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a b s t r a c t 

A new family of methods involving complex coefficients for the numerical integration of 

differential equations is presented and analyzed. They are constructed as linear combina- 

tions of symmetric-conjugate compositions obtained from a basic time-symmetric integra- 

tor of order 2 n ( n ≥ 1 ). The new integrators are of order 2(n + k ) , k = 1 , 2 , . . . , and preserve 

time-symmetry up to order 4 n + 3 when applied to differential equations with real vector 

fields. If in addition the system is Hamiltonian and the basic scheme is symplectic, then 

they also preserve symplecticity up to order 4 n + 3 . We show that these integrators are 

well suited for a parallel implementation, thus improving their efficiency. Methods up to 

order 10 based on a 4th-order integrator are built and tested in comparison with other 

standard procedures to increase the order of a basic scheme. 
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1. Introduction 

Composition methods constitute a standard tool to construct high-order numerical integrators for the initial value prob- 

lem 

˙ x = f (x ) , x (t 0 ) = x 0 ∈ R 

d , (1.1) 

in particular when the vector field f possesses some qualitative property whose preservation by numerical approximations 

is deemed relevant [5,15] . Let S [2 n ] 
h 

denote a 2 n th order method, so that S [2 n ] 
h 

(x 0 ) = ϕ h (x 0 ) + O(h 2 n +1 ) , where x (h ) = ϕ h (x 0 )

is the exact solution of Eq. (1.1) for a time step h . Then, if the coefficients α1 , α2 , . . . , αs satisfy some algebraic conditions,

the composition of the basic scheme with step sizes α1 h, α2 h, . . . , αs h , i.e., 

ψ h = S [2 n ] 
α1 h 

◦ S [2 n ] 
α2 h 

◦ · · · ◦ S [2 n ] 
αs −1 h 

◦ S [2 n ] 
αs h 

(1.2) 

is a new method of higher order 2 n + m [8] . If in particular f is Hamiltonian and S [2 n ] 
h 

is symplectic, then the composition

method (1.2) is also symplectic [15] . In general, any geometric property the basic method has in common with the exact
∗ Corresponding author. 
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solution is still shared by the higher-order scheme (1.2) if this property is preserved by composition [17] . Moreover, suppose

S [2 n ] 
h 

is time-symmetric, namely, it satisfies 

S [2 n ] 
h 

◦ S [2 n ] −h 
= id , 

where id is the identity map, for any h . Then, method (1.2) is also time-symmetric if the composition is left-right palin-

dromic, i.e., αs +1 − j = α j , j = 1 , 2 , . . . . 

A well known class of composition methods is obtained by applying the triple-jump procedure [19,22] : 

S [2 n +2] 

h 
= S [2 n ] 

α1 h 
◦ S [2 n ] 

α2 h 
◦ S [2 n ] 

α1 h 
, (1.3) 

with 

α1 = 

1 

2 − 2 

1 / (2 n +1) 
, α2 = 1 − 2 α1 , (1.4) 

is a new method of order 2 n + 2 . The same technique can be applied again to S [2 n +2] 

h 
, so that one can construct recursively

time-symmetric methods of any order 2 n + 2 k , k = 1 , 2 , . . . . 

When constructing high-order composition methods, real coefficients α1 , . . . , αs are not the only option, however. In fact, 

the unavoidable existence of negative α j in (1.2) when the order is higher than two [4,14,18,20] typically imposes stability 

restrictions on the step size. This occurs in particular when Eq. (1.1) is the outcome of a parabolic differential equation

discretized in space. In that case, considering complex coefficients with positive real part is also a valid alternative [11,16] .

Even for problems where the presence of some α j < 0 is not particularly troublesome, composition methods with complex 

coefficients have also been proposed and analyzed from the preservation of properties viewpoint [6,9,12] . 

In the particular case of the triple-jump composition (1.3) , in addition to the real solution (1.4) , the complex one with

the smallest phase is 

α1 = 

e iπ/ (2 n +1) 

2 

1 / (2 n +1) − 2e iπ/ (2 n +1) 
, α2 = 1 − 2 α1 , (1.5) 

and the resulting method has in fact smaller truncation errors than its real counterpart (1.4) . If the basic scheme is time-

symmetric and of order 2, then time-symmetric methods up to order 14 with coefficients having positive real part are 

possible by applying this technique [7] . 

The order can be raised by one instead with the simplest composition [2,20] 

ψ 

[2 n +1] 

h 
= S [2 n ] 

α1 h 
◦ S [2 n ] 

α2 h 
(1.6) 

if 

α1 = ᾱ2 = 

1 

2 

+ 

i 

2 

sin 

2 � +1 
2 n +1 

π

1 + cos 2 � +1 
2 n +1 

π
for − n ≤ � ≤ n − 1 . 

The choice � = 0 gives the solution with the smallest phase, which we denote by γ [2 n ] : 

α1 = γ [2 n ] := 

1 

2 

+ 

i 

2 

sin 

π
2 n +1 

1 + cos π
2 n +1 

, n = 1 , 2 , . . . (1.7) 

When the vector field f in (1.1) is real, then x 1 = ψ 

[2 n +1] 

h 
(x 0 ) is complex, and so it is quite natural to project x 1 on the real

axis and proceed to the next step only with � (x 1 ) . This is equivalent of course to integrating with the scheme 

R 

(1) 
h 

= 

1 

2 

(
ψ 

[2 n +1] 

h 
+ ψ 

[2 n +1] 

h 

)
. (1.8) 

Method (1.8) is not time-symmetric, even when S [2 n ] 
h 

is. Nevertheless, it has been shown in [10] that R (1) 
h 

is pseudo-symmetric

of order 4 n + 3 , in the sense that 

R 

(1) 
h 

◦ R 

(1) 
−h 

= id + O(h 

4 n +4 ) 

if the vector field f in (1.1) is real. If in addition f is Hamiltonian and S [2 n ] 
h 

is symplectic, then R (1) 
h 

is also pseudo-symplectic

of order 4 n + 3 . In other words, projecting ψ 

[2 n +1] 

h 
at each integration step leads to a numerical method that preserves

geometric properties of the exact solution up to an order that is much higher than the order of the method itself. Pseudo-

symplectic integrators have been previously considered in the literature, both in the context of Runge–Kutta [1] and poly- 

nomial extrapolation methods [3,13] . 

Moreover, as shown in [10] , R (1) 
h 

can be taken as the basis of the recursion 

R 

(k ) 
h 

= 

1 

2 

(
R 

(k −1) 

γ [2 k ] h 
◦ R 

(k −1) 

γ̄ [2 k ] h 
+ R 

(k −1) 

γ̄ [2 k ] h 
◦ R 

(k −1) 

γ [2 k ] h 

)
, k = 2 , 3 . . . , (1.9) 

producing methods of order 2(n + k ) , also pseudo-symmetric of order 4 n + 3 . Here the coefficients γ [2 k ] are given by

Eq. (1.7) . For future reference, we call (1.9) R - methods . 
2 



F. Casas and A. Escorihuela-Tomàs Applied Mathematics and Computation 414 (2022) 126700 

 

 

 

 

 

 

 

 

 

 

 

 

V

Scheme (1.6) is a particular example of a symmetric-conjugate composition. These are composition methods of the form 

ψ h = S [2 n ] 
α1 h 

◦ S [2 n ] 
α2 h 

◦ · · · ◦ S [2 n ] 
ᾱ2 h 

◦ S [2 n ] 
ᾱ1 h 

, (1.10) 

i.e., compositions (1.2) with α j ∈ C and 

ᾱs +1 − j = α j , j = 1 , 2 , . . . . 

Methods of this class, as shown in [6] , possess remarkable preservation properties when considering its real part, 

� (ψ h ) = 

1 

2 

(
ψ h + ψ h 

)
. 

In particular, if one takes a time-symmetric 2nd-order scheme as the basic method and the coefficients α1 , α2 , . . . are chosen

in such a way that ψ h is of order 2 n − 1 , then � (ψ h ) is of order 2 n and pseudo-symmetric of order 4 n − 1 when the vector

field f in (1.1) is real. If in addition f is a (real) Hamiltonian vector field and S [2] 

h 
is a symplectic integrator, then � (ψ h ) is

pseudo-symplectic of order 4 n − 1 . 

Since taking the real part of a symmetric-conjugate method is just a very special linear combination, it is quite natural

to ask what happens when one considers a more general linear combination of symmetric-conjugate compositions and 

their complex-conjugate, ψ 

( j) 
h 

, ψ 

( j) 

h : is it possible to construct new methods of higher order whereas still preserving time- 

symmetry (and symplecticity) up to the order prescribed by the composition ψ 

( j) 
h 

? If yes, how the new methods are built?

Addressing these questions is precisely the subject of the present paper. In doing so, we present a new family of schemes

of increasingly higher order well adapted for implementation in a parallel environment, requiring less computational effort 

than the R -methods (1.9) but with the same qualitative properties. 

If we denote for simplicity the symmetric-conjugate composition (1.10) by its sequence of coefficients, 

ψ 

( j) 
h 

= (α1 , α1 , . . . , αs −1 , αs ) , 

with ᾱs +1 − j = α j , these new schemes have the basic structure 

T (k ) 
h 

= 

1 

2 

k 

2 k −1 ∑ 

j=1 

(
(α j 

2 k 
, . . . , α j 1 ) + c.c. 

)
(1.11) 

and are of order 2(n + k ) ≤ 4 n + 3 and pseudo-symmetric of order 4 n + 3 . We designate them as T -methods . 

2. Construction of the family of T -methods 

In this section we construct the new family of integrators T (k ) 
h 

and show explicitly that they are of order 2(n + k ) and

pseudo-symmetric of order 4 n + 3 for k = 1 , 2 , 3 . The same procedure can be formally extended to any k > 3 . The analysis

is based on the Lie formalism applied to the series of differential operators associated to the integrators. 

2.1. Series of differential operators 

As is well known, given a time-symmetric integrator S [2 n ] 
h 

of order 2 n ≥ 2 one can associate a series of linear operators

exp (Y (h )) so that 

g(S [2 n ] 
h 

(x )) = exp (Y (h ))[ g](x ) 

for all functions g [8] , with 

Y (h ) = hY 1 + h 

2 n +1 Y 2 n +1 + h 

2 n +3 Y 2 n +3 + · · · . 

Here Y k are certain operators depending on the particular method and, for consistency, Y 1 = F , where F is the Lie derivative

associated with f : 

F = 

∑ 

i ≥1 

f i (x ) 
∂ 

∂x i 
. (2.1) 

The composition (1.2) then has the associated series 

	(h ) = exp (Y (hαs )) exp (Y (hαs −1 )) · · · exp (Y (hα2 )) exp (Y (hα1 )) , (2.2) 

which can be formally written as 	(h ) = exp (V (h )) by repeated application of the Baker–Campbell–Hausdorff formula, 

with 

V (h ) = hF + h 

2 n +1 V 2 n +1 + h 

2 n +2 V 2 n +2 + · · · . 

Here V 2 n +1 , V 2 n +2 , . . . are linear combinations of Lie brackets involving the operators Y 1 , Y 2 n +1 , Y 2 n +3 , . . . [17] . In the particular

case of a symmetric-conjugate composition (1.10) , terms V 2 k in V (h ) of even powers in h are pure imaginary, whereas terms

 2 k +1 are real [6] . 
3 
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For a consistent symmetric-conjugate composition (1.10) , i.e., verifying 

s ∑ 

j=1 

α j = α1 + α2 + · · · + ᾱ2 + ᾱ1 = 1 , (2.3) 

we get explicitly 

V (h ) = hE 1 , 1 + h 

2 n 
∑ 

j≥0 

h 

2 j+1 

� 2 j+1 ∑ 

k =1 

μ2 n +2 j+1 ,k E 2 j+1 ,k + i h 

2 n 
∑ 

j≥1 

h 

2 j 

� 2 j ∑ 

k =1 

σ2 n +2 j,k E 2 j,k , (2.4) 

where μn,k , σn,k are homogeneous real polynomials of degree n in the coefficients αl , l = 1 , . . . , s , and E n, k are elements Y j 
and independent Lie brackets involving these operators. In particular 

μ2 n +2 j+1 , 1 = 

s ∑ 

l=1 

α2(n + j)+1 

l 
, j ≥ 0 

and 

E 1 , 1 = Y 1 , E 2 n +2 n +2 j+1 , 1 = Y 2 n +2 j+1 , E 2 n +2 j, 1 = [ E 1 , 1 , E 2 n +(2 j−1) , 1 ] , j = 1 , 2 , . . . 

2.2. Linear combinations of symmetric-conjugate compositions 

Let us now consider the linear combination 

φh = 

1 

2 k 

k ∑ 

j=1 

(
ψ 

( j) 
h 

+ ψ 

( j) 

h 

)
, (2.5) 

where each ψ 

( j) 
h 

is a consistent symmetric-conjugate composition of the form (1.10) with different coefficients α( j) 
k 

. Then, 

clearly, φh has 

�(h ) ≡ 1 

2 k 

k ∑ 

j=1 

(
	( j) (h ) + 	

( j) 
(h ) 

)
= 

1 

2 k 

k ∑ 

j=1 

(
e V j (h ) + e V j (h ) 

)
(2.6) 

as the associated series of operators, where each V j (h ) is of the form (2.4) . Now, by following the same approach as in [10] ,

we express �(h ) as 

�(h ) = 

1 

2 k 
e 

h 
2 F 

k ∑ 

j=1 

(
e W j (h ) + e W j (h ) 

)
e 

h 
2 F , 

where 

W j (h ) = h 

2 n +1 μ( j) 
2 n +1 , 1 

E 2 n +1 , 1 + i h 

2 n +2 σ ( j) 
2 n +2 , 1 

E 2 n +2 , 1 

+ h 

2 n +3 

(
μ( j) 

2 n +3 , 1 
E 2 n +3 , 1 + 

(
μ( j) 

2 n +3 , 2 
+ 

1 
24 

μ( j) 
2 n +1 , 1 

)
E 2 n +3 , 2 

)
+ i h 

2 n +4 

(
σ ( j) 

2 n +4 , 1 
E 2 n +4 , 1 + 

(
σ ( j) 

2 n +4 , 2 
+ 

1 
24 

σ ( j) 
2 n +2 , 1 

)
E 2 n +4 , 2 

)
+ h 

2 n +5 

(
μ( j) 

2 n +5 , 1 
E 2 n +5 , 1 + 

(
μ( j) 

2 n +5 , 2 
+ 

1 
24 

μ( j) 
2 n +3 , 1 

)
E 2 n +5 , 2 + (

μ( j) 
2 n +5 , 3 

+ 

1 
24 

μ( j) 
2 n +3 , 2 

+ 

1 
1920 

μ( j) 
2 n +1 , 1 

)
E 2 n +5 , 3 

)
+ i h 

2 n +6 

(
σ ( j) 

2 n +6 , 1 
E 2 n +6 , 1 + 

(
σ ( j) 

2 n +6 , 2 
+ 

1 
24 

σ ( j) 
2 n +4 , 1 

)
E 2 n +6 , 2 + (

σ ( j) 
2 n +6 , 3 

+ 

1 
24 

σ ( j) 
2 n +4 , 2 

+ 

1 
1920 

σ ( j) 
2 n +2 , 1 

)
E 2 n +6 , 3 

)
+ O(h 

2 n +7 ) . 

(2.7) 

Here 

E 2 n +3 , 2 = [ E 1 , 1 , E 2 n +2 , 1 ] , E 2 n +4 , 2 = [ E 1 , 1 , E 2 n +3 , 2 ] , E 2 n +5 , 2 = [ E 1 , 1 , E 2 n +4 , 1 ] , 
E 2 n +6 , 2 = [ E 1 , 1 , E 2 n +5 , 1 ] , E 2 n +5 , 3 = [ E 1 , 1 , E 2 n +4 , 2 ] , E 2 n +6 , 2 = [ E 1 , 1 , E 2 n +5 , 2 ] . 

This is done by applying the symmetric Baker–Campbell–Hausdorff formula to each product e −
h 
2 

F e V j (h ) e −
h 
2 

F . From (2.7) , a 

straightforward calculation shows that 

(W j + W j ) 
2 = 4 h 

4 n +2 (μ( j) 
2 n +1 , 1 

) 2 E 2 2 n +1 , 1 + O(h 

4 n +4 ) 

W 

2 
j 

+ W 

2 

j = 2 h 

4 n +2 (μ( j) 
2 n +1 , 1 

) 2 E 2 2 n +1 , 1 + O(h 

4 n +4 ) . 
4 
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Therefore, 

1 

2 

(
e W j + e W j 

)
− e 

1 
2 (W j + W j ) = 

1 

4 

(W 

2 
j + W 

2 

j ) − 1 

8 

(W j + W j ) 
2 + · · · = O(h 

4 n +4 ) 

and �(h ) can also be written as 

�(h ) = 

1 

k 

k ∑ 

j=1 

e 
h 
2 F e 

1 
2 (W j (h )+ W j (h )) e 

h 
2 F + O(h 

4 n +4 ) . 

In consequence, each term in φh is time-symmetric up to terms h 4 n +3 , with independence of the polynomials μ( j) 
k,l 

, σ ( j) 
k,l 

,

since the sum W j (h ) + W j (h ) only contains odd powers of h . 

On the other hand, one has 

1 
2 k 

∑ k 
j=1 

(
e W j + e W j 

)
− exp 

(
1 

2 k 

∑ k 
j=1 (W j + W j ) 

)
= 

1 
4 k 

∑ k 
j=1 (W 

2 
j 

+ W 

2 

j ) − 1 
8 k 2 

(∑ k 
j=1 (W j + W j ) 

)2 + · · ·
= h 

4 n +2 1 
2 k 

(∑ k 
j=1 (μ

( j) 
2 n +1 

) 2 − 1 
k 

(∑ k 
j=1 μ

( j) 
2 n +1 , 1 

)
2 

)
E 2 2 n +1 , 1 + O(h 

4 n +4 ) , 

so that it is also true that 

�(h ) = exp 

(
h 

2 

F 

)
exp 

( 

1 

2 k 

k ∑ 

j=1 

(
W j (h ) + W j (h ) 

)) 

exp 

(
h 

2 

F 

)
+ O(h 

4 n +2 ) . (2.8) 

2.3. Order conditions 

It is thus possible to obtain the order conditions for the method φh in (2.5) by analyzing just the exponent of the central

term in (2.8) . From (2.7) it follows that 

1 
2 

∑ k 
j=1 

(
W j (h ) + W j (h ) 

)
= h 

2 n +1 c 2 n +1 , 1 E 2 n +1 , 1 + h 

2 n +3 c 2 n +3 , 1 E 2 n +3 , 1 

+ h 

2 n +3 
(
c 2 n +3 , 2 + 

1 
24 

c 2 n +1 , 1 

)
E 2 n +3 , 2 + h 

2 n +5 c 2 n +5 , 1 E 2 n +5 , 1 

+ h 

2 n +5 
(
c 2 n +5 , 2 + 

1 
24 

c 2 n +3 , 1 

)
E 2 n +5 , 2 

+ h 

2 n +5 
(
c 2 n +5 , 3 + 

1 
24 

c 2 n +3 , 2 + 

1 
1920 

c 2 n +1 , 1 

)
E 2 n +5 , 3 + O(h 

2 n +7 ) , 

with 

c 2 n +1 , 1 = 

∑ k 
j=1 μ

( j) 
2 n +1 , 1 

, c 2 n +3 , 1 = 

∑ k 
j=1 μ

( j) 
2 n +3 , 1 

, c 2 n +3 , 2 = 

∑ k 
j=1 μ

( j) 
2 n +3 , 2 

c 2 n +5 , 1 = 

∑ k 
j=1 μ

( j) 
2 n +5 , 1 

, c 2 n +5 , 2 = 

∑ k 
j=1 μ

( j) 
2 n +5 , 2 

, c 2 n +5 , 3 = 

∑ k 
j=1 μ

( j) 
2 n +5 , 3 

In consequence, for consistent compositions ψ 

( j) 
h 

, j = 1 , . . . , k , the conditions to be satisfied so that φh is a method of

order r are the following: 

• r = 2 n + 2 : c 2 n +1 , 1 = 0 
• r = 2 n + 4 : c 2 n +1 , 1 = c 2 n +3 , 1 = c 2 n +3 , 2 = 0 
• r = 2 n + 6 : c 2 n +1 , 1 = c 2 n +3 , 1 = c 2 n +3 , 2 = c 2 n +5 , 1 = c 2 n +5 , 2 = c 2 n +5 , 3 = 0 

2.4. New schemes 

Once identified the relevant order conditions, our next goal is to solve these equations with the minimum number of 

basic schemes in the compositions ψ 

( j) 
h 

and the minimum value of k in the linear combination (2.5) . 

Order r = 2 n + 2 . 

One needs to solve two equations to get a method φh of order 2 n + 2 : consistency and c 2 n +1 , 1 = 0 . These can be satisfied

by taking k = 1 and the simplest composition ψ h = S [2 n ] 
α1 h 

◦ S [2 n ] 
ᾱ1 h 

, in which case one has 

α1 + ᾱ1 = 1 , α2 n +1 
1 + ᾱ2 n +1 

1 = 0 . 

In other words, we recover the composition (1.6) and the R -method (1.8) . Our first T -method (1.11) is thus 

T (1) 
h 

= 

1 

2 

(
(γ [2 n ] , γ̄ [2 n ] ) + ( ̄γ [2 n ] , γ [2 n ] ) 

)
(2.9) 

or in more detail 

T (1) 
h 

= 

1 

2 

(
S [2 n ] 

γ [2 n ] h 
◦ S [2 n ] 

γ̄ [2 n ] h 
+ S [2 n ] 

γ̄ [2 n ] h 
◦ S [2 n ] 

γ [2 n ] h 

)
. 

Order r = 2 n + 4 . 
5 
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Now we have to solve 3 order conditions in addition to consistency for the compositions ψ 

( j) 
h 

involved. As before, one

could take in principle k = 1 . In that case, the minimum number of basic maps in ψ 

(1) 
h 

is 4, just to have enough parameters

to satisfy the order conditions. It turns out, however, that there are no solutions with the required symmetry α4 = ᾱ1 ,

α3 = ᾱ2 . In fact, if we take 

ψ 

(1) 
h 

= ( ᾱ1 , ᾱ2 , α2 , α1 ) , with α1 = γ̄ [2 n +4] γ̄ [2 n +2] , α2 = γ̄ [2 n +4] γ [2 n ] , 

then μ(1) 
2 n +1 , 1 

= μ(1) 
2 n +3 , 1 

= 0 , but μ(1) 
2 n +3 , 2 

	 = 0 . On the other hand, if we take 

ψ 

(2) 
h 

= ( ̄α2 , ᾱ1 , α1 , α2 ) 

with the same values of α1 , α2 as before, then μ(2) 
2 n +3 , 2 

= −μ(1) 
2 n +3 , 2 

, whereas still verifying that μ(2) 
2 n +1 , 1 

= μ(2) 
2 n +3 , 1 

= 0 . In

consequence, by combining both compositions, 

φh = 

1 

4 

(
ψ 

(1) 
h 

+ ψ 

(1) 

h + ψ 

(2) 
h 

+ ψ 

(2) 

h 

)
, 

one gets a method of order 2 n + 4 and pseudo-symmetric of order 4 n + 3 . This corresponds to our second T -method, which

reads explicitly 

T (2) 
h 

= 

1 

4 

(
(γ [2 n +2] γ [2 n ] , γ [2 n +2] γ̄ [2 n ] , γ̄ [2 n +2] γ [2 n ] , γ̄ [2 n +2] γ̄ [2 n ] ) 

+(γ [2 n +2] γ̄ [2 n ] , γ [2 n +2] γ [2 n ] , γ̄ [2 n +2] γ̄ [2 n ] , γ̄ [2 n +2] γ [2 n ] ) (2.10) 

+( ̄γ [2 n +2] γ̄ [2 n ] , γ̄ [2 n +2] γ [2 n ] , γ [2 n +2] γ̄ [2 n ] , γ [2 n +2] γ [2 n ] ) 

+( ̄γ [2 n +2] γ [2 n ] , γ̄ [2 n +2] γ̄ [2 n ] , γ [2 n +2] γ [2 n ] , γ [2 n +2] γ̄ [2 n ] ) 
)
. 

Again, the coefficients γ [2 m ] are given by Eq. (1.7) . 

Order r = 2 n + 6 . A total of 7 equations (including consistency) have to be solved in this case, so that we take a

symmetric-conjugate composition involving s = 8 basic maps, 

ψ 

(1) 
h 

= (α1 , α2 , α3 , α4 , ᾱ4 , ᾱ3 , ᾱ2 , ᾱ1 ) . 

With the choice 

α1 = γ [2 n +4] γ [2 n +2] γ [2 n ] , α2 = γ [2 n +4] γ [2 n +2] γ̄ [2 n ] , 

α3 = γ [2 n +4] γ̄ [2 n +2] γ [2 n ] , α4 = γ [2 n +4] γ̄ [2 n +2] γ̄ [2 n ] 

it turns out that conditions c 2 n +1 = c 2 n +3 , 1 = c 2 n +5 , 1 = 0 are automatically satisfied. By following the same approach as be-

fore, we permute the position of the coefficients and take the composition 

ψ 

(2) 
h 

= (α2 , α1 , α4 , α3 , ᾱ3 , ᾱ4 , ᾱ1 , ᾱ2 ) . 

Then, one has μ(2) 
2 n +3 , 2 

= −μ(1) 
2 n +3 , 2 

, so that ψ 

(1) 
h 

+ ψ 

(2) 
h 

leads to a method of order 2 n + 4 . More composition have to be

incorporated, however, in order to verify conditions c 2 n +5 , 2 = 0 and c 2 n +5 , 3 = 0 . The former is accomplished by both sums

ψ 

(1) 
h 

+ ψ 

(4) 
h 

and ψ 

(2) 
h 

+ ψ 

(3) 
h 

, where 

ψ 

(3) 
h 

= (α3 , α4 , α1 , α2 , ᾱ2 , ᾱ1 , ᾱ4 , ᾱ3 ) 

ψ 

(4) 
h 

= (α4 , α3 , α2 , α1 , ᾱ1 , ᾱ2 , ᾱ3 , ᾱ4 ) , 

but the later is satisfied only by adding up the four compositions. In summary, the linear combination 

1 

4 

� (ψ 

(1) 
h 

+ ψ 

(2) 
h 

+ ψ 

(3) 
h 

+ ψ 

(4) 
h 

) 

leads to a method of order 2 n + 6 , denoted as T (3) 
h 

. More explicitly, 

T (3) 
h 

= 

1 

8 

(
ψ 

(1) 
h 

+ ψ 

(2) 
h 

+ ψ 

(3) 
h 

+ ψ 

(4) 
h 

+ ψ 

(1) 

h + ψ 

(2) 

h + ψ 

(3) 

h + ψ 

(4) 

h 

)
. (2.11) 

The same procedure can be carried out in general, although more order conditions (and consequently more compositions 

involving more basic maps) have to be dealt with. This class of methods can be represented in a convenient way as follows.

If we introduce the matrix of coefficients 


2 n := 

1 

2 

(
γ [2 n ] γ̄ [2 n ] 

γ̄ [2 n ] γ [2 n ] 

)

then, according with the previous results, method T (1) 
h 

(of order 2 n + 2 ) can be represented by 
2 n , 

T (1) 
h 

� 
2 n , 
6 
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whereas T (2) 
h 

(of order 2 n + 4 ) can be associated with the matrix 


2 n +2 � 
2 n = 

1 

4 

⎛ 

⎜ ⎝ 

γ [2 n +2] γ [2 n ] γ [2 n +2] γ̄ [2 n ] γ̄ [2 n +2] γ [2 n ] γ̄ [2 n +2] γ̄ [2 n ] 

γ [2 n +2] γ̄ [2 n ] γ [2 n +2] γ [2 n ] γ̄ [2 n +2] γ̄ [2 n ] γ̄ [2 n +2] γ [2 n ] 

γ̄ [2 n +2] γ [2 n ] γ̄ [2 n +2] γ̄ [2 n ] γ [2 n +2] γ [2 n ] γ [2 n +2] γ̄ [2 n ] 

γ̄ [2 n +2] γ̄ [2 n ] γ̄ [2 n +2] γ [2 n ] γ [2 n +2] γ̄ [2 n ] γ [2 n +2] γ [2 n ] 

⎞ 

⎟ ⎠ 

, 

in the sense that each file of 
2 n +2 corresponds to a particular symmetric-conjugate composition entering into the formu- 

lation of T (2) 
h 

. We can write analogously 

T (2) 
h 

� 
2 n +2 � 
2 n , 

and moreover 

T (3) 
h 

� 
2 n +4 � (
2 n +2 � 
2 n ) . 

In general, the coefficients in the T -method of order r = 2 n + 2 k are distributed according with the pattern 

T (k ) 
h 

� 
2(n + k −1) � (
2(n + k −2) � · · · � (
2 n +2 � 
2 n ) · · · ) . 

3. Numerical examples 

We illustrate next the behavior of some of the previously constructed T -methods on a pair of numerical examples. The

first one (the 2-dimensional Kepler problem) allows one to check preservation properties, whereas the second (a simple 

diffusion equation) is used as a test of their relative performance. In all cases we take as basic scheme S [2 n ] 
h 

the 4th-order

( n = 2 ) time-symmetric splitting method 

S [4] 

h 
= ϕ 

[ b] 

b 1 h 
◦ ϕ 

[ a ] 

a 1 h 
◦ ϕ 

[ b] 

b 2 h 
◦ ϕ 

[ a ] 

a 2 h 
◦ ϕ 

[ b] 

b 3 h 
◦ ϕ 

[ a ] 

a 2 h 
◦ ϕ 

[ b] 

b 2 h 
◦ ϕ 

[ a ] 

a 1 h 
◦ ϕ 

[ b] 

b 1 h 
(3.1) 

with coefficients 

b 1 = 0 . 060078275263542357774 − 0 . 060314841253378523039 i, (3.2) 

a 1 = 0 . 18596881959910913140 , 

b 2 = 0 . 27021183913361078161 + 0 . 15290393229116195895 i, 

a 2 = 0 . 31403118040089086860 , 

b 3 = 0 . 33941977120569372122 − 0 . 18517818207556687181 i, 

previously considered in [7] . This integrator is intended for Eq. (1.1) when f can be decomposed as f (x ) = f a (x ) + f b (x ) in

such a way that each sub-problem 

˙ x = f a (x ) , ˙ x = f b (x ) , 

with x (0) = x 0 , has solution x (t) = ϕ 

[ a ] 
t (x 0 ) , and x (t) = ϕ 

[ b] 
t (x 0 ) , respectively. 

The implementation of all the integrators has been done in Python 3.7 running on Debian GNU/Linux 10 and the opera-

tions with complex arithmetics have been coded using the complex class of the numpy library. 

Kepler problem. 

The Hamiltonian function for the planar two-body problem reads 

H(q, p) = T (p) + V (q ) = 

1 

2 

p T p − μ
1 

r 
. (3.3) 

Here q = (q 1 , q 2 ) , p = (p 1 , p 2 ) , r = ‖ q ‖ , μ = GM, G is the gravitational constant and M is the sum of the masses of the two

bodies. The corresponding equations of motion are then 

˙ q i = 

∂H 

∂ p i 
= p i , ˙ p i = −∂H 

∂q i 
= −μ

q i 
r 3 

, i = 1 , 2 . 

Taking μ = 1 and initial conditions 

q 1 (0) = 1 − e, q 2 (0) = 0 , p 1 (0) = 0 , p 2 (0) = 

√ 

1 + e 

1 − e 
, (3.4)

the resulting trajectory is an ellipse of eccentricity 0 ≤ e < 1 . In this case ϕ 

[ a ] 

h 
(respectively, ϕ 

[ b] 

h 
) corresponds to the exact

solution obtained by integrating the kinetic energy T (p) (resp., potential energy V (q ) ) in (3.3) . 

We take e = 0 . 6 , integrate until the final time t f = 20 π with the basic splitting method S [4] 

h 
given by (3.1) and schemes

T (k ) 
h 

, with k = 1 , 2 , 3 for several time steps and then we compute the average error in energy along the integration interval.

Figure 1 (left) shows this error as a function of the number of evaluations of the basic scheme S [4] 

h 
. The diagram clearly

exhibits the order of convergence of each method: order 4 for S [4] 

h 
, and orders 6, 8 and 10 for T (1) 

h 
, T (2) 

h 
and T (3) 

h 
, respectively.
7 
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Fig. 1. Left: Relative error in energy vs. number of evaluations of the basic scheme S [4] (blue) for the different T -methods: T (1) (orange), T (2) (green) and 

T (3) (red), in the interval t ∈ [0 , 20 π ] . Right: Evolution of this error along the integration when t ∈ [0 , 20 0 0 π ] . In this case the step size is chosen so that 

all schemes involve the same number of evaluations of the basic method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the right panel we show the long-time behavior of the error in energy for each method when the step size is chosen

so that all of them involve the same computational cost. We see that the error in energy is almost constant for t ≤ 20 0 0 π , as

is the case for symplectic integrators. In other words, the lack of symplecticity at order h 12 has no effect in this integration

interval. In addition, the scheme T (3) 
h 

provides the smaller error. 

A linear parabolic equation. Our second example concerns the linear equation in one-dimension 

∂ 

∂t 
u (x, t) = 

∂ 2 

∂x 2 
u (x, t) + V (x ) u (x, t) , u (x, 0) = sin (2 πx ) , (3.5)

with periodic boundary conditions in the space domain [0,1]. We take V (x ) = 8 + 4 sin (2 πx ) and partition the interval [0,1]

into N parts of length �x = 1 /N, so that the vector U = (U 0 , . . . , U N−1 ) 
T ∈ R 

N is formed, with U j = u (x j , t) and x j = j/N,

j = 0 , 1 , . . . , N − 1 . If a Fourier spectral collocation method is used, we end up with the N-dimensional linear ODE 

dU 

dt 
= A U + B U, (3.6) 

where B = diag (V (x 0 ) , . . . , V (x N−1 )) and A is a (full) differentiation matrix related with the second derivative ∂ xx . The split-

ting here corresponds to solving separately the systems ˙ U = A U and 

˙ U = B U . Notice that, since B is diagonal, then 

(e hB U) j = e hV (x j ) U j 

and only requires the computation of N multiplications. On the other hand, A U = F 

−1 D A F U , where F and F 

−1 are the

forward and backward discrete Fourier transform, and D A is again diagonal [21] . In consequence, 

e hA U = F 

−1 e hD A F U, 

requiring O(N log N) operations when the transformation F (and its inverse) is computed with the fast Fourier transform 

(FFT) algorithm. 

We take N = 128 and integrate until t f = 1 , where we compute the relative error ‖ U − U ex ‖ / ‖ U ex ‖ with each method T (k ) 
h 

,

k = 1 , 2 , 3 , in addition to the basic scheme (3.1) . The ‘exact’ solution U ex is taken as the output of the 8th-order composition

method P8S15 of [7] . The corresponding efficiency diagram is shown in Fig. 2 , where the same notation is used for the

curves depicted. Here also the higher degree integrators provide the best efficiency. 

4. Discussion 

4.1. T -methods and R -methods 

Methods T (k ) 
h 

have indeed close similarities with the compositions R (k ) 
h 

(1.9) previously analyzed in [10] : not only their

starting point is the same (the basic time-symmetric method S [2 n ] 
h 

), but one has in addition T (1) 
h 

= R (1) 
h 

and also the same

coefficients γ [2 m ] defined in (1.7) enter into their formulation. Finally, they have the same preservation properties. There is, 

however, a fundamental difference: whereas T -methods are linear combinations of symmetric-conjugate compositions only, 

this is not the case of R -methods, and in fact schemes R (k ) 
h 

involve a much larger number of compositions. This can be

clearly seen by writing explicitly the expression of R (2) 
h 

: 

R 

(2) 
h 

= 

1 

8 

(
(γ [2 n +2] γ [2 n ] , γ [2 n +2] γ̄ [2 n ] , γ̄ [2 n +2] γ [2 n ] , γ̄ [2 n +2] γ̄ [2 n ] ) 

+(γ [2 n +2] γ̄ [2 n ] , γ [2 n +2] γ [2 n ] , γ̄ [2 n +2] γ̄ [2 n ] , γ̄ [2 n +2] γ [2 n ] ) (4.1) 
8 
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Fig. 2. Error vs. number of evaluations of the basic method (3.1) obtained by schemes T (1) 
h 

(orange), T (2) 
h 

(green) and T (3) 
h 

(red). The blue line corresponds 

to S [4] 

h 
. 

Table 1 

Number of basic maps S [2 n ] 
h 

necessary to compute 

when formulating R - and T -methods explicitly or 

recursively (in the case of R -methods). 

k R (explicit) R (recursive) T (explicit) 

1 2 2 2 

2 16 8 8 

3 512 32 32 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

m 2 m · 2 2 
m −2 2 m · 2 m −1 2 m · 2 m −1 

 

 

 

 

 

 

 

 

+(γ [2 n +2] γ [2 n ] , γ [2 n +2] γ̄ [2 n ] , γ̄ [2 n +2] γ̄ [2 n ] , γ̄ [2 n +2] γ [2 n ] ) 

+(γ [2 n +2] γ̄ [2 n ] , γ [2 n +2] γ [2 n ] , γ̄ [2 n +2] γ [2 n ] , γ̄ [2 n +2] γ̄ [2 n ] ) 

+ c . c . 

)
, 

whereas R (3) 
h 

is the sum of 64 compositions containing 8 basic schemes with weights γ [2 n +4] γ [2 n +2] γ [2 n ] , 

γ̄ [2 n +4] γ [2 n +2] γ [2 n ] , etc. plus their complex conjugate divided by 128. In general, R (k ) 
h 

involves the sum of 2 2 
k −2 compo- 

sitions of 2 k appropriately weighted basic schemes: 

R 

(k ) 
h 

= 

1 

2 

2 k −1 

2 2 
k −2 ∑ 

j=1 

(
(α j 

2 k 
, . . . , α j 1 ) + c.c. 

)
, 

where α j i 
are products of the k coefficients γ [2 n ] , . . . , γ [2(n + k −1)] and their complex conjugate. This should be compared with 

the T -methods: in general, T (k ) 
h 

involves the sum of 2 k −1 compositions of 2 k basic schemes. In either case, the computation

of the complex conjugate part can be avoided just by taking the real part, with no extra evaluations of S [2 n ] 
h 

. 

These numbers are collected in Table 1 , when schemes R (k ) 
h 

(second column) and T (k ) 
h 

(last column) are formulated

explicitly. Of course, a recursive implementation of R -methods by applying the procedure (1.9) turns out to be more efficient.

In that case the required computational effort, measured as the number of basic schemes, is shown in the third column of

the table. Again, in this case we only have to compute the real part in the last iteration. 

In view of the number of basic maps required by the recursive implementation of R -methods and the explicit formulation

(1.11) of T -methods, it is natural to ask what are the advantages (if any) of the later schemes with respect to the former

ones. In this respect, one should take into account that both explicit formulations (1.11) and (4.1) are directly amenable to

parallelization, whereas this is less obvious for the recursion (1.9) . 

If one has a computer with, say, 2 � threads, it is easy to estimate the effective number of evaluations of S [2 n ] 
h 

both for R -

and T -methods. Thus, for R (k ) 
h 

one has: 

• if � ≤ 2 k − 2 then the number of evaluations is 2 k ; 
• if � > 2 k − 2 then the number of evaluations is 2 k · 2 2 

k −2 −� , 

whereas this number is considerably reduced for schemes T (k ) 
h 

: 
9 
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Table 2 

Effective number of evaluations 

of the basic map S [2 n ] 
h 

when the 

corresponding R - and T -method 

is implemented in parallel with 4 

and 32 threads. 

4 threads 32 threads 

k R T R T 

1 2 2 2 2 

2 4 4 4 4 

3 128 8 16 8 

Fig. 3. Efficiency diagram for R - and T -methods in a computer accepting 4 threads without loss of performance. Left: Kepler problem. Right: linear parabolic 

equation. 

 

 

 

 

 

 

 

 

 

 

 

• if � ≤ k − 1 then the number of evaluations is 2 k ; 
• if � > k − 1 then the number of evaluations is 2 k · 2 k −1 −� . 

In Table 2 we collect these numbers for the first values of k in the particular case of 2 2 = 4 and 2 5 = 32 threads. We

see that the implementation of the explicit expression of the R -methods is more advantageous than the recursive procedure 

already with a relatively small number of threads, and that, in any case, T -methods require less computational effort. 

To better illustrate this issue, we next compare the efficiency of the different methods when implemented on a computer 

able to execute 4 threads without loss of performance. The corresponding results are displayed in Fig. 3 for the Kepler

problem (left) and the linear parabolic Eq. (3.5) (right). The gain in efficiency of the new schemes is clearly visible. 

Even in the case when one could run the schemes on a machine such that the effective number of evaluations of both

R (k ) 
h 

and T (k ) 
h 

is the same, i.e., 2 k in both cases, the latter turn out to be more efficient. This is clearly visible in Fig. 4 ,

obtained again by applying the previous schemes to the Kepler problem (left) and the linear parabolic equation (right). 

Finally, it is also illustrative to compare the efficiency of the new T -methods with the standard triple-jump procedure, 

Eqs. (1.3) –(1.4) , both applied to the same basic scheme (3.1) . Thus, in Fig. 5 we depict the results achieved by projecting

S [6] 

h 
, S [8] 

h 
, and S [10] 

h 
at each step, together with T (k ) 

h 
, k = 1 , 2 , 3 for the Kepler problem with the same parameters and final

time t f = 20 π . Here the effective number of evaluations of the basic scheme has been taken as 2 k for T -methods and 3 k for

triple-jump. Not surprisingly, the new schemes turn out to be much more efficient. 

4.2. Concluding remarks 

The standard triple-jump procedure is a popular technique that allows one to construct numerical integrators for dif- 

ferential equations of arbitrarily high order by composition of a basic integrator of low order. It has nevertheless certain 

limitations: the number of basic maps grows rapidly with the order, and the main error terms are quite large in comparison

with other specially built integrators. Moreover, they involve some negative coefficients when the order r ≥ 3 , so that the

resulting schemes cannot be used in particular when the initial value problem (1.1) results from the space discretization of 

a parabolic partial differential equation involving the Laplace operator. In this context it is quite natural to explore whether 

it is still possible using the triple-jump technique (1.3) , but with the complex coefficients furnished by (1.5) as long as their

real part is positive. It has been established that this is indeed the case, although once again they require an exceedingly

large number of basic methods. For this reason, other alternatives for constructing high-order composition methods have 
10 
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Fig. 4. Efficiency diagram for R - and T -methods when the effective number of evaluations of the basic scheme is the same ( 2 k in both cases). Left: Kepler 

problem. Right: linear parabolic equation. 

Fig. 5. Error in energy vs. number of basic maps S [4] 

h 
for T -methods in comparison with schemes obtained by triple-jump for the Kepler problem. 

 

 

 

 

also been proposed [7,11,16] . Among them, the class of schemes (1.8) possess some special features: starting from a time-

symmetric basic scheme S [2 n ] 
h 

of order 2 n , it is possible to construct recursively methods of order 2 n + 2 k , k = 1 , 2 , . . . that

are still time-symmetric up to order 4 n + 3 . Moreover, if the differential equation in (1.1) has some qualitative properties

(such as symplecticity or volume preservation) then these properties are still shared by the numerical solution up to order 

4 n + 3 [10] . 

Methods (1.9) are based on the simple symmetric-conjugate composition (1.6) . As shown in [6] , symmetric-conjugate 

composition methods still possess remarkable preservation properties when projected on the real axis at each integration 

step, and so it makes sense to consider more general linear combinations of methods within this class. The corresponding 

analysis has been carried out here, and as a result we have built a new class of schemes that essentially have the same

preservation properties as methods (1.9) , but requiring a much reduced computational cost. In addition, these methods 

are particularly well suited for their parallel implementation. The examples included show a significant improvement in 

efficiency with respect to schemes (1.9) and those obtained by applying the triple-jump procedure. 
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