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Universidad Politécnica de Valencia

Symposium on Splitting Methods for Differential Equations

Castellón, September 7, 2010



Introduction Algebraic relations Harmonic oscillator splitting Comparison of performance Outlook References

Structure

1 Introduction
Motivation
Problem setting
Overview of existing methods

2 Algebraic relations

3 Harmonic oscillator splitting

4 Comparison of performance

5 Outlook

6 References



Introduction Algebraic relations Harmonic oscillator splitting Comparison of performance Outlook References

Motivation

Different types of equations

Hamiltonian mechanics

H =
1
2

p2 + V (q) =⇒ d
dt

(
q
p

)

=

{
∇pH
−∇qH

}

Quantum mechanics - Schrödinger equation

i
∂

∂t
Ψ(x , t) = HΨ(x , t) ≡

(

−1
2
∆+ V (x)

)

Ψ(x , t)

Mean field nonlinear QM - Gross-Pitaevski equation

i
∂

∂t
Φ(x , t) =

(

−1
2
∆+ V (x) + g|Φ(x , t)|2

)

Φ(x , t)
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Motivation

Motivation

Many physical potentials V (x) allow Taylor expansions around their
minimum

V (x) =
1
2

V ′′(0)x2 +
1
6

V ′′′(0)x3 + . . .

Often, we are only interested in the behaviour close to the minimum.

Bose-Einstein-condensate (Nobel Prize 2001,
Ketterle, Cornell, Wieman)
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Problem setting

Schrödinger equation in units ~ = 1

Consider the linear Schrödinger equation

i
∂

∂t
Ψ(x , t) = HΨ(x , t) ≡

(

−1
2
∆+ V (x)

)

Ψ(x , t), Ψ(x ,0) = Ψ0(x)

(1)
with the solution (1-parameter family of unitary operators exists by
self-adjointness of H, c.f. Stone’s theorem)

Ψ(x , t) = e−itHΨ0(x) (2)

Spectral theorem

A self-adjoint compact operator on a Hilbert space with family of
eigenvalues (λ)I and eigenfunctions (φ)I yields an orthogonal basis
on its domain

Ψ(x , t) =
∑

n∈I

e−itλn〈φn|Ψ0〉φn(x) (3)
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Problem setting

The harmonic oscillator

Let H be a perturbed harmonic oscillator problems, for simplicity in 1D

H = − 1
2m

d2

dx2 +
1
2

mω2x2 + εV (x), ε≪ 1 (4)

The eigenfunctions of the (normalised) harmonic part are products of
Gaussian exponentials with Hermite polynomials.

λn =

(

n +
1
2

)

, n = 0,1,2, . . . , (5)

φn =
1
π1/4

1√
2nn!

Hn(x)e−x2/2 (6)
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Problem setting

Hamilton operator H can be written

H = −1
2

p2 +
1
2
ω2x2

︸ ︷︷ ︸

=:VHO(x)

+

(

V (x ,p)− 1
2
ω2x2

)

(7)

For small residual potentials V − VHO around x = 0, Hamiltonian can
be regarded as a perturbed harmonic oscillator.

Example

Pöschl-Teller potential V (x) = − 1
2mα

2 λ(λ−1)
cosh2 αx

-20 -10 0 10 20
0.00

0.05

0.10

0.15

0.20
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Overview of existing methods

Hamiltonian of the form H = T + VHO
︸ ︷︷ ︸

HHO

+ εV (x)

Hermite pseudo spectral method

Split as HHO + εV , evolution is

Ψ(x ,h) = e−ihHΨ(x ,0)
e.g.
= e−ihHHO e−ihεVΨ(x ,0) +O(h2)

1 Rest potential V is already diagonal in coordinate space ⇒
exponential of scalars

2 Use the spectral theorem to diagonalise harmonic part

Fourier pseudo spectral method

Split as T + (VHO + εV )

1 Potential is again diagonal
2 Use plane wave states to evolute kinetic part via FFT
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Definitions

A Lie-algebra g is a vector space over some field F equipped with a
Lie-bracket, that is a map [·, ·] : g× g → g satisfying the following
properties

Bilinearity

Alternating ∀x ∈ g : [x , x ] = 0

Jacobi identity [x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0∀x , y , z ∈ g

Let X ,Y be smooth vector fields on a manifold and f a smooth
function

[X ,Y ](f ) := (XY − YX )(f )

Poisson bracket for smooth functions in canonical coordinates (q,p)
on the phase space

{f ,g} =
∑

i

(
∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

)
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Algebra of classical harmonic oscillator

We begin with classical mechanical systems given by the Hamiltonian

H =
1
2

ptMp +
1
2

qtNq

with corresponding equations of motion

d
dt

{
q
p

}

= J∇H =

(
0 M

−N 0

){
q
p

}

(8)

where J is the usual symplectic structur matrix.

Commutators of kinetic T and potential V terms (1D: m = ω = 1)

{T ,V} = −pq

and nested commutators

{T , {T ,V}} = 2T and {V , {T ,V}} = −2V
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Algebra of quantum harmonic oscillator

In the quantum mechanical setting think of the momentum and space
coordinates as operators. In the position space, p corresponds to
i∇q , i.e.

H =
1
2

ptMp +
1
2

qtNq

or equivalently, with small m,n denoting the matrix elements of M,N,

H = −1
2

∑

i,j

mij
∂2

∂xi∂xj
+

1
2

∑

ij

nijxixj

Commutators of kinetic T and potential V terms (1D: ~ = m = ω = 1)

[T ,V ] = −i
1
2
(pq + qp)

and nested commutators

[T , [T ,V ]] = −2T , and [V , [T ,V ]] = 2V

Note: 1-to-1 correspondence { , } → −i[ , ] of the Poisson-Lie and the
quantum harmonic oscillator Lie algebra.
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1 dimensional case

Exploit algebra isomorphism between the classical and quantum
mechanical structure.

i
∂

∂t
ψ(x , t) =

(

−1
2
∂2

∂x2 +
1
2

x2
)

ψ(x , t), (9)

Let A1 ≡ − 1
2

∂2

∂x2 , B1 ≡ 1
2 x2, s.t. e−ihA = e−ih(A1+B1).

Lemma

For h < π the following property is satisfied

e−ihA = e−if (h)A1 e−ig(h)B1 e−if (h)A1 (10)

= e−if (h)B1 e−ig(h)A1 e−if (h)B1 (11)

where
g(h) = sin(h), f (h) = tan(h/2). (12)

Obtained by S.A. Chin et al. in a different way, PRE 72 (2005)



Introduction Algebraic relations Harmonic oscillator splitting Comparison of performance Outlook References

1 dimensional case

Exploit algebra isomorphism between the classical and quantum
mechanical structure.

i
∂

∂t
ψ(x , t) =

(

−1
2
∂2

∂x2 +
1
2

x2
)

ψ(x , t), (9)

Let A1 ≡ − 1
2

∂2

∂x2 , B1 ≡ 1
2 x2, s.t. e−ihA = e−ih(A1+B1).

Lemma

For h < π the following property is satisfied

e−ihA = e−if (h)A1 e−ig(h)B1 e−if (h)A1 (10)

= e−if (h)B1 e−ig(h)A1 e−if (h)B1 (11)

where
g(h) = sin(h), f (h) = tan(h/2). (12)

Obtained by S.A. Chin et al. in a different way, PRE 72 (2005)



Introduction Algebraic relations Harmonic oscillator splitting Comparison of performance Outlook References

1 dimensional case

On the step-size limit

−5 0 5 10
−15

−10

−5

0

−5 0 5
−15

−10

−5

0

3.05 3.1 3.15 3.2
−15

−10

−5

0

Error in logarithmic scale for the integration of the HO ground state
using the Fourier-Hermite method

Explanation

Quantum ground state has non-zero energy 1/2 (in appropriate
units),

Ψ(x , t) =
∑

n∈I

e−it(n+1/2)〈φn|Ψ0〉φn(x)
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1 dimensional case

Proof

Algebra is generated by the two operators T ≡ A, V ≡ B, hence

eh/2V ehT eh/2V = eh(T+V )− h3
24 ([V ,[V ,T ]]+2[T ,[V ,T ]])+···

= eh(T+V )− h3
12 (−V+2T )+···

Use matrix representation of classical HO algebra

T =

(
0 0
−1 0

)

,V =

(
0 1
0 0

)

Easy to exponentiate and match with known solution

ef (h)V eg(h)T ef (h)V =

(
1 − g · f g

−2f + f · g · f 1 − f · g

)

!
= eh(T+V ) =

(
cos h sin h
− sin h cos h

)
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1 dimensional case

Exact decomposition - so what?

Suppose we split in harmonic part and rest H = T + VHO + εV , the
method reads ∏

j

e−iaj hεV e−ibj hHHO

With the help of the lemma
∏

j

e−iaj hεV e−if (bj h)VHO e−ig(bj h)THO e−if (bj h)VHO

=
∏

j

e−i(aj hεV+f (bj h)VHO)e−ig(bj h)THO e−if (bj h)VHO

If we expand the product, we can group the commuting terms VHO

and V to reduce the number of exponentials (more: FSAL).

Summary

We can compute the main contribution HHO exactly (cf. spatial
discretisation) and quickly via FFT.
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Chosen methods

We compare different methods for the two splittings (T + VHO) + εV
and T + (VHO + εV )
Recall

Φ
[A+B]
h =

s∏

i=1

Φ
[A]
ai h

◦ Φ[B]
bi h

+O
(
hp+1)

Runge-Kutta-Nyström-methods are particularly designed for the
case [B, [B, [B,A]]] = 0, e.g. for Hamiltonians quadratic in kinetic
energy

Schemes for near-integrable systems, where ε≪ 1

e.g. cancel εh3[A, [A,B]] but keep h3ε2[B, [B,A]]

Composition Φ̃h has order (s1, s2, . . .) if

Φ̃h − exp(h(A + εB)) = O(
∑

εjhsj+1)
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Gross-Pitaevskii

The Gross-Pitaevskii equation

Describes a Bose-Einstein condensate in a harmonic trap at zero
temperature

i
∂

∂t
Φ(x , t) =

(

− 1
2m

∆+
1
2

mω2x2 + g|Φ(x , t)|2
)

Φ(x , t)

Norm preservation |Φ(x , t)|2 = |Φ(x ,0)|2 allows for same splitting

(proof by derivation and plugging in of GPE and its complex
conjugate)
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Gross-Pitaevskii
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Gross-Pitaevskii
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Gross-Pitaevskii
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Quartic oscillator

Quartic oscillator

Usual Schrödinger equation with potential

V =
1
2

mω2x2 +
1
2
βx4

where ω = 7, m = 5, β = 1
8 m2

(
ω
10

)3 ≈ 1.0719,
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Morse potential

Morse potential

Approximation for the vibrational states of a diatomic molecule by

V (x) = D
(
1 − e−αx)2

= Dα2x2 +O((αx)3)

Parameters in a.u.
mass µ = 1745
dissipation energy D = 0.2251
length parameter α = 1.1741

(wavefunction not to scale)
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28 grid points in [−1.5,5], T = 100 + π
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Morse potential

Error for morse potential

Inititial condition: slightly shifted exact ground state
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Pöschl-Teller potential

The potential reads

V (x) = − 1
2m

α2 λ(λ− 1)

cosh2 αx
=

α2

2m

(
(αx)2λ(λ− 1)

)
+O((αx)3)

Parameters with ~ = 1
mass m = 5
width α = 0.1
depth λ = 6

(wavefunction not to scale)
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Pöschl-Teller potential

Error for Pöschl-Teller potential

Inititial condition: slightly shifted Gaussian
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Generalisation to higher dimensions

General case

i
∂

∂t
ψ(x , t) =

∑

i,j

(

−αij

2
∂2

∂xi∂xj
+
βij

2
xixj

)

ψ(x , t), (13)

consider the classical problem

d
dt

{
q
p

}

=

(
0 M

−N 0

){
q
p

}

= (A + B)

{
q
p

}

(14)

with M,N matrices and

A ≡
(

0 M
0 0

)

, B ≡
(

0 0
−N 0

)

.
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Extension to shifted potentials

Shifted potentials and angular momentum

General linear inhomogeneous equation

~̇x = A~x + ~b has solution ~x(h) = ehA~x0 + A−1
(

ehA − I
)
~b (15)

Equations of motion of linearly extended Hamiltonian take form (18)

H =
1
2

pT Mp +
1
2

qT Nq + CT p − DT q

Added angular momentum

H =
1
2

pT Mp +
1
2

qT Nq + CT p − DT q + qtEp

non-symmetric composition necessary to separate momentum and
space coordinates in the exponentials



Introduction Algebraic relations Harmonic oscillator splitting Comparison of performance Outlook References

Time dependence of oscillator frequency or linear disturbance

Time dependent potentials

Consider time dependence in the trap frequency

V =
1
2
ω(t)2x2

or in the linear perturbation (phase)

V =
1
2
ω2x2 +Ω(t)x

We expect simplifications through a careful study of the algebraic
implications for a Magnus integrator.
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Generalisation to higher dimensions

i
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−αij
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f (h,N,M) = tan
(

h
2

√
NM

)√
NMM−1.



Generalisation to higher dimensions

i
∂

∂t
ψ(x , t) =

∑

i,j

(

−αij

2
∂2

∂xi∂xj
+
βij

2
xixj

)

ψ(x , t), (16)

is equivalent to consider the classical problem

d
dt

{
q
p

}

=

(
0 M

−N 0

){
q
p

}

= (A + B)

{
q
p

}

(17)

with M,N matrices and

A ≡
(

0 M
0 0

)

, B ≡
(

0 0
−N 0

)

.

g(h,N,M) = M
√

NM
−1

sin
(

h
√

NM
)

,

f (h,N,M) = tan
(

h
2

√
NM

)√
NMM−1.



Extension to shifted potentials

Extension to shifted potentials

General linear inhomogeneous equation

~̇x = A~x + ~b has solution ~x(h) = ehA~x0 + A−1
(

ehA − I
)
~b (18)

Equations of motion of linearly extended Hamiltonian take form (18)

H =
1
2

pT Mp +
1
2

qT Nq + CT p − DT q

Lemma

For M,N spd and simultanously diagonalisable, the following property
is satsfied

e−ihH = e−i( 1
2 qT Fhq−DT Fhq) e−i( 1

2 pT Ghp+CT Ghp) e−i( 1
2 qT Fhq−DT Fhq)

where, as before,

Gh = M
√

NM
−1

sin
(

h
√

NM
)

, Fh = tan
(

h
2

√
NM

)√
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Extension to shifted potentials

Proof

The generator of the Lie-algebra includes now more terms, for which
we compute the composition in the associated Lie-group. As before,
we split in easily solvable terms

HA =
1
2

Fhq2 + α(h)q ⇒
{

q(h)
p(h)

}

=

{
q0

p0 − hFh − hα(h)

}

≡ ΦA
h (q0,p0)

HB =
1
2

Ghp2 + β(h)p ⇒
{

q(h)
p(h)

}

=

{
q0 + hGh + hβ(h)

p0

}

≡ ΦB
h (q0,p0)

and require the symmetric composition

Ψh(q0,p0) = ΦA
h/2 ◦ ΦB

h ◦ ΦA
h/2(q0,p0) (19)

to match the exact solution. Functions F ,G, α, β have been added to
account for the increased complexity of the algebraic structure.
Computing (19) and matching the coefficients with the exact solution
(18) yields the solution.
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Extension to shifted potentials

Thank you for your attention
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