

f1,j
∂

∂yj
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Application to Lie et Strang formulae denoting by F the reaction
term for a scalar equation.

Ttu0 − YtXtu0 =
t2

2
F”(u0)(∂xu0)

2 + O(t3),

Ttu0 − Yt/2XtYt/2u0 =

t3

24

(
2F(4)(u0)(∂xu0)

4 + 8F(3)(u0)(∂xu0)
2(∂xxu0) + 4F”(u0)(∂xxu0)

2
)

− t3

24

((
F(u0)F(3)(u0) + F”(u0)F′(u0)

)
(∂xu0)

2
)

+ O(t4)
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Stiffness comes into play

Detected by the beginning of 90’
(Hairer Wanner 91, D’Angelo Larrouturou 95)

Numerical analysis of linear model ODEs
(Verwer Sportisse 00)

Various origins of stiffness
Large spectrum of temp. scales in chemical source
Large spatial gradients of the solutions
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Large spectrum of temporal scales

A “model” problem for the fast scales for Uε = (uε, vε)t∂tuε − ∂x · (Bu(uε, vε) ∂xUε) = f(uε, vε), x ∈ Rd

∂tvε − ∂x · (Bv(uε, vε) ∂xUε) =
g(uε, vε)

ε
, x ∈ Rd

The entropic structure of the RD system of equations⇒
Dynamics on the partial equilibrium manifold

∂tu− ∂x ·
(

Bu(u, h(u)) ∂x

(
u

h(u)

))
= f(u, h(u))

Order reduction due to fast scales
Diag. diffusion : Lie RD order 0 fast variable only
Diag. diffusion : Strang DRD order 0 fast variable only
Non-diag. diffusion : Lie DR and RD order 0
Non-diag. diffusion : Strang RDR order 1, DRD order 0Descombes et al. Multi-scale reaction waves simulation
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High spatial gradients

Initial data with high gradient (L2 norm)

High constant in the error estimate O(t2) = C(||U0||H1) t2
Regularizing effect of diffusion
Example of error estimate for DR

|Lt
1 − T t | < C(||U0||L2)t3/2

various asymptotics with a threshold time step
Key issue from a numerical point of view
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Stability + Accuracy

Considering:

y ′ = λy =⇒ yn+1 = R(z)yn z = hλ

We are particularly looking for:

A-stable methods

High order methods

L-stable methods

Descombes et al. Multi-scale reaction waves simulation
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Implicit Runge Kutta Methods

Based on Ehle’s Methods of type II: (RadauIIA)

Order: p = 2s − 1 (s: stage number)
A-stable

L-stable

RADAU5
(Hairer & Wanner Springer-Verlag 91)

Based on RadauIIA with s = 3 and p = 5

Simplified Newton Method =⇒ Linear Algebra tools

Adaptative time integration step

Descombes et al. Multi-scale reaction waves simulation
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Explicit Runge-Kutta methods

We want to solve the discrete heat equation

u̇ = Au,

with an explicit s-stage Runge-Kutta method.

Because of the properties of the matrix A, we need to find a
stable Runge-Kutta method for the simple problem

u̇ = λu,

with λ real, negative and as big as possible...

Descombes et al. Multi-scale reaction waves simulation
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ROCK4

(Abdulle SIAM J. Sci. Comput. 02)

Extended Stability Domain (along R−) by increasing the
number of stages

Order 4 - Stability ×s2.

Adaptative time integration step

Explicit Methods =⇒ NO Linear Algebra problems

Low Memory Demand

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Explicit/Implicit Operator Splitting

Numerical Strategy:

∂tU − ε∆U︸ ︷︷ ︸
ROCK4

= Ω(U)︸ ︷︷ ︸
RADAU5

Reduction in Computational Time

Reduction in Memory Demand

Same previous accuracy established by Splitting Scheme

Highly parallelizable - Diffusion - Reaction

Descombes et al. Multi-scale reaction waves simulation
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Background

Consider the general nonlinear system of ODEs:

u′(t) = f (u(t))
u(0) = u0

on t ∈ (0,T ) where f : RM → RM and u : R→ RM .
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Decomposition of the Time Direction

We decompose the time domain Ω = (0,T ) into N time
subdomains Ωn = (Tn,Tn+1) and consider for
n = 0,1, . . . ,N − 1:

u′
n(t) = f (un(t))

un(Tn) = Un

on t ∈ (Tn,Tn+1).

Descombes et al. Multi-scale reaction waves simulation
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Parareal Algorithm

( Lions et al. C. R. Acad. Sci. Paris Sér. I Math. 01)

Combination of two solvers

Coarse Solver =⇒ fast (sequential calculation)
Fine Solver =⇒ slow (parallel calculation)

Convergence from a coarse approximation to the detailed
dynamics
Iterative Method
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Parareal Algorithm

The parareal algorithm is based on two propagation operators :
G∆Tn(U) and F∆Tn(U), that provide respectively a coarse and
an accurate approximation of φ∆Tn(U). In this way, the
algorithm starts with an initial approximation U0

n given for
example by the sequential computation

U0
0 = u0, U0

n = G∆Tn−1(U0
n−1) for n = 1, . . . ,N,

and then performs for i = 1, . . . , iconv the correction iterations

Ui
0 = u0, Ui

n = F∆Tn−1(Ui−1
n−1) + G∆Tn−1(Ui

n−1)− G∆Tn−1(Ui−1
n−1)

forn = 1, . . . ,N.
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Parareal Algorithm

Based on the works of Chartier, the time decomposition
method can be also interpreted as a multiple shooting method.
In fact, considering U = (U0, . . . ,UN)T as the unknowns, the
system can be written as

F(U) =


U0 − u0

U1 − φ∆T0(U0)
...

UN − φ∆TN−1(UN−1)

 = 0.
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Parareal Algorithm

Solving this system with Newton’s method, leads after a short
calculation to

Ui
0 = u0, Ui

n = φ∆Tn−1(Ui−1
n−1)+

∂φ∆Tn−1(Ui−1
n−1)

∂Ui−1
n−1

(
Ui

n−1 − Ui−1
n−1

)
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“Toy” Model

Belousov-Zhabotinsky system of equations

∂a
∂τ
− Da∆a =

1
µ

(−qa− ab + fc),

∂b
∂τ
− Db∆b =

1
ε

(qa− ab + b(1− b)) ,

∂c
∂τ
− Dc∆c = b − c,

ε = 10−2 µ = 10−5 f = 1,6 q = 2.10−3

Da = 2,5.10−3 Db = 2,5.10−3 Dc = 1,5.10−3
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“Toy” Model - Some results

Grid 129× 129 257× 257
Coarse solver RDR Strang Rock4 RDR Strang Rock4

Nproc 64
Nproc/Nite 16 32 16 32
Tfine/Tpara 2.16 3.21 2.02 2.88

Table: Computation time ratios, 2D BZ
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Conclusions

Convergence rate diminished due to Stiff phenomena

Parallel speedup is possible, but the speedup is modest

Appropriate Coarse Solvers −→ Cheap Stiff Integrators
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Adaptive Multiresolution

(Cohen et al. Mathematics of Computation 01)
Principles of the MR:

Represent a set of function data as values on a coarser
grid plus a series of differences at different levels of nested
grids.
The information at consecutive scale levels are related by
inter-level transformations: projection and prediction
operators.
The wavelet coefficients are defined as prediction errors,
and they retain the detail information when going from a
coarse to a finer grid.

Main idea: use the decay of the wavelet coefficients to obtain
information on local regularity of the solution.
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Multiresolution Transformation

There is a one-to-one correspondence

Uj ←→ (Uj−1,Dj),

which can be implemented using the operators P j
j−1 and P j−1

j .

By iteration of this decomposition, we obtain a multiscale
representation of UJ in terms of MJ = (U0,D1,D2, · · · ,DJ).
Using the local structure of the projection and prediction
operators, we can implement the multiscale transformation

M : UJ 7−→ MJ .
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Compression

Given a set Λ ⊂ ∇J of indices λ, we define a truncation
operator TΛ, that leaves unchanged the component dλ if λ ∈ Λ
and replaces it by 0, otherwise.

In practice, we are typically interested in sets Λ obtained by
thresholding: given a set of level-dependent threshold
(ε0, ε1, · · · , εJ), we set

Λ = Λ(ε0, ε1, · · · , εJ) := {λs.t .|dλ| ≥ ε|λ|}.

Applying TΛ on the multiscale decomposition of UJ amounts to

building an approximation AΛUJ , where the operator AΛ is
given by

AΛ := M−1TΛM.
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Adaptive Time-Space Numerical Strategy

Refinement Precautionary measure to account for possible
translation or presence of finer scales in the
solution.

Time Evolution Explicit/Implicit Strang RDR Operator Splitting
Method.

Thresholding Wavelet Thresholding Operation:

εj = 2
d
2 (j−J)ε, j ∈ [0, J],

in order to ensure a thresholding error of
prescribed order ε (d = spatial dimension).

If S∆t denotes the Strang splitting time integration operator

Un+1 = S∆t(M−1RTΛn
ε
MUn)
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Implementing Configuration

Data Structure : Graded Tree
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Implementing Configuration

Time Integration : Phantoms
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Implementing Configuration

Multiscale Transformation : Projection

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Projection

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Projection

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Projection

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Projection

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Projection

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Prediction

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Prediction

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Prediction

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Prediction

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Prediction

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Prediction

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

Implementing Configuration

Multiscale Transformation : Prediction

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples
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Thresholding & Refinement
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BZ Model

Belousov-Zhabotinsky system of equations

∂a
∂τ
− Da∆a =

1
µ

(−qa− ab + fc),

∂b
∂τ
− Db∆b =

1
ε

(qa− ab + b(1− b)) ,

∂c
∂τ
− Dc∆c = b − c,

ε = 10−2 µ = 10−5 f = 1,6 q = 2.10−3

Da = 2,5.10−3 Db = 2,5.10−3 Dc = 1,5.10−3
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“Toy” Model

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions

Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
Adaptive Multiresolution
Adaptive Time-Space Strategy
Some illustrating examples

2D Configuration

Time Domain : T = [0,4]

Spatial Domain : Ω = [0,1]× [0,1]

Integration Time Step : ∆t = 4/1024
Tolerances of Time Integrators: tol = 1.10−5

Finest Grid Level : J = 10
Number of cells at Grid J: 2d×J = 1048576 = 1024× 1024
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L2 Error

‖uJ
qe(t)− uMR(t)‖L2︸ ︷︷ ︸

Total Error

≤ ‖uJ
qe(t)− uJ

split(t)‖L2︸ ︷︷ ︸
Splitting Error

+ ‖uJ
split(t)− uMR(t)‖L2︸ ︷︷ ︸

MR Error
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Adaptive Grid

Compression −→ 1.41%
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Compression −→ 3.90%
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Adaptive Grid

Compression −→ 5.77%
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3D Configuration

Time Domain : T = [0,2]

Spatial Domain : Ω = [0,1]× [0,1]× [0,1]

Integration Time Step : ∆t = 2/256
Tolerances of Time Integrators: tol = 1.10−5

Finest Grid Level : J = 9
Number of cells at Grid J:
2d×J = 134217728 = 512× 512× 512
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Compression −→ 10.38%
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Memory requirements

Radau5 −→ L1 = 4×W1 ×W1 + 12×W1 + 20

Rock4 −→ L2 = 8×W2

W = 3× 512× 512× 512 ≈ 4.03× 108 −→ 24 Gb

W1 W2 L = L1 + L2

Quasi-exact W 0 6.5× 1017 −→ 36 Eb

Splitting 3 W 3.2× 109 −→ 191 Gb

MR/Splitting 1.10−1 3 0.13W 4.2× 108 −→ 25 Gb
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Radau5 −→ L1 = 4×W1 ×W1 + 12×W1 + 20

Rock4 −→ L2 = 8×W2

W = 3× 512× 512× 512 ≈ 4.03× 108 −→ 24 Gb
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AVC Model - Work in progress - 0-d model

System of 19 ODEs.
Unknowns :

ions: (Na+, K +, Ca2+, Cl−, glu−) inside the neurons,
glial cells and extracell space,
fn, fa,
Vn et Va, potentials inside the neurons and glial cells.
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In 3D, system of reaction-diffusion

diffusion of ions in the astrocytes and in the extracell
space,
no diffusion of ions in neurons,
no diffusion for fn, fa, Vn et Va.

System of reaction-diffusion:

dui

dt
− εi ∆ ui = Fi(u1, ...,u19).

Homogeneous Neumann boundary conditions.
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Configuration

Time Domain : T = [0,3600]

Spatial Domain : Ω = [0,50000]× [0,50000]

Integration Time Step : ∆t = 3600/360 = 10
Tolerances of Time Integrators: tol = 1.10−5

Finest Grid Level : J = 8
Number of cells at Grid J: 2d×J = 65536 = 256× 256
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Adaptive Grid

Compression −→ 1.25%
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Fine Grid

Compression −→ 100%
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Conclusions and perspectives

Convergence rate diminished due to Stiff phenomena

Parallel speedup is possible, but the speedup is more
modest than in space

Reduction of the size of the system with adaptative
muliresolution

Work in progress
Detailed description of “waves”
Complex chemistry in a RD configuration
−→ detailed analysis of flame propagation
Multi-dimensional configurations (Brain in 3D)
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Wavelet Representation

In the case where P j−1
j is linear, i.e.,

ûµ :=
∑

γ

cµ,γuγ ,

using the wavelet terminology, we can write

uγ := 〈u, ϕ̃γ〉,
where the dual scaling function ϕ̃γ is simply

ϕ̃γ := |Ωγ |−1χΩγ ,

and

dµ := uµ − ûµ = 〈u, ϕ̃µ〉 −
∑

γ

cµ,γ〈u, ϕ̃γ〉 = 〈u, ψ̃µ〉.
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Wavelet Representation

The dual wavelet ψ̃µ is given by

ψ̃µ := ϕ̃µ −
∑

γ

cµ,γϕ̃γ .

To describe in a simple way the multiresolution vector, we
define ∇J :=

⋃J
j=0∇j with ∇0 := S0 and write

MJ = (dλ)λ∈∇J = (〈u, ψ̃λ〉)λ∈∇J

where we have set dλ = uλ and ψ̃λ = ϕ̃λ if λ ∈ ∇0.
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