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Plan of the talk
Paper published in BIT 49 (2009).
Similar results are derived independently by
E. Hensen & A. Ostermann (BIT 49, 2009).

1. Context

• Reaction-diffusion problems
• Splitting and composition methods

2. Splitting methods with complex coefficients

• Construction of new high-order methods

• Convergence for the linear case with exponential maps

3. Numerical experiments

• Reaction-diffusion with Fisher’s non-linear potential.
• Exponential maps and Peaceman-Rachford approx.

4. Future work – p. 2



Part 1

Context

• Reaction-diffusion problems
• Splitting and composition methods
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Reaction-diffusion problems

The most simple reaction-diffusion equation involves the
concentrationu(x, t) of a single substance in one spatial
dimension

∂tu(x, t) = D∂2
xu(x, t) + F (u(x, t)) D > 0

and is also known as the Kolmogorov-Petrovsky-Piscounov eq.
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Reaction-diffusion problems

The most simple reaction-diffusion equation involves the
concentrationu(x, t) of a single substance in one spatial
dimension

∂tu(x, t) = D∂2
xu(x, t) + F (u(x, t)) D > 0

and is also known as the Kolmogorov-Petrovsky-Piscounov eq.
Specific forms appear in the literature:

• the choiceF (u) = 0 yieldsthe heat equation;

• F (u) = u(1 − u) yieldsFisher’s equationand is used to
describe the spreading of biological populations;

• F (u) = u(1 − u2) describesRayleigh-Benard convection;

• F (u) = u(1 − u)(u − α) with 0<α<1 arises in
combustion theory and is referred to asZeldovich’equation.
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Lie-Trotter and Strang Splitting

Let us illustrate the methods on the linear case

∂u

∂t
= ∆u + V u, V linear.

Lie-Trotter (order1)
Splitting methods basically rely on the identity

eh(∆+V ) = eh∆ ehV + O
(
h2

)
.

Strang splitting
The symmetric version

eh/2 V eh∆eh/2 V

yields an approximation oforder2.
– p. 5



High-order general compositions

One can consider general splitting methods of the form

eb1hV ea1h∆eb2hV ea2h∆ . . . ebshV eash∆.

Baker-Campbell-Hausdorff formulayields order conditions in
terms of the coefficientsaj, bj (these are not straightforward to
solve for high orders).

ehAehB = eh(A+B)+h2

2 [A,B]+...
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High-order general compositions

One can consider general splitting methods of the form

eb1hV ea1h∆eb2hV ea2h∆ . . . ebshV eash∆.

Also, raising the order can be achieved by considering
composition methodsof the form

Ψh := Φγsh ◦ . . . ◦ Φγ1h,

whereΦh is a given basic method, e.g.

• Φh = eh/2V eh∆eh/2V
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High-order general compositions

One can consider general splitting methods of the form

eb1hV ea1h∆eb2hV ea2h∆ . . . ebshV eash∆.

Also, raising the order can be achieved by considering
composition methodsof the form

Ψh := Φγsh ◦ . . . ◦ Φγ1h,

whereΦh is a given basic method, e.g.

• Φh = eh/2V eh∆eh/2V

• Φh =
(

Id − h

2
V

)
−1

︸ ︷︷ ︸

implicit Euler

[(

Id − h

2
A

)
−1 (

Id +
h

2
A

)]

︸ ︷︷ ︸

implicit midpoint

(

Id +
h

2
V

)

.

︸ ︷︷ ︸

explicit Euler

(Peaceman-Rachford formula, 55’) – p. 6



A disappointing result: order barrier 2

The heat equation is not reversible.Thus, only splitting methods
usingehaj∆ with coefficientsaj > 0 can be used.

Consider a splitting method of orderp for eh(A+B) of the form

ehasAehbsB · · · eha1Aehb1B

Theorem (Sheng 89’, Suzuki 91’, Sussman & Wisdom 92’)
Forp > 2 there existsj such thataj < 0 or bj < 0.

Theorem (Goldman & Kaper 96’)
Forp > 2 there existj, k such thataj < 0 andbk < 0.

An elegant geometric proof obtained by Blanes & Casas 05’.
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Possible remedies to the order barrier
• Extrapolation method

4

3
Φh/2 ◦ Φh/2 −

1

3
Φh.

Formal order4, but unstable with the Peaceman-Rachford
approximation.

• An extrapolation methodis considered in Schatzman ’01
and taken from Dia ’96,

45

64
Φh/3 ◦ Φh/3 ◦ Φh/3 +

1

2
Φh/2 ◦ Φh/2 −

13

64
Φh.

Although the formal order of this method is4, the true
order of convergence is not clearly understood.
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Possible remedies to the order barrier
• Allow for the use of complex coefficients such that

ℜ(ai) > 0.

The idea of using complex coefficients in numerical
methods isnot new:
• Rosenbrock 63’
• Suzuki 90’ (composition methods)
• Gegechkori, Rogava & Tsiklauri 02’, 04’ (orders 3 & 4,

convex combinations)
• Chambers 03’ (Celestial mechanics)
• Bandrauk, Dehghanian & Lu. 06’ (orders 3 & 4)

(see also the recent survey by Blanes, Casas & Murua, 10’).
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Part 2

Splitting methods with complex coefficients

• Construction of new high-order methods

• Convergence for the linear case with exponential maps
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Jump methods

Theorem Let Φh be a method oforderp. If

γ1 + . . . + γs = 1 andγp+1
1 + . . . + γp+1

s = 0

thenΨh := Φγsh ◦ . . . ◦ Φγ1h has (at least)orderp + 1.
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Jump methods

Theorem Let Φh be a method oforderp. If

γ1 + . . . + γs = 1 andγp+1
1 + . . . + γp+1

s = 0

thenΨh := Φγsh ◦ . . . ◦ Φγ1h has (at least)orderp + 1.

Proof. The idea is to show that if the basic method has orderp,

Φh(y) = ϕh(y) + C(y)hp+1 + O(hp+2),

whereϕh denotes the exact flow, then

Ψh(y) = ϕh(y) + C(y)(γp+1
1 + . . . + γp+1

s )hp+1 + O(hp+2).
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Jump methods

Theorem Let Φh be a method oforderp. If

γ1 + . . . + γs = 1 andγp+1
1 + . . . + γp+1

s = 0

thenΨh := Φγsh ◦ . . . ◦ Φγ1h has (at least)orderp + 1.

Triple jump method.
If s = 3 andγ1 = γ3 (symmetry) there is a unique real solution

γ1 = γ3 =
1

2 − 21/(p+1)
, γ2 = − 21/(p+1)

2 − 21/(p+1)
.

and forΦh symmetricof orderp, Ψh is of orderp + 2.

This procedure can be repeated iteratively up to any order
(Creutz & Gocksch 89’, Forest 89’, Suzuki 90’, Yoshida 90)
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Double jump method of Suzuki 90’ s = 2

γ1 + γ2 = 1, γp+1
1 + γp+1

2 = 0.

Solving the equations fors = 2, no real butcomplexsolutions:

γ
(p)
1 = γ

(p)
2 =

(
1 + e

iπ
p+1

)−1
.

Suzuki constructed methods of high-order by induction:

Φ
(1)
h = Φh, Φ

(p+1)
h = Φ

(p)

γ
(p)
2 h

◦ Φ
(p)

γ
(p)
1 h

, for p ≥ 1.

The above construction with complex coefficients is explicitly
given by Suzuki(Phys. Lett. A 90’ and J. Math. Phys. 91’)
as an introduction for his popular composition methods
involving only real coefficients.
In fact, it yields coefficients withpositive real parts up to
order6.
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New triple jump methods s = 3

γ1 + γ2 + γ3 = 1, γp+1
1 + γp+1

2 + γp+1
3 = 0.

Solving the equations for evenp.
There arep + 1 solutions inC: for k = 0, . . . p,

γ
(p)
1,k = γ

(p)
3,k =

1

2 − 21/(p+1)e2ikπ/(p+1)
, γ

(p)
2,k = − 21/(p+1)e2ikπ/(p+1)

2 − 21/(p+1)e2ikπ/(p+1)
.

Optimal solutions

The two conjugate solutions(γ(p)
1 , γ

(p)
2 , γ

(p)
3 ) and(γ

(p)
1 , γ

(p)
2 , γ

(p)
3 )

which minimizemaxj | arg(γ
(p)
j,k )| are obtained fork = ±p/2:

γ
(p)
1 = γ

(p)
3 =

eiπ/(p+1)

2eiπ/(p+1) + 21/(p+1)
, γ

(p)
2 =

21/(p+1)

2eiπ/(p+1) + 21/(p+1)
.

Notice that these solutions also minimize|γ1| + |γ2| + |γ3|.
– p. 12



New triple jump methods s = 3

Similarly, symmetric composition methodsΦ(p)
h of orderp

(p even) can be constructed by induction:

Φ
(2)
h = Φh, Φ

(p+2)
h = Φ

(p)

γ
(p)
3 h

◦ Φ
(p)

γ
(p)
2 h

◦ Φ
(p)

γ
(p)
1 h

for p ≥ 2.

Theorem
The methodΦ(p)

h requiress = 3p/2−1 compositions ofΦh with
combinedcoefficientsγ1, . . . ,γs.
Forp = 2, 4, 6, 8, the coefficientsγj, j = 1, . . . , 3p/2−1, have
positive real parts.
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New triple jump methods s = 3

An improvementto reduce the quantitymaxi=1...s | arg(γi)| is to

replace coefficients(γ(p)
1 , γ

(p)
2 , γ

(p)
3 ) by (γ

(p)
1 , γ

(p)
2 , γ

(p)
3 )

alternatively, e.g.

Φ
(p+2)
h = Φ

(p)

γ
(p)
3 h

◦ Φ
(p)

γ
(p)
2 h

◦ Φ
(p)

γ
(p)
1 h

if p/2 odd,

Φ
(p+2)
h = Φ

(p)

γ
(p)
3 h

◦ Φ
(p)

γ
(p)
2 h

◦ Φ
(p)

γ
(p)
1 h

else.

Theorem
The methodΦ(p)

h requiress = 3p/2−1 compositions ofΦh with
combinedcoefficientsγ1, . . . ,γs.
Forp = 2, 4, 6, 8, 10, 12, 14, the coefficientsγj for
j = 1, . . . , 3p/2−1, have positive real parts.
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Triple and Quadruple jump methods:angles

2 4 6 8 10 12 14 16

triple jump
improved triple jump
quadruple jump

π/2

π/4

0
orderp

max
i=1...s

|arg(γi)|

Values ofmaxj=1...s | arg γj|
versus order of composition methods.
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New quadruple jump methods s = 4

TakeΦ
(p)
h , symmetric method of orderp, and consider

Ψ
(p+2)
h = Φ

(p)

γ
(p)
4 h

◦ Φ
(p)

γ
(p)
3 h

◦ Φ
(p)

γ
(p)
2 h

◦ Φ
(p)

γ
(p)
1 h
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New quadruple jump methods s = 4

TakeΦ
(p)
h , symmetric method of orderp, and consider

Ψ
(p+2)
h = Φ

(p)

γ
(p)
4 h

◦ Φ
(p)

γ
(p)
3 h

◦ Φ
(p)

γ
(p)
2 h

◦ Φ
(p)

γ
(p)
1 h

Solving the equations for evenp.
The two complex conjugate solutions with minimal sum of

moduli and minimalmaxj=1...4 | arg(γ
(p)
j,k )|) are obtained for

γ
(p)
1 = γ

(p)
2 = γ

(p)
3 = γ

(p)
4 =

1

4
+ i

sin(π/(p + 1)

4 + 4 cos(π/(p + 1))
.
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New quadruple jump methods s = 4

TakeΦ
(p)
h , symmetric method of orderp, and consider

Ψ
(p+2)
h = Φ

(p)

γ
(p)
4 h

◦ Φ
(p)

γ
(p)
3 h

◦ Φ
(p)

γ
(p)
2 h

◦ Φ
(p)

γ
(p)
1 h

γ
(p)
1 = γ

(p)
2 = γ

(p)
3 = γ

(p)
4 =

1

4
+ i

sin(π/(p + 1)

4 + 4 cos(π/(p + 1))
.

Theorem
The methodΨ(p)

h requiress = 4 · 3p/2−2 compositions ofΦh

with combinedcoefficientsγ1, ...,γs.
Forp = 4, 6, 8, 10, 12, the coefficientsγi for i = 1, . . . , 4p/2−1,
have positive real parts.
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An accurate approximation at midstep

An interesting feature is that we obtainan accurate
approximation of the solution at midstep(noticeγ1 + γ2 = 1/2).

Indeed, consider the method of orderp + 2:

yn+1/2 = (Φ
(p)
γ2h

◦ Φ
(p)
γ1h

)(yn),

yn+1 = (Φ
(p)
γ1h

◦ Φ
(p)
γ2h

)(yn+1/2).

As a matter of fact,(2γ1, 2γ2) and(2γ2, 2γ1) aresolutions of the
orderp + 1 equations withs = 2, so thatyn+1/2 yields an
approximation of the solution at timet = tn + h/2 with local
errorO(hp+2).
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Triple and Quadruple jump methods:diagrams

methodΦh
(4)

γ1 γ2 γ1
order4

methodΦh
(6)

order6

methodΦh
(8)

order8

methodΨ(4)
h

order4order4

methodΨ(6)
h

order6order6

methodΨ(8)
h

order8order8

Diagrams of coefficients for compositions methods

Example:Ψ(4)
h = Φ

(2)
γ1h

◦ Φ
(2)
γh ◦ Φ

(2)
γh ◦ Φ

(2)
γh , γ = 1

4 + i
√

3
12 .
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Convergence in the linear case for exponential maps

Theorem
Under some reasonable assumptions on the linear operatorsA,
B and L =A + B, an exponential splitting method

ea1hAeb1hBea2hAeb2hB . . . eashAebshB.

with coefficients in an appropriate sector of the right-side
complex plane and offormal orderp remains of orderp for the
linear equationut = Au + Bu.

– p. 19



Convergence in the linear case for exponential maps

Theorem
Under some reasonable assumptions on the linear operatorsA,
B and L =A + B, an exponential splitting method

ea1hAeb1hBea2hAeb2hB . . . eashAebshB.

with coefficients in an appropriate sector of the right-side
complex plane and offormal orderp remains of orderp for the
linear equationut = Au + Bu.
Proof
The proof is a direct consequence of a previous result of
Hansen & Ostermann (2008)for splittings of the form

L = A1 + A2 + A3 + . . . + As

where theAj ’s generate continous semigroups onH (Hilbert
space), and satisfy certain smoothness assumptions. – p. 19



In our setting: mα-dissipative operators
A : D(A) ⊂ H → H

0

α

Sα

∀u ∈ D(A),−(Au, u) ∈ Sα,

∀z /∈ Sα, zId + A isomorphism :D(A) → H.

– p. 20



In our setting: mα-dissipative operators
A : D(A) ⊂ H → H

0

α

Sα

∀u ∈ D(A),−(Au, u) ∈ Sα,

∀z /∈ Sα, zId + A isomorphism :D(A) → H.

• A mα-dissipative operatorA with 0 ≤ α ≤ π/2 generates a
continuous semi-group onH and is a contraction operator:

∀t ≥ 0, ‖etAu‖H ≤ ‖u‖H .

• Here:ai∆ is mα-dissipative inL2(Rd) with α = |arg(ai)|.
– p. 20



Part 3

Numerical experiments

• Reaction-diffusion with Fisher’s non-linear potential.
• Exponential maps and Peaceman-Rachford approx.

– p. 21



Reaction-diffusion with Fisher’s non-linear potential

We consider the scalar equation in one-dimension onT ∼ (0, 1)

ut = ∆u + u(1 − u).

After discretization in space, we arrive at the ODE

U̇ = AU +
(
u1(1 − u1), . . . , uN(1 − uN)

)T ∈ R
N

The scalar differential equation
du

dz
= u(1 − u), u(0) = u0

can be solved analytically as

u(z) = u0 + u0(1 − u0)
(ez − 1)

1 + u0(ez − 1)
,

which is well defined for small complex timez. – p. 22



Triple and Quadruple jump methods

102 103

10−12

10−10

10−8

10−6

10−4

102 103

10−12

10−10

10−8

10−6

10−4“Triple Jump”error

function evals

“Quadruple Jump”error

function evals

Composition methods of orders 2,4,6,8.
Solid lines: exponentials. Dashes lines: Peaceman Rachford.
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Triple and Quadruple jump methods

102 10310−12

10−10

10−8

10−6

10−4

102 10310−12

10−10

10−8

10−6

10−4exponential mapserror

function evals

Peaceman-Rachforderror

function evals

Solid lines: Quadruple jump method of order4.
Dashes lines and dashes-dotted lines: Extrapolation methods.
Dotted lines: Strang splitting.
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Perspectives

• systematic study of optimal composition methods

• convergence analysis for non-linear problems

• methods involving complex coefficients for only one
operator: e.g. the order 4 method

eb1hV ea1hAeb2hV ea2hAeb3hV ea2hAeb2hV ea1hAeb1hV

whereb1 = 1/10 − i/30, b2 = 4/15 + 2i/15,
b3 = 4/15 − i/5 are complex, and
a1 = a2 = a3 = a4 = 1/4 are reals.
May be useful e.g. for the Schrödinger equation with a
non-linear potential.

– p. 25
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