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Part 1

Context

e Reaction-diffusion problems
e Splitting and composition methods



Reaction-diffusion problems

The most simple reaction-diffusion equation involves the

concentration(x, t) of a single substance in one spatial
dimension

Ou(z,t) = DOu(z,t) + F(u(z,t)) D >0

and Is also known as the Kolmogorov-Petrovsky-Piscounov e



Reaction-diffusion problems

The most simple reaction-diffusion equation involves the

concentration(x, t) of a single substance in one spatial
dimension

Ou(z,t) = DOu(z,t) + F(u(z,t)) D >0
and Is also known as the Kolmogorov-Petrovsky-Piscounov e
Specific forms appear in the literature:
e the choiceF'(u) = 0 yieldsthe heat equatign

e F(u)=u(l—u)yieldsFisher’s equatioand is used to
describe the spreading of biological populations;

e F(u)=u(l— u?) describesRayleigh-Benard convectipn

o Fl(u)=u(l—u)(u—a)withO<a<1 arises in
combustion theory and is referred toasdovich’equation



Lie-Trotter and Strang Splitting

Let us lllustrate the methods on the linear case

@ = Au+ Vu, V linear.

ot

Lie-Trotter (orderl)
Splitting methods basically rely on the identity

6h(A—H/) _ ehA th 1+ 0 (hQ) .

Strang splitting
The symmetric version
N2V BA Jh/2V

yields an approximation afrder2.



High-order general compositions

One can consider general splitting methods of the form

eblhvealhAebghVBaghA o ebshVBaShA.

Baker-Campbell-Hausdorff formulaelds order conditions In
terms of the coefficients;, b, (these are not straightforward to

solve for high orders).

2
oMAB _ JM(A+B)+"-[AB]+..

€



High-order general compositions

One can consider general splitting methods of the form

eblhvealhAebghVBaghA o ebShVBaShA.

Also, raising the order can be achieved by considering
composition methodsf the form

\Ifh .= (I)%h ©0...0 (I)fylh,

whered;, Is a given basic method, e.g.

o &, — h/2Vhirph/2V



High-order general compositions

One can consider general splitting methods of the form
eblhvealhAebghVBaghA o ebShVBaShA.

Also, raising the order can be achieved by considering
composition methodsf the form

\Ifh .= (I)%h ©0...0 (I)fylh,

whered;, Is a given basic method, e.g.

o &, — h/2Vhirph/2V

Lo\ ho\ ! B\ h
H, = (1q-" d—2a de A de2v).
. D, (d 2v> (d 2) (d+2> (d+2v>

L - A\ J/
\ . J/

implic?if Euler implicitﬁidpoint explic‘ig Euler
(Peaceman-Rachford formula, 55’)




A disappointing result: order barrier 2

The heat equation is not reversiblenus, only splitting methods
usinge%= with coefficientsz; > 0 can be used.

Consider a splitting method of ordeifor ¢"(4+5) of the form

ohasAhbB || JhaiA kb B

Theorem (Sheng 89’, Suzuki 91’, Sussman & Wisdom 927)
Forp > 2 there existg such that; < 0 orb; < 0.

Theorem (Goldman & Kaper 96’)
Forp > 2 there existj, £ such that,; < 0 andb;, < 0.

An elegant geometric proof obtained by Blanes & Casas 05’.



Possibleremediestotheorder barrier

e Extrapolation method

4 1
—P b,y — -y,
3 h/2 © ¥h/2 3 h
Formal order, but unstable with the Peaceman-Rachford

approximation.

e An extrapolation methot considered in Schatzman '01
and taken from Dia '96,

45 1 13
6—4q)h/3 © (I)h/S © (I)h/S T §(I)h/2 © (I)h/Q — 6_4(1)h-
Although the formal order of this method4sthe true
order of convergence Is not clearly understood.



Possibleremediestotheorder barrier

e Allow for the use of complex coefficients such that
QR(CLZ) > (.

The idea of using complex coefficients in numerical
methods Is1ot new

Rosenbrock 63’
Suzuki 90’ (composition methods)

Gegechkori, Rogava & Tsiklauri 02’, 04’ (orders 3 & 4,
convex combinations)

Chambers 03’ (Celestial mechanics)
Bandrauk, Dehghanian & Lu. 06’ (orders 3 & 4)

(see also the recent survey by Blanes, Casas & Murua, 1



Part 2

Splitting methods with complex coefficients
e Construction of new high-order methods
e Convergence for the linear case with exponential maps



Jump methods
Theorem Let &, be a method obrderp. If

’Y1+...+%:1andﬁ“+,,,+7§+1 — 0
thenV; := &, ; 0...0d,; has (at leastprderp + 1.



Jump methods
Theorem Let &, be a method obrderp. If

V4. Fys=TlandyT 4. AP =0
theny), := @, ,0...0d,, has (at leastprderp + 1.

Proof. The idea is to show that if the basic method has opgler

Dy (y) = enly) + Cy)RP*! + O(RPH?),

wherey,, denotes the exact flow, then

Ui(y) = on(y) + Cy) (W + ...+ AR+ O(hPF2).




Jump methods
Theorem Let ®;, be a method obrderp. If

’Y1+...+%:1andﬁ“+,,,+7§+1 — 0
thenV,, := &, 0...0®,, has (at leastprderp + 1.

Triple jump method.
If s =3 and~; = 3 (Symmetry) there is a unique real solution

1 91/(p+1)
=BT ST 51 2T TS T o)

and for®;, symmetricof orderp, ¥;, is of orderp + 2.

This procedure can be repeated iteratively up to any order
(Creutz & Gocksch 89’, Forest 89°, Suzuki 90’, Yoshida 90)



Double jump method of Suzuki 90’ s = 2

n+r=1 AT +4" =0

Solving the equations for = 2, no real buttomplexsolutions:

%p) _ fyép) _ (1 1 e )—1.

Suzuki constructed methods of high-order by induction:

ol =, oY = cpizg)h 0 @i?i)h, for p > 1.

The above construction with complex coefficients is explici
given by Suzuk(Phys. Lett. A 90’ and J. Math. Phys. 917)

as an introduction for his popular composition methods
Involving only real coefficients.

In fact, it yields coefficients witlpositive real parts up to
order6.



New triple jump methods s = 3

Nt+r+u=1 W +RT +5T =0

Solving the equations for even
There arep + 1 solutions InC: for k =0, ... p,

(p) (p) 1 (p) 91/(p+1) p2ikm /(p+1)
Lk T I8k T D 2ikR D) T2k T Ty 1 ) g2k (o)

~

Optimal solutions
The two conjugate solution(s/\”, v, %Ep)) and (7", 5%, ng))
which minimizemax; | arg(fy](.f?,g)\ are obtained fok = +p/2:
7(10) _ ) _ e/t v(p) _ 2/ P+

1 3 2¢im/(p+1) f 91/(p+1)7 12 2eim/(p+1) - 91/(p+1)

Notice that these solutions also minimize| + |v.| + |7s3|-



New triple jump methods s = 3

Similarly, symmetric composition methodéf’) of orderp
(p even) can be constructed by induction:

oY =, V= @izg)h o @iz}g)h 0 @i?}o)h forp > 2.

Theorem
The methodd'”’ requiress = 37/2-1 compositions ofp,, with
combineadcoefficientsyy, ..., ;.

Forp = 2,4,6,8, the coefficientsy;, j = 1,...,3?27!, have
positive real parts.



New triple jump methods s = 3

An improvemento reduce the (:|uantitt5xnau><Z 1.5 |arg(y;)| isto

replace Coefn(:lentey1 ,fyé ),% ) by (% ,fyé ),wé ))
alternatively, e.q.

(I)§LP+2) (I)(p) O (I)( p)

NN T (I)(Z?z)» if p/2 odd

o\ = <I>(_@)h S <I>(_(2))h 0 <I>(_(])9)h else

Theorem
The methoo@%m requiress = 37/2~! compositions ofb;, with
combineadcoefficientsyy, ..., ;.

Forp = 2,4,6,8,10,12, 14, the coefficientsy; for
i=1,...,3”?71 have positive real parts.



Triple and Quadruple jump methods.angles

e [arg (7))
7T/2 _7’_3//,/’ ........................... T e

_______ triple jump
—_——_ Improved triple jump
___quadruple jJump

| | | | OIrdler]? |

2 4 6 8 10 12 14 16

/4

Values ofmax;_; ,|argy;
versus order of composition methods.



New qguadruplejump methods s = 4

Take@%p), symmetric method of order, and consider

+2 ) (p)



New qguadruplejump methods s = 4

Take<I>§Lp>, symmetric method of order, and consider

(p+2) (p)
by = (I)Vth © (I)(sza)h © <I>S§i>h © (I)(W?»h

Solving the equations for even
The two complex conjugate solutions with minimal sum of

moduli and minimainax;_; 4 arg(yj(.f?,g)\) are obtained for

() _ =) _ =(p) w _ 1 w sin(7/(p + 1)
4 4+4dcos(n/(p+1))




New qguadruplejump methods s = 4

Take<I>§Lp>, symmetric method of order, and consider

+2 (p)
\Ij%p = (I)(sz)ﬂh © (I)(sza)h © (I)S;)?)h © (I)gmh

®) _ =) _ =) _ o _ 1 sin(7/(p + 1)
4 4+4dcos(n/(p+1))

Theorem
The methodlfgm requiress = 4 - 3?/2=2 compositions ofb,,
with combinedcoefficientsyy, ..., ..

Forp = 4, 6,8, 10, 12, the coefficients; fori = 1, ..., 4r/2~1
have positive real parts.



An accur ate approximation at midstep

An interesting feature Is that we obtan accurate
approximation of the solution at midstémoticey, + v, = 1/2).

Indeed, consider the method of orget 2:

Yorrp = (D7) 0 0P))(y,),
Un+1 = (¢§€%O¢§Z%)(yn+l/2)°

As a matter of fact(2+1, 2v,) and(2v,, 21 ) aresolutions of the
orderp + 1 equations withs = 2, so thaty,,,,, yields an

approximation of the solution at tinte= ¢,, + h/2 with local
error O(hP*2).



Triple and Quadruple jump methods.diagrams

order4 order6 orderg
84! 2 84! ¢ ¢ ¢

method®, method®,, (®) method®,, ®)
order4 order4 order6 order6 orderg orderg
! ! ! ! .

method\Ifﬁf) methodklfg6> methodxpgf)

Diagrams of coefficients for compositions methods

Example:\Ifgl) = <I>§21>h 0 @%2}3 o <I>(72h) 0 <I>(72h>, V=14 2\1/—25



Convergencein thelinear case for exponential maps

Theorem

Under some reasonable assumptions on the linear opergtors

B and L =A 4+ B, an exponential splitting method
ealhAeblhBeaghAebghB o BaShAebShB.

with coefficients in an appropriate sector of the right-side

complex plane and dbrmal orderp remains of ordep for the
linear equationy; = Au + Bu.



Convergencein thelinear case for exponential maps

Theorem
Under some reasonable assumptions on the linear opergtors
B and L =A 4+ B, an exponential splitting method

ealhAeblhBeaghAebghB o BaShAebShB.

with coefficients in an appropriate sector of the right-side
complex plane and dbrmal orderp remains of ordep for the
linear equationy; = Au + Bu.

Pr oof

The proof is a direct consequence of a previous result of
Hansen & Ostermann (2008)r splittings of the form

L=A1+A +A;+ ...+ A,

where theA,’s generate continous semigroupsdnHilbert
space), and satisfy certain smoothness assumptions.



In our setting: ma-dissipative operators
A:DA CH—H

87

0 Sa;

Vu € D(A), —(Au,u) € S,,
Vz & Sy, zId + AisomorphismD(A) — H.



In our setting: ma-dissipative operators
A:DA CH—H

A

87

0 S,

-
>

Vu € D(A), —(Au,u) € S,,
Vz & Sy, zId + AisomorphismD(A) — H.

A ma-dissipative operatod with 0 < o < 7/2 generates a
continuous semi-group oA and Is a contraction operator:

vt >0, [leullm < [lulla

Here:a; A is ma-dissipative inL?(R?) with o = |arg(a;)|.



Part 3

Numerical experiments

e Reaction-diffusion with Fisher’s non-linear potential.
e Exponential maps and Peaceman-Rachford approx.



Reaction-diffusion with Fisher’s non-linear potential

We consider the scalar equation in one-dimensioff en (0, 1)
up = Au 4+ u(l — u).
After discretization in spacgave arrive at the ODE
U =AU+ (u'(1 —ub),...,uN(1—u))" e RY

The scalar differential equation

d
ke = u(l — u), u(0) = ug
dz
can be solved analytically as
e —1
U(Z) = U + UO(l — UO) 1 _|_(u0<ez z 1),

which is well defined for small complex time



Triple and Quadruple jump methods

104 IOr “Triple Jump” | 104, €110 “Quadruple Jump”

100 103? 10102

102 fynction evals \ 102 function e\i\/\a\l\ .
B - T T

Composition methods of orders 2,4,6,8.
Solid lines: exponentials. Dashes lines: Peaceman Rathfor



Triple and Quadruple jump methods

function evals

_error exponential maps;
: 10

10710

1¢¢ 103

10722

E error

function evals

Peaceman-Rachfor

1%

Solid lines: Quadruple jump method of order

Dashes lines and dashes-dotted lines: Extrapolation mgtho

Dotted lines: Strang splitting.

d



Per spectives

e systematic study of optimal composition methods
e convergence analysis for non-linear problems

e methods involving complex coefficients for only one
operator e.g. the order 4 method

(Bbl hVeal hAebghVeaghAebghVethAebghvealhAebl hV

whereb; = 1/10 — /30, by = 4/15 + 2i /15,

b; = 4/15 — /5 are complex, and

a1 — a9 = A3 = Q4 = 1/4 are reals

May be useful e.g. for the Schrodinger equation with a
non-linear potential.
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