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The Schrödinger equation

Consider the autonomous time dependent SE

g q

It is separable in its kinetic and potential parts. The solution of the 
discretised equation is given by

where c = (c1,…, cN)T ∈ N and   H = T + V ∈ N×N Hermitian matrix.
Fourier methods are frequently used  

i h f F i f (FFT)is the fast Fourier transform (FFT)



Consider the Strang-splitting or leap-frog second order method

Notice that 

the exponentials are computed only once and are stored at the beginning. 
Similarly, for the kinetic part we have 

This splitting was proposed in:  

Feit, Fleck, and Steiger, J. Comput. Phys., 47 (1982), 412.





Non-autonomous Separable System

Let us now consider the non-autonomous separable system

with the standard form to convert the system into autonomousy

or, equivalently

This simple procedure can cause serious drawbacks in the 
numerical schemes to be usednumerical schemes to be used
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P blProblem:

describes the motion of a charged particle in a magnetic field perturbed by  s 
electrostatic plane waves, each with the same wavenumber and amplitude, but 
with different temporal frequencies.

Standard split 

Our split 

This split allows to use methods for near-integrable systems in addition
To techniques for RKN methods included modified potentials and Processing

SB F Diele C Marangi and S Ragni Splitting and composition methods forSB, F. Diele, C. Marangi, and S. Ragni, Splitting and composition methods for 
explicit time dependence in separable dynamical systems.
JCAM 235 (2010) 646-659.



Polynomial Approximations: Taylor, Chebyshev and Splitting

Let us consider again the linear time dependent SE

with  H real and symmetric.
This problem can be reformulated using real variables.This problem can be reformulated using real variables.

Consider                          then

Hamiltonian system:   

or, in short:     z’ = M z       with z = (q,p)T

Formal solution:



The Taylor Method
An m-stage Taylor method for solving the linear equation can be 
written as

where                 is the Taylor expansion of the exponential. It is a 
polynomial function of degree  m which approximates the exact y g
solution up to order  m

and we can advance each step by using the Horner's algorithm

This algorithm can be trivially rewritten in terms of the real vectorsThis algorithm can be trivially rewritten in terms of the real vectors, 
q,p, and it only requires to store two extra vector q and p.



The Taylor Method
The matrix                 that propagates the numerical solution  can be 
written as

where the entries T1(y) and T2(y) are the Taylor series(y) (y) y
expansion of  cos(y)  and  sin(y)  up to order m, i.e.

Notice that 
i i l i f i ! Th i l i bit is not a symplectic transformation! The eigenvalues are given by

Th h i t bl ifThe scheme is stable if

For practical purposes, we require however



The Chebyshev Method
The Chebyshev method approximates the action of the exponential 
on the initial conditions by a near-optimal polynomial given by:

where

with                                          Here, Tk(x) is the kth Chebyshev 
polynomial generated from the recursion

and T0(x)=1,  T1(x)=x.  Jk(w) are the Bessel functions of the first kind 
which provides a superlinear convergence for  m > w or, in other 

d hwords, when



The Chebyshev Method
The Clenshaw algorithm allows to compute the action of the polynomial 
by storing only two vectors

which can also be easily rewritten in term of the real vectors q,p.

The scheme can be written as

As in the Taylor case: 

It is not a symplectic transformation.



The Symplectic Splitting Method
We have built splitting methods for the harmonic oscillator!!!

Exact solution (ortogonal and symplectic)

We consider the composition

Notice that



The Symplectic Splitting Method

We have

which are polynomials of degree twice higher as in the previous caseswhich are polynomials of degree twice higher as in the previous cases 
for the same number of stages. 

The algorithm: a generalisation of the Horner's algorithm or theThe algorithm: a generalisation of the Horner s algorithm or the 
Clenshav algorithm 

It only requires to store one additional real vector of dimension



The Symplectic Splitting Method

The methods preserve symplecticity by construction:

Stability: M is stable if |Tr K|<2, i.e.

Theorem:Any composition method is conjugate to an orthogonal method,Theorem:Any composition method is conjugate to an orthogonal method, 
and unitarity is preserved up to conjugacy.

There is a recursive procedure to get the coefficients of the splitting p g p g
methods from the coefficients of the matrix  K.

We can build different matrices with: 
- Large stability domain
- Accurate approximation to the solution in the whole interval (like 
Chebyshev)
- Methods with different orders of accuracy and very large number of 
satges.



Taylor    order    tol=inf        tol=10-8      tol=10-4
10. 0. 0. 0.
15. 0.111249 0.111249 0.111249
20. 0.164515 0.164515 0.164515
25. 0. 0.065246 0.06524625. 0. 0.065246 0.065246
30. 0. 0.108088 0.108088
35. 0.0461259 0.138361 0.322661
40 0 0804521 0 160884 0 32161840. 0.0804521 0.160884 0.321618
45. 0. 0.178294 0.320804
50. 0. 0.192154 0.32015

Chebyshev    order     tol=inf        tol=10-8      tol=10-4
20. 0.00362818 0.321723 0.643217
25 0 00233368 0 384289 0 6402925. 0.00233368 0.384289 0.64029
30. 0.00162599 0.425648 0.638324
35. 0.00119743 0.45502 0.636912
40 0 000918402 0 476957 0 6358540. 0.000918402 0.476957 0.63585
45. 0.000726646 0.635021 0.635021
50. 0.000589228 0.634356 0.634356
55 0 0 633812 0 63381255. 0. 0.633812 0.633812
60. 0. 0.633357 0.633357



Splitting methodsSplitting methods

Error bounds



Schrödinger equation with a Poschl-Teller potential

withwith

Initial conditions



Poschl-Teller potential

0
Taylor: 10-40
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Poschl-Teller potential

0
Split: 4-12
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Poschl-Teller potential

0
Chebyshev: 20-100
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Poschl-Teller potential

0
New Split
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Problem: To numerically solve the linear time dependent system

It can appear after discretisation of linear PDEs (or their linear part):
li d li S h ödi i M ll ilinear and non-linear Schrödinger equation, Maxwell equations, etc.

The simplest solution is to convert the system into autonomous

where                          The system is no longer linear and the most 
efficient methods can not be used



Th M i iThe Magnus series expansion

Theorem (Magnus 1954). Let  A(t)  be a known function of  t (in 
general,  in an associative ring), and let Y(t) be an unknown function 
satisfying  Y’ = A(t) Y, with Y(0) = I. Then, if certain unspecified conditions y g ( ) ( ) p
of convergence  are satisfied, Y(t) can be written in the form

where

and  Bn are the Bernouilli numbers. 

The convergence is asured if



The Magnus expansion

which can be obtained by Picard iteration or using a recursive formula

where

Convergence condition:
This is a sufficient but 
NOT necessary condition 

F C S ffi i t diti f th f th MF. Casas, Sufficient conditions for the convergence of the Magnus 
expansion, J. Phys. A, 40 (2007), 15001-15017



Splitting-Magnus methodsSplitting Magnus methods

with



Splitting-Magnus methodsSplitting Magnus methods

with

We can approximate the solution by the composition



Splitting-Magnus methodsSplitting Magnus methods

with

We can approximate the solution by the composition

with the averages

SB F Casas and A Murua Splitting methods for non autonomousSB, F. Casas and A. Murua, Splitting methods for non-autonomous 
Linear systems, Int. Jour. Comp. Math., 6 (2007), 713-727



Splitting-Magnus methodsSplitting Magnus methods

with



Splitting-Magnus methodsSplitting Magnus methods

with

This technique can be useful for methods up to order six and for moderate
accuracies.

For more accurate results and higher order methods one can use a
symmetric second order scheme and the multiproduct methods

Siu A. Chin: http://faculty.physics.tamu.edu/chin



ConclusionsCo c us o s
Splitting methods are powerful tools for numerically 
solving the Schrödinger equationsolving the Schrödinger equation

The performance strongly dependes on how the 
system has been split as well as on the choice of the 

i t th d f h blappropriate methods for each problem

Alternatively, one can build methods tailored for 
particular problems

Th i t ti blThere are many interesting open problems


