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New families of composition methods with processing of order 4 and 6 are presented and 
analyzed. They are specifically designed to be used for the numerical integration of differential 
equations whose vector field is separated into three or more parts which are explicitly solvable. 
The new schemes are shown to be more efficient than previous state-of-the-art splitting methods.

1. Introduction

Structure-preserving numerical integration methods are nowadays a common tool in many areas of physics, chemistry and com-

putational mathematics [2,11]. Among them, splitting methods constitute a natural option when the differential system can be 
separated into two parts, so that each of them is explicitly integrable [7,18]. Suppose the vector field 𝑓 in

𝑥̇ ≡
𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥), 𝑥(𝑡0) = 𝑥0 ∈ℝ𝐷 (1.1)

can be split into two parts, 𝑓 (𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥), so that each subproblem

𝑥̇ = 𝑓𝑖(𝑥), 𝑥(𝑡0) = 𝑥0, 𝑖 = 1,2

is explicitly solvable, with solution 𝑥(𝑡) = 𝜑
[𝑖]
𝑡
(𝑥0). Then, the composition

𝜒ℎ = 𝜑
[2]
ℎ
◦𝜑[1]

ℎ
(1.2)

provides a first-order approximation to the exact flow 𝜑ℎ of (1.1):

𝜒ℎ(𝑥0) = 𝜑ℎ(𝑥0) +(ℎ2), as ℎ → 0, (1.3)

whereas the palindromic composition
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Table 1

Fourth- and sixth-order symmetric (palindromic) composition 
methods of the form (1.8). They correspond to the splitting 
schemes S6 and S10 of [9, Table 2], respectively.

BM
[4]
6 (order 4)

𝛼1 = 0.0792036964311957 𝛼2 = 0.1303114101821663
𝛼3 = 0.22286149586760773 𝛼4 = −0.36671326904742574
𝛼5 = 0.32464818868970624 𝛼6 = 0.10968847787674973

BM
[6]
10 (order 6)

𝛼1 = 0.0502627644003922 𝛼2 = 0.0985536835006498
𝛼3 = 0.31496061692769417 𝛼4 = −0.44734648269547816
𝛼5 = 0.49242637248987586 𝛼6 = −0.42511876779769087
𝛼7 = 0.23706391397812188 𝛼8 = 0.19560248860005314
𝛼9 = 0.34635818985072686 𝛼10 = −0.36276277925434486


[2]
ℎ

= 𝜑
[1]
ℎ∕2◦𝜑

[2]
ℎ
◦𝜑[1]

ℎ∕2, (1.4)

known as the Strang splitting method, is of second-order. Higher-order schemes can be constructed as

𝜓ℎ = 𝜑
[2]
ℎ𝑏𝑠

◦𝜑[1]
ℎ𝑎𝑠

◦⋯◦𝜑[2]
ℎ𝑏1

◦𝜑[1]
ℎ𝑎1

if the coefficients 𝑎𝑗 , 𝑏𝑗 are conveniently chosen so as to satisfy the required order conditions [11,18].

There are problems, however, where 𝑓 has to be split into more than two terms for each part to be explicitly integrable, i.e., 
𝑓 (𝑥) =

∑𝑛

𝑖=1 𝑓𝑖(𝑥), 𝑛 ≥ 3. In that case, method (1.3) generalizes to

𝜒ℎ = 𝜑
[𝑛]
ℎ
◦𝜑

[𝑛−1]
ℎ

◦ ⋯ ◦𝜑[2]
ℎ
◦𝜑[1]

ℎ
(1.5)

(or any other permutation of the sub-flows 𝜑[𝑗]
ℎ

), leading to a first-order approximation. This is also the case of the adjoint of 𝜒ℎ , 
defined as 𝜒∗

ℎ
= (𝜒−ℎ)−1, namely

𝜒∗
ℎ
= 𝜑

[1]
ℎ
◦𝜑

[2]
ℎ
◦ ⋯ ◦𝜑[𝑛−1]

ℎ
◦𝜑[𝑛]

ℎ
,

whereas the composition 𝜒ℎ∕2◦𝜒
∗
ℎ∕2 leads to a second-order approximation  [2]

ℎ
, the generalization of scheme (1.4) to this setting. 

Higher order integrators can be constructed as compositions of  [2]
ℎ

. Thus, in particular, the 4th-order scheme


[4]
ℎ

= 
[2]
𝛼1ℎ

◦ [2]
𝛼2ℎ

◦ [2]
𝛼1ℎ

, with 𝛼1 =
1

2 − 21∕3
, 𝛼2 = 1 − 2𝛼1, (1.6)

is very popular in applications [28,6], although it has large truncation errors and a short stability interval. Alternatively, the 4th-order 
scheme

𝜓ℎ = 
[2]
𝛼1ℎ

◦ [2]
𝛼1ℎ

◦ [2]
𝛼3ℎ

◦ [2]
𝛼1ℎ

◦ [2]
𝛼1ℎ

, with 𝛼1 =
1

4 − 41∕3
, 𝛼3 = 1 − 4𝛼1,

first proposed in [22] and analyzed in detail in [17], is much more efficient than (1.6), even if it requires more computational effort 
per step, whereas palindromic compositions of the form

𝜓ℎ = 
[2]
𝛼𝑚ℎ

◦ [2]
𝛼𝑚−1ℎ

◦⋯◦ [2]
𝛼2ℎ

◦ [2]
𝛼1ℎ

with (𝛼1,… , 𝛼𝑚) ∈ℝ𝑚 (1.7)

and 𝛼𝑚+1−𝑖 = 𝛼𝑖, lead to efficient integrators of order 𝑟 > 6 [11].

The most general situation corresponds to integrators of the form

𝜓ℎ = 𝜒𝛼2𝑠ℎ
◦𝜒∗

𝛼2𝑠−1ℎ
◦⋯◦𝜒𝛼2ℎ

◦𝜒∗
𝛼1ℎ

, with (𝛼1,… , 𝛼2𝑠) ∈ℝ2𝑠 (1.8)

verifying in addition the condition 𝛼2𝑠+1−𝑖 = 𝛼𝑖 to preserve time-symmetry. In fact, methods (1.7) constitute a particular case of (1.8)

when  [2]
ℎ

is the Strang map (1.4). Among the most efficient 4th- and 6th-order methods of this class we can mention the schemes 
introduced by Blanes and Moan [9], denoted here as BM

[4]
6 and BM

[6]
10 , respectively. They have 𝑠 = 6 and 𝑠 = 10 stages, and their 

coefficients are collected in Table 1. The main truncation error of the 4th-order scheme BM
[4]
6 is around 500 times smaller than the 

error of method (1.6), thus compensating its higher computational cost per step. For future reference, this scheme reads explicitly

BM
[4]
6 ∶ 𝜒𝛼1ℎ

◦𝜒∗
𝛼2ℎ

◦𝜒𝛼3ℎ
◦𝜒∗

𝛼4ℎ
◦𝜒𝛼5ℎ

◦𝜒∗
𝛼6ℎ

◦𝜒𝛼6ℎ
◦𝜒∗

𝛼5ℎ
◦𝜒𝛼4ℎ

◦𝜒∗
𝛼3ℎ

◦𝜒𝛼2ℎ
◦𝜒∗

𝛼1ℎ
. (1.9)

Actually, schemes BM
[4]
6 and BM

[6]
10 are constructed in [9] as splitting methods when 𝑓 is separated into two parts. Specifically, if 
87

𝜒ℎ is taken as (1.2), then scheme (1.8) can be rewritten as
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Table 2

Schemes of effective order four and six of the form (1.8). They 
correspond to methods 𝑃64 and 𝑃96 of [5, Table 5], respec-

tively. With an appropriate processor, they render 4th- and 
6th-order composition schemes.

BCM
[4]
6 (effective order 4)

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 𝛼4 = 0.1341940158122142
𝛼5 = −0.3141940158122142 𝛼6 = 0.27741795256335733

BCM
[6]
9 (effective order 6)

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 𝛼5 𝛼5 = 0.1106570871853300
𝛼6 = −0.2854111127287940 𝛼7 = 0.2138498496192465
𝛼8 = −0.3402583791791715 𝛼9 = 0.35853420636206895

𝜓ℎ = 𝜑
[1]
𝑎𝑠+1ℎ

◦𝜑[2]
𝑏𝑠ℎ

◦𝜑[1]
𝑎𝑠ℎ

◦⋯◦𝜑[1]
𝑎2ℎ

◦𝜑[2]
𝑏1ℎ

◦𝜑[1]
𝑎1ℎ

, (1.10)

where 𝑎1 = 𝛼1, and for 𝑗 = 1, … , 𝑠,

𝑎𝑗+1 = 𝛼2𝑗 + 𝛼2𝑗+1, 𝑏𝑗 = 𝛼2𝑗−1 + 𝛼2𝑗 (1.11)

(with 𝛼2𝑠+1 = 0). Conversely, any integrator of the form (1.10) satisfying the condition 
∑𝑠+1

𝑗=1 𝑎𝑗 =
∑𝑠

𝑗=1 𝑏𝑗 can be expressed in the 
form (1.8), as shown in [16].

The aim of this paper is to construct new classes of 4th- and 6th-order composition methods that are even more efficient for 
problems that can be expressed as the sum of three or more explicitly integrable terms. These are built by applying the processing 
technique. Although a detailed study of composition methods with processing was carried out in [5] and methods up to order 
12 were presented there, we think methods of low order require an additional treatment to improve their overall efficiency due 
to their relevance in practical applications. This is the subject of the present work, where we present new families of processed 
composition schemes with a better performance than the de facto state-of-the-art numerical integrators of Table 1. This claim is 
further substantiated by numerical tests on different problems. Although the new schemes are specifically designed and optimized 
for systems separable into 𝑛 ≥ 3 parts, the case 𝑛 = 2 is also contemplated. Furthermore, the new schemes are also compared with 
the most efficient processed methods of order 4 and 6 obtained in [5], whose coefficients (for the kernel) are collected in Table 2.

2. Processed composition methods

Processed (or corrected) methods are of the form

𝜓̂ℎ = 𝜋ℎ◦𝜓ℎ◦𝜋
−1
ℎ

. (2.1)

The integrator 𝜓ℎ is called the kernel and the (near-identity) map 𝜋ℎ is the processor or corrector. The method 𝜓ℎ is said to be of 
effective order 𝑟 if a processor exists such that 𝜓̂ℎ is of (conventional) order 𝑟 [10]. Note that, since

𝜓̂𝑁
ℎ

= 𝜋ℎ◦𝜓
𝑁
ℎ
◦𝜋−1

ℎ
,

applying 𝜓̂ℎ over 𝑁 steps with constant ℎ only involves 𝑁 evaluations of the kernel, whereas 𝜋−1
ℎ

is computed only at the beginning 
and 𝜋ℎ when output is desired [15,8].

Processed integrators have shown to be very efficient in a variety of systems, ranging from near-integrable problems to Hamilto-

nian systems separable into kinetic and potential energy [15,27,8]. This is due essentially to the fact that the kernel has to satisfy a 
much reduced set of order conditions (in other words, some of the order conditions can be fulfilled by the processor) and therefore 
they require less computational effort than a conventional method of the same order.

The derivation and analysis of the effective order conditions for kernels of the form (1.8) has been done in [5], where kernels 
of effective orders 4 and 6 have also been proposed (for order 𝑟 > 6 it is more advantageous to consider directly palindromic 
compositions of the form (1.7)). Here we briefly summarize the treatment when 𝑟 ≤ 6 and construct new families of schemes.

The corresponding analysis can be carried out with the help of the Lie formalism. To proceed, we introduce the Lie derivative 𝐹
associated with 𝑓 in (1.1), and defined as

𝐹 𝑔(𝑥) = 𝑑

𝑑ℎ

||||ℎ=0 𝑔(𝜑ℎ(𝑥))

for each smooth function 𝑔 ∶ℝ𝐷 →ℝ and 𝑥 ∈ℝ𝐷 , that is,

𝐹 𝑔(𝑥) = 𝑓 (𝑥) ⋅∇𝑔(𝑥). (2.2)

Then, the ℎ-flow of Eq. (1.1) verifies [11,21]
88

𝑔(𝜑ℎ(𝑥)) = eℎ𝐹 𝑔(𝑥),
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Table 3

Particular basis of 𝑗 , 1 ≤ 𝑗 ≤ 7, taken in this work.

𝑗 Basis of 𝑗

1 𝐸1,1 = 𝑌1
2 𝐸2,1 = 𝑌2
3 𝐸3,1 = 𝑌3 𝐸3,2 = [𝑌1, 𝑌2]
4 𝐸4,1 = 𝑌4 𝐸4,2 = [𝑌1, 𝑌3] 𝐸4,3 = [𝑌1,𝐸3,2]

5 𝐸5,1 = 𝑌5 𝐸5,2 = [𝑌1, 𝑌4] 𝐸5,3 = [𝑌1,𝐸4,2]
𝐸5,4 = [𝑌1,𝐸4,3] 𝐸5,5 = [𝑌2, 𝑌3] 𝐸5,6 = [𝑌2,𝐸3,2]

6 𝐸6,1 = 𝑌6 𝐸6,2 = [𝑌1, 𝑌5]
𝐸6,3+𝑖 = [𝑌1,𝐸5,2+𝑖] 𝑖 = 0,… ,4
𝐸6,8 = [𝑌2, 𝑌4] 𝐸6,9 = [𝑌2,𝐸4,2]

7 𝐸7,1 = 𝑌7 𝐸7,2 = [𝑌1, 𝑌6]
𝐸7,3+𝑗 = [𝑌1,𝐸6,2+𝑗 ] 𝑗 = 0,… ,7
𝐸7,11 = [𝑌2, 𝑌5] 𝐸7,12+𝑘 = [𝑌2,𝐸5,2+𝑘] 𝑘 = 0,… ,4
𝐸7,17 = [𝑌3, 𝑌4] 𝐸7,18 = [𝑌3,𝐸4,2]

where eℎ𝐹 is defined as a series of linear differential operators

eℎ𝐹 =
∞∑

𝑘=0

ℎ𝑘

𝑘!
𝐹 𝑘.

Analogously, for the basic method 𝜒ℎ of (1.5), one can associate a series of linear operators so that [6]

𝑔(𝜒ℎ(𝑥)) = e𝑌 (ℎ)𝑔(𝑥), with 𝑌 (ℎ) =
∑
𝑘≥1

ℎ𝑘𝑌𝑘

with 𝑌1 = 𝐹 , whereas for its adjoint one has 𝑔(𝜒∗
ℎ
(𝑥)) = e−𝑌 (−ℎ)𝑔(𝑥). In consequence, the integrator (1.8) has associated a series Ψ(ℎ)

of differential operators given by

Ψ(ℎ) = e−𝑌 (−ℎ𝛼1) e𝑌 (ℎ𝛼2)⋯ e−𝑌 (−ℎ𝛼2𝑠−1) e𝑌 (ℎ𝛼2𝑠), (2.3)

in the sense that 𝑔(𝜓ℎ(𝑥)) = Ψ(ℎ) 𝑔(𝑥). Successive applications of the Baker–Campbell–Hausdorff formula [23] in (2.3) allow us to 
formally express Ψ(ℎ) as only one exponential,

Ψ(ℎ) = exp(𝐾(ℎ)), with 𝐾(ℎ) =
∑
𝑗≥1

ℎ𝑗𝐾𝑗 , (2.4)

the terms ℎ𝑗𝐾𝑗 ∈ 𝑗 for each 𝑗 ≥ 1 and  =
⨁

𝑗≥1𝑗 is the graded free Lie algebra generated by {𝑌1, 𝑌3, 𝑌5, …} [20]. For the 
particular basis of 𝑗 , 𝑗 ≤ 7, collected in Table 3, the operator 𝐾(ℎ) associated with a consistent time-symmetric method (1.8) reads

𝐾(ℎ) = ℎ𝐹 + ℎ3(𝑘3,1𝐸3,1 + 𝑘3,2𝐸3,2
)
+ ℎ5

6∑
𝓁=1

𝑘5,𝓁𝐸5,𝓁 + ℎ7
18∑
𝓁=1

𝑘7,𝓁𝐸7,𝓁 +(ℎ9), (2.5)

where 𝑘𝑛,𝓁 are polynomials of degree 𝑛 in the coefficients 𝛼𝑗 . Due to the time-symmetry, only odd order terms appear in (2.5) [21].

As for the processor, when the kernel is time-symmetric, it can be chosen such that 𝜋−ℎ = 𝜋ℎ. In that case, its associated series of 
differential operators can be expressed as Π(ℎ) = exp(𝑃 (ℎ)), with 𝑃 (−ℎ) = 𝑃 (ℎ) [4]. Explicitly,

𝑃 (ℎ) = ℎ2𝑝2,1𝐸2,1 + ℎ4(𝑝4,1𝐸4,1 + 𝑝4,2𝐸4,2 + 𝑝4,3𝐸4,3
)
+(ℎ6). (2.6)

In consequence, the series of operators associated to the processed method (2.1) is

Ψ̂(ℎ) = e𝐹 (ℎ) = Π(ℎ)−1 Ψ(ℎ)Π(ℎ) = e−𝑃 (ℎ) e𝐾(ℎ) e𝑃 (ℎ), (2.7)

so that

𝐹 (ℎ) = e−ad𝑃 (ℎ)𝐾(ℎ) = 𝐾(ℎ) − [𝑃 (ℎ),𝐾(ℎ)] + 1
2
[𝑃 (ℎ), [𝑃 (ℎ),𝐾(ℎ)]] +⋯

= 𝐹 + ℎ3(𝑓3,1𝐸3,1 + 𝑓3,2𝐸3,2
)
+ ℎ5

6∑
𝓁=1

𝑓5,𝓁𝐸5,𝓁 +(ℎ7),
(2.8)

where 𝑓𝑖,𝑗 depend on 𝑘𝓁,𝑚 and 𝑝𝑘,𝑛. The method is of order 𝑟 if 𝑓𝑖,𝑗 = 0 for all 1 < 𝑖 ≤ 𝑟. This leads to a set of restrictions on the 
coefficients of the kernel (the effective order conditions), whereas 𝑃 (ℎ) is obtained by fixing its coefficients 𝑝𝑘,𝑛 so as to satisfy the 
remaining conditions. Since the kernel is time-symmetric, we can choose without loss of generality 𝑝2𝑛−1,𝑗 = 0, 𝑛 ≥ 1 [8]. All these 
89

conditions up to order 7 are collected in Table 4.
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Table 4

Order conditions for the kernel 𝜓ℎ and processor 𝜋ℎ up to order 𝑟 when the time-symmetric kernel 
(𝑘2𝑛,𝑖 = 0) is expressed in the basis of Table 3. In that case, 𝑝2𝑛−1,𝑗 = 0, 𝑛 = 1, 2, 3.

𝑟 Eff. order conditions Processor conditions

1 𝑘1,1 = 1
3 𝑘3,1 = 0 𝑝2,1 = 𝑘3,2
5 𝑘5,1 = 𝑘5,5 = 0

𝑘5,6 = − 1
2
𝑘2
3,2 𝑝4,1+𝑖 = 𝑘5,2+𝑖 , 𝑖 = 0,1,2

7 𝑘7,𝑖 = 0, 𝑖 = 1,11,15,17,18 𝑝6,1+𝑙 = 𝑘7,2+𝑙 , 𝑙 = 0,… ,5
𝑘7,16 =

1
6
𝑘3
3,2 𝑝6,7 = 𝑘7,8 −

1
2
𝑘3,2𝑘5,4

𝑘7,10+𝑗 = −𝑘3,2𝑘5,𝑗 , 𝑗 = 2,3,4 𝑝6,8 = 𝑘7,9 −
1
2
𝑘3,2𝑘5,2 𝑝6,9 = 𝑘7,10 −

1
2
𝑘3,2𝑘5,3

Table 5

Theoretical efficiencies of 𝑠-stage kernels 𝜓 [4]
𝑠

of ef-

fective order 4.

𝑠 𝐸
(5)
ef 𝐸

(7)
ef 𝐸

(9)
ef 1–norm

3 2.2753 2.5675 2.6384 4.4048

4 1.5470 1.7567 1.8304 2.8523

5 1.3142 1.5034 1.5775 2.3177

6 1.2026 1.3984 1.4852 2.0417

7 1.1389 1.3220 1.4207 1.8710

8 1.1001 1.2961 1.4061 1.7543

9 1.0778 1.2662 1.3903 1.6672

3. Processed methods of order 4

3.1. Construction of kernels

According with Table 4, two order conditions have to be solved by a palindromic kernel of the form (1.8) to achieve effective 
order 4. In other words, 𝑠 ≥ 2. As noticed previously [5], with 𝑠 = 2 there are only complex solutions, so that more stages have 
to be introduced and, consequently, one has free parameters. In these circumstances, some criterion has to be adopted to make an 
appropriate selection of the free parameters. A standard strategy consists in minimizing the non-correctable error terms at order 5, 
since they cannot be removed by a processor anyway. In our case, these terms can be grouped into the function

5 ≡
(
𝑘25,1 + 𝑘25,5 + (𝑘5,6 +

1
2

𝑘23,2)
2
)1∕2

, (3.1)

and also corresponds to the 2-norm of the vector (𝑓5,1, … , 𝑓5,6) of the coefficients 𝑓5,𝑗 in the series (2.8), once the coefficients 𝑝𝑖,𝑗 are 
chosen according with the prescription of Table 4 up to 𝑖 = 4. To take into account the computational cost corresponding to a kernel 
(1.8) with 𝑠 stages, the following function, with 𝑟 = 5, is used to measure the relative efficiency of each method [5]:

𝐸
(𝑟)
ef = 𝑠

1∕(𝑟−1)
𝑟 . (3.2)

In addition, we also keep track of the non-correctable error terms at orders 7 and 9 with the same function (with 𝑟 = 7 and 𝑟 = 9), 
and the size of the coefficients, as measured by the 1-norm of the vector (𝛼1, … , 𝛼2𝑠). In this way we hope to keep higher-order errors 
under control.

We have analyzed compositions with 3 ≤ 𝑠 ≤ 9 stages. Specifically, we have solved the effective order conditions and expressed 
the solutions in terms of the free parameters. Then, we have written the corresponding function 5 in terms of these parameters and 
explored systematically the parameter domain to find its local minima. Finally, we have taken the set of values which provide the 
smallest value for 5. In this way we get the coefficient collected in Table 6, with the theoretical efficiencies gathered in Table 5.

For comparison with the schemes we construct here, the kernel of the processed method BCM
[4]
6 of Table 2 has the value 𝐸(5)

ef =
1.3432, whereas the corresponding value for the scheme BM

[4]
6 of Table 1 is 1.5829.

Notice that by including more basic maps in the composition it is possible to reduce the value of 𝐸(𝑟)
ef , and that errors at higher 

order also reduce accordingly. Although several values of the coefficients provide essentially the same (minimum) value for 5, the 
observed pattern closely follows the rule of thumb formulated by Mclachlan [17] for kernels of the form (1.7) and effective order 4: 
(i) set the maximum possible number of outer stages in (1.7) equal to eliminate free parameters; (ii) find the solution of the effective 
order conditions with the remaining parameters; (iii) either use the resulting method as it is or take it as the starting point for further 
minimize the main error term.

It is shown in [17] that the minimum effective error is obtained for 𝑠 = 19, which is precisely the same pattern observed here: 
𝐸

(5)
ef achieves its minimum value ≈ 1 when 𝑠 = 19.

Methods with 𝑠 = 8, 9 in Table 6 have been obtained by applying the rule of thumb, but considering two and three free parameters, 
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respectively, for further optimization. Once the free parameters have been selected the remaining coefficients can be determined with 
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Table 6

Coefficients of time-symmetric kernels of the form (1.8) of effec-

tive order 4 and 𝑠 stages, 3 ≤ 𝑠 ≤ 9.

𝑠 = 3, 𝜓
[4]
3

𝛼1 = 𝛼2 =
1
6
(2 + 2−1∕3 + 21∕3) 𝛼3 =

1
2
− 2𝛼1

𝑠 = 4, 𝜓
[4]
4

𝛼1 = 0.32175 𝛼2 = −0.46308
𝛼3 = 0.3257797788491148 𝛼4 = 0.3155502211508852

𝑠 = 5, 𝜓
[4]
5

𝛼1 = 𝛼2 = 0.2014 𝛼3 = 0.2136
𝛼4 = −0.3294322555468401 𝛼5 = 0.2130322555468401

𝑠 = 6, 𝜓
[4]
6

𝛼1 = 0.15 𝛼2 = 0.15
𝛼3 = 0.14353 𝛼4 = 0.1592
𝛼5 = −0.2604319166278054 𝛼6 = 0.1577019166278054

𝑠 = 7, 𝜓
[4]
7

𝛼1 = 0.1174 𝛼2 = 0.1158
𝛼3 = 0.1227 𝛼4 = 0.112
𝛼5 = 0.12685 𝛼6 = −0.2177553177818525
𝛼7 = 0.1230053177818525

𝑠 = 8, 𝜓
[4]
8

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 0.09755 𝛼5 = 0.09
𝛼6 = 0.1061 𝛼7 = −0.1885819261107769
𝛼8 = 0.1022819261107769

𝑠 = 9, 𝜓
[4]
9

𝛼1 = 𝛼2 =⋯ = 𝛼7 = 0.082576
𝛼8 = −0.1668033908821750 𝛼9 = 0.0887713908821750

arbitrary precision. Here, for convenience, we only show the first 16 digits. We notice that, although the value of 𝐸(𝑟)
ef diminishes 

indeed with 𝑠, it does so more slowly (for instance, for 𝑠 = 10 it is approximately 1.06), so that in practice we restrict ourselves to 
𝑠 ≤ 9.

3.2. Testing the kernels

A simple technique can be used to test the effective order and the relative efficiency of the kernels proposed, before attempting 
to construct a processor to form the whole integrator, a task that becomes increasingly difficult with the order. To proceed, let us 
consider the linear 𝑑 × 𝑑 matrix system

𝑈̇ = (𝐴1 +𝐴2 +𝐴3)𝑈, 𝑈 (0) = 𝐼, (3.3)

with exact solution 𝑈ex = e𝑡(𝐴1+𝐴2+𝐴3), determine the trace of the approximation rendered by the kernel and compare tr(𝜓̂ℎ) with 
tr(𝑈ex) at some final time to get an estimate of the error and efficiency that this particular kernel can achieve by processing. We take 
𝐴𝑗 , 𝑗 = 1, 2, 3, as 50 × 50 matrices whose entries are chosen randomly from a normal distribution. In addition, to illustrate the role 
that the basic scheme may play in the overall performance of the method, we take two different choices for 𝜒ℎ, namely a composition 
of the exact flow of each sub-part,

𝜒ℎ = eℎ𝐴3 eℎ𝐴2 eℎ𝐴1 (3.4)

and the first-order approximation

𝜒ℎ = (𝐼 + ℎ𝐴3)(𝐼 + ℎ𝐴2)(𝐼 + ℎ𝐴1), (3.5)

in which case 𝜒∗
ℎ
= (𝐼 − ℎ𝐴1)−1(𝐼 − ℎ𝐴2)−1(𝐼 − ℎ𝐴3)−1. Fig. 1a corresponds to one particular instance of the first case, and Fig. 1b 

corresponds to the second. Here kernels of Table 6 are tested, together with BM
[4]
6 and the kernel of method BCM

[4]
6 (Table 2). 

Whereas there is a good deal of variability in the efficiency exhibited by the different schemes with the choice (3.4) depending on 
the particular matrices 𝐴𝑗 , this is not the case of (3.5): in all examples we have tested, the efficiency closely follows the pattern 
shown in Table 5.

3.3. Construction of the processor

To have a complete integrator we must obtain a processor 𝜋ℎ in (2.1) once a particular kernel has been chosen. This in principle 
would require determining the exact flow of the infinite series (2.6). For an easier implementation, however, it is more convenient to 
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construct an approximation to 𝜋ℎ as a composition of the same form as the kernel. In our case it would be enough to fix conditions 
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Fig. 1. Error in the trace obtained by kernels of effective order 4 collected in Table 6, together with method BM
[4]
6 and the kernel of BCM

[4]
6 when they are applied to 

the linear system (3.3) at final time 𝑡𝑓 = 10. (a): basic scheme 𝜒ℎ taken as (3.4); (b): 𝜒ℎ given by (3.5).

on 𝑝𝑖,𝑗 in (2.6) up to order 3, but the overall error is reduced if in addition all the conditions are satisfied up to order 5, as previously 
explained. In other words, we fix

𝑝1,1 = 𝑝3,1 = 𝑝3,2 = 0, 𝑝2,1 = 𝑘3,2,

𝑝4,1 = 𝑘5,2, 𝑝4,2 = 𝑘5,3, 𝑝4,3 = 𝑘5,4

for a particular kernel, and then construct an approximation of the form

𝜋ℎ ≈ 𝜋(𝑠,4)
≡ 𝜒∗

𝛽7ℎ
◦𝜒𝛽6ℎ

◦𝜒∗
𝛽5ℎ

◦𝜒𝛽4ℎ
◦𝜒∗

𝛽3ℎ
◦𝜒𝛽2ℎ

◦𝜒∗
𝛽1ℎ

, (3.6)

assuming that the corresponding equations have real solutions. Then, we approximate the inverse map 𝜋−1
ℎ

by

𝜋−1
ℎ

≈ 𝜒−𝛽1ℎ
◦𝜒∗

−𝛽2ℎ
◦𝜒−𝛽3ℎ

◦𝜒∗
−𝛽4ℎ

◦𝜒−𝛽5ℎ
◦𝜒∗

−𝛽6ℎ
◦𝜒−𝛽7ℎ

.

As explained in [1,3], one can also replace 𝜋−1
ℎ

by the adjoint 𝜋∗
ℎ

and obtain an approximation up to the same order. In that case, 
the integrator after 𝑁 steps reads

𝜋ℎ◦𝜓
𝑁
ℎ
◦𝜋∗

ℎ

and is also time-symmetric if 𝜓ℎ is so, although it cannot be obtained as a 𝑁 -fold composition of a one-step map [1]. In consequence, 
we take

𝜋∗
ℎ
≈ 𝜒𝛽1ℎ

◦𝜒∗
𝛽2ℎ

◦𝜒𝛽3ℎ
◦𝜒∗

𝛽4ℎ
◦𝜒𝛽5ℎ

◦𝜒∗
𝛽6ℎ

◦𝜒𝛽7ℎ
.

By applying this strategy, we have determined a processor for each kernel of Table 6 (except for 𝜓3, given its poor efficiency). 
The overall methods read as

𝜓̂ [𝑠,4] = 𝜋(𝑠,4)◦𝜓 [4]
𝑠

◦
(
𝜋(𝑠,4))∗ , (3.7)

where 𝑠 denotes the number of stages of the kernel.

4. Processed methods of order 6

A similar procedure can be carried out to construct processed composition methods of order 6. In this case one has 5 effective 
order conditions, so that the kernel involves at least 𝑠 = 5 stages. Methods with 𝑠 ≤ 10 have been obtained in [5] by applying the 
previous rule of thumb. They are more efficient than the standard scheme BM

[6]
10 of Table 1 on a number of examples. Proceeding 

analogously as in the case of order 4, we build new kernels by minimizing the objective function 𝐸(7)
ef . This is done by exploring the 

space of parameters and identifying local minima of 7 for 5 ≤ 𝑠 ≤ 11. The coefficients of the most promising schemes we have found 
are collected in Table 8, leading to the following efficiencies shown in Table 7.

We should stress that the kernel with 𝑠 = 5 stages also corresponds to a composition (1.7). For comparison, the standard 6th-

order method BM
[6]
10 of Table 1 has 𝐸(7)

ef = 3.5855, whereas the kernel BCM
[6]
9 has 𝐸(7)

ef = 2.2144. It is worth remarking that the most 
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efficient schemes we have found with 𝑠 = 10 and 𝑠 = 11 correspond precisely to a particular case of the rule of thumb. Moreover, 
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Table 7

Theoretical efficiencies of 𝑠-stage kernels 
𝜓 [6]

𝑠
of effective order 6.

𝑠 𝐸
(7)
ef 𝐸

(9)
ef 1–norm

5 5.1053 6.2573 9.6024

6 3.1347 3.6818 5.7329

7 2.5170 2.9862 4.3759

8 2.2193 2.6388 3.6553

9 2.0686 2.4786 3.2417

10 1.9488 2.3345 2.9099

11 1.8718 2.2560 2.6935

Table 8

Coefficients of time-symmetric kernels of the form (1.8) of effective or-

der 6 with 𝑠 stages, 5 ≤ 𝑠 ≤ 11.

𝑠 = 5, 𝜓
[6]
5

𝛼1 = 1.1983882307745148 𝛼2 = −1.0753056449710827
𝛼3 = −1.0753056449710827 𝛼4 = 0.7261115295838254
𝛼5 = 0.7261115295838252

𝑠 = 6, 𝜓
[6]
6

𝛼1 = 0.35796564117377453 𝛼2 = 0.3041155195721355
𝛼3 = 0.3544845132692152 𝛼4 = −0.5776359154029904
𝛼5 = −0.6055964252788016 𝛼6 =

2
3

𝑠 = 7, 𝜓
[6]
7

𝛼1 = 0.2 𝛼2 = 0.2102
𝛼3 = 0.2076682089468185 𝛼4 = 0.2483663566422618
𝛼5 = −0.4108957823061926 𝛼6 = −0.4330744093869198
𝛼7 = 0.4777356261040321

𝑠 = 8, 𝜓
[6]
8

𝛼1 = 0.1535 𝛼2 = 0.146
𝛼3 = 0.1535 𝛼4 = 0.1564865138360776
𝛼5 = 0.1777546764340215 𝛼6 = −0.3260392072026447
𝛼7 = −0.3377852074639321 𝛼8 = 0.3765832243964778

𝑠 = 9, 𝜓
[6]
9

𝛼1 = 0.1145 𝛼2 = 0.116
𝛼3 = 0.117 𝛼4 = 0.1115
𝛼5 = 0.1319890385474292 𝛼6 = 0.1512264299418584
𝛼7 = −0.2763628586973695 𝛼8 = −0.2840658003186326
𝛼9 = 0.3182131905267144

𝑠 = 10, 𝜓
[6]
10

𝛼1 =⋯ = 𝛼7 = 0.1008383848350010
𝛼8 = 𝛼9 = −0.2387378667702656
𝛼10 = 0.2716070396955245

𝑠 = 11, 𝜓
[6]
11

𝛼1 =⋯ = 𝛼8 = 0.0852884432504611
𝛼9 = 𝛼10 = −0.2116830704463290
𝛼11 = 0.2410585948889692

these schemes correspond precisely to compositions of the form (1.7). A careful exploration of the region of free parameters has not 
provided solutions with a better efficiency.

Concerning the processor, one has to solve 23 equations to achieve order 6, so we approximate 𝜋ℎ by a composition of the form 
(3.6), 𝜋(𝑠,6) = 𝜒∗

𝛽23ℎ
◦𝜒𝛽22ℎ

◦ ⋯ ◦𝜒∗
𝛽1ℎ

. Among all the real solutions obtained, we take the one with the minimum 1-norm of the vector 
(𝛽1, … , 𝛽23). The overall method is now denoted as

𝜓̂ [𝑠,6] = 𝜋(𝑠,6)◦𝜓 [6]
𝑠

◦
(
𝜋(𝑠,6))∗ (4.1)

and methods with 5 ≤ 𝑠 ≤ 11 have been constructed.

We have also explored kernels of order 8, but all the schemes we have been able to construct correspond indeed to compositions 
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of a time-symmetric second order basic method.
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5. Numerical experiments

Next we test some of the previous processed methods for the numerical integration of the equations describing the motion of a 
particle in an electromagnetic field, and the motion around a Reissner–Nodström black hole. In the first case, the system is split into 
three parts, whereas in the second one has to consider five parts. In this respect, as noted in [19], choosing the right sequence of 
basic maps when forming 𝜒ℎ is of the utmost importance. In fact, the numerical experiments carried out in [19] show that the overall 
efficiency of the scheme may vary significantly with the ordering. For this reason, it is recommended to test different sequences to 
identify the most efficient for a given problem.

Several codes implementing the previous schemes for the two problems at hand are available at

https://doi .org /10 .5281 /zenodo .8375196.

Specifically, the interested reader can find there the coefficients 𝛽𝑗 of the processor for methods of order 4 and 6, eqs. (3.7) and 
(4.1), together with two new processors for the 4th- and 6th-order proposed in [5] and collected in Table 2 and the codes generating 
the figures included in this section.

5.1. Motion of a charged particle under Lorentz force

The evolution of a particle of mass 𝑚 and charge 𝑞 in a external electromagnetic field (in the non-relativistic limit) is modeled by 
the equation

𝑚 𝐱̈ = 𝑞 (𝐄+ 𝐱̇ ×𝐁), (5.1)

which can also be written as a first-order system:

𝐱̇ = 𝐯

𝐯̇ = 𝑞

𝑚
𝐄+𝜔𝐛 × 𝐯.

(5.2)

Here 𝜔 = −𝑞𝐵∕𝑚 is the local cyclotron frequency, 𝐵 = ‖𝐁‖ and 𝐛 = 𝐁∕𝐵 is the unit vector in the direction of the magnetic field. In 
the following, we assume that both 𝐄 and 𝐁 depend only on the position variables 𝐱.

System (5.2) can be split into three parts in such a way that each subpart is explicitly solvable, and preserve volume in phase 
space (𝐱, 𝐯) [13,14]. Specifically, if we define 𝑦 = (𝐱, 𝐯)⊤, then (5.2) can be expressed as

𝑦̇ = 𝑑

𝑑𝑡

(
𝐱
𝐯

)
=
(
𝐯
0

)
+
(

0
𝑞

𝑚
𝐄(𝐱)

)
+
(

0
𝜔(𝐱)𝐛(𝐱) × 𝐯

)
,

= 𝑓 [𝐴](𝑦) + 𝑓 [𝐵](𝑦) + 𝑓 [𝐶](𝑦), (5.3)

with exact solutions given by

𝜑
[𝐴]
𝑡

∶
{

𝐱(𝑡) = 𝐱0 + 𝑡𝐯0
𝐯(𝑡) = 𝐯0

𝜑
[𝐵]
𝑡

∶
{

𝐱(𝑡) = 𝐱0
𝐯(𝑡) = 𝐯0 + 𝑡

𝑞

𝑚
𝐄(𝐱0)

𝜑
[𝐶]
𝑡

∶
{

𝐱(𝑡) = 𝐱0
𝐯(𝑡) = e𝑡𝜔0𝐛̂0 𝐯0

(5.4)

in terms of 𝜔0 ≡ 𝜔(𝐱0) and ̂𝐛0 ≡ 𝐛̂(𝐱0), with

𝐛̂(𝐱) =
⎛⎜⎜⎝

0 −𝑏3(𝐱) 𝑏2(𝐱)
𝑏3(𝐱) 0 −𝑏1(𝐱)
−𝑏2(𝐱) 𝑏1(𝐱) 0

⎞⎟⎟⎠ .

In practice, as in [13], we use the expression

exp(𝑡𝜔0𝐛̂0)𝐯0 = 𝐯0 + sin(𝑡𝜔0)𝐛̂0𝐯0 + (1 − cos(𝑡𝜔0))𝐛̂20𝐯0

for computing 𝜑[𝐶]
𝑡

, and consider a static, non-uniform electromagnetic field

𝐄 = −∇𝑉 = 𝛼

𝑟3
(𝑥 𝐞𝑥 + 𝑦 𝐞𝑦), 𝐁 =∇×𝐀 = 𝑟 𝐞𝑧, (5.5)

derived from the potentials

𝑉 = 𝛼

𝑟
, 𝐀 = 𝑟2

3
𝐞𝜃,

respectively, in cylindrical coordinates (𝑟, 𝜃, 𝑧). The parameter 𝛼 is used to parametrize the scalar potential. Then, both the angular 
momentum and energy

3

94

𝐿 = 𝑟2𝜃̇ + 𝑟

3
, 𝐻 = 1

2
‖𝐯‖2 + 𝛼

𝑟

https://doi.org/10.5281/zenodo.8375196
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Fig. 2. Motion of a charged particle under Lorentz force. (a) Maximum position error for different values of the parameter 𝛼 and for various 4th-order methods at 
the final time 𝑡𝑓 = 200, evaluated with the same computational cost 𝑠∕ℎ = 40. (b) Efficiency diagram for different 4th-order methods with 𝛼 = 0.07 and 𝑡𝑓 = 200.

are invariants of the problem.

For the simulations we take 𝑞 = −1, 𝑚 = 1, initial position 𝐱0 = (0, −1, 0)𝑇 and initial velocity 𝐯0 = (0.1, 0.01, 0) [13]. In our first 
experiment we integrate until the final time 𝑡𝑓 = 20 with the 4th-order processed methods 𝜓̂ [6,4] and 𝜓̂ [8,4] (cf. eqs. (3.7) and (4.1)) 
and values of 𝛼 in the interval (0, 1∕10). As basic scheme we choose the Lie–Trotter splitting

𝜒ℎ = 𝜑
[𝐴]
ℎ

◦𝜑[𝐵]
ℎ

◦𝜑[𝐶]
ℎ

. (5.6)

We determine the error in phase space at the final time with each integrator by taking as reference solution the output generated by 
the standard routine DOP853 [12]. The results are depicted in Fig. 2a, where the errors committed by the standard method BM

[4]
6

and the processed scheme BCM
[4]
6 are also shown. The step size ℎ is chosen in such a way that all integrators require the same 

computational cost.

Fig. 2b corresponds to an efficiency diagram obtained by methods BM
[4]
6 , BCM

[4]
6 and the new processed schemes 𝜓̂ [6,4] and 

𝜓̂ [8,4] when 𝛼 = 0.07 at the final time 𝑡𝑓 = 200. Notice that the processed schemes provide more accurate results with the same 
computational effort. For comparison, we have also depicted the result achieved by the triple jump composition (1.6), SS

[4]
3 .

Figs. 3a and 3b show the results achieved, for the same problem, initial conditions and final integration time, by the following 
6th-order schemes: BM

[6]
10 (Table 1), BCM

[6]
9 (Table 2 with the new processor), 𝜓̂ [8,6] and 𝜓̂ [10,6]. Here again the new processed scheme 

is more efficient when high accuracy is desired. We also include for comparison the result achieved by the most efficient 7-stage 
6th-order symmetric composition of 2nd-order schemes proposed in [28], SS

[6]
7 .

Finally, Fig. 4 shows the non-trivial effects on the overall error of the different orderings in the basic scheme 𝜒ℎ for several values 
of 𝛼.

5.2. Particle around a Reissner–Nordström black hole

A Schwarzschild black hole with charge 𝑄 is known as a Reissner–Nordström black hole. The motion of a test particle around 
this black hole is described by the Hamiltonian [26]:

𝐻 = −1

2
(
1 − 2

𝑟
+ 𝑄2

𝑟2

)𝐸2 + 1
2

(
1 − 2

𝑟
+ 𝑄2

𝑟2

)
𝑝2

𝑟
+ 1

2
𝑝2

𝜃

𝑟2
+ 𝐿2

2𝑟2 sin2 𝜃
. (5.7)

Here 𝑟 and 𝜃 correspond to the radial and angular coordinates of the particle, 𝑝𝑟 and 𝑝𝜃 are their conjugate momenta, and 𝐸 and 𝐿
are the energy and angular momentum of the particle, respectively.

This Hamiltonian can be separated into five explicitly integrable parts, namely [26]

𝐻 = 𝐻𝐴 +𝐻𝐵 +𝐻𝐶 +𝐻𝐷 +𝐻𝐸,

with

𝐻𝐴 = −1

2
(
1 − 2

𝑟
+ 𝑄2

𝑟2

)𝐸2 + 𝐿2

2𝑟2 sin2 𝜃
, 𝐻𝐵 = 1

2
𝑝2

𝑟
,

1 𝑝2 𝑄2𝑝2
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𝐻𝐶 = −
𝑟
𝑝2

𝑟
, 𝐻𝐷 = 𝜃

2𝑟2
, 𝐻𝐸 = 𝑟

2𝑟2
,
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Fig. 3. Motion of a charged particle under Lorentz force. (a) Maximum position error for different values of the parameter 𝛼 and for various 6th-order methods at 
the final time 𝑡𝑓 = 200, evaluated with the same computational cost 𝑠∕ℎ = 40. (b) Efficiency diagram for different 6th-order methods with 𝛼 = 0.04 and 𝑡𝑓 = 200.

Fig. 4. Motion of a charged particle under Lorentz force. Maximum position error for the method 𝜓̂ [8,4] for different values of the parameter 𝛼 with all possible 
orderings of the first-order method 𝜒ℎ . The simulation was conducted with 𝑠∕ℎ = 40 and 𝑡𝑓 = 200.

whose flows read explicitly

𝜑[𝐴]
𝜏

∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑟(𝜏) = 𝑟0

𝑝𝑟(𝜏) = 𝑝𝑟0 + 𝜏

(
𝐿2

𝑟30 sin
2 𝜃0

− 𝐸2

(𝑟0−2)2

)
𝜃(𝜏) = 𝜃0

𝑝𝜃(𝜏) = 𝑝𝜃0 + 𝜏
𝐿2 cos𝜃0
𝑟20 sin

3 𝜃0

𝜑[𝐵]
𝜏

∶
⎧⎪⎨⎪⎩

𝑟(𝜏) = 𝑟0 + 𝜏𝑝𝑟0
𝑝𝑟(𝜏) = 𝑝𝑟0
𝜃(𝜏) = 𝜃0
𝑝𝜃(𝜏) = 𝑝𝜃0

𝜑[𝐶]
𝜏

∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑟(𝜏) =
(

(𝑟20−3𝜏𝑝𝑟0)2

𝑟0

)1∕3

𝑝𝑟(𝜏) = 𝑝𝑟0

(
(𝑟20−3𝜏𝑝𝑟0)

𝑟20

)1∕3

𝜃(𝜏) = 𝜃0
𝑝𝜃(𝜏) = 𝑝𝜃0

𝜑[𝐷]
𝜏

∶

⎧⎪⎪⎨⎪⎪⎩

𝑟(𝜏) = 𝑟0

𝑝𝑟(𝜏) = 𝑝𝑟0 + 𝜏
𝑝𝜃

2
0

𝑟30
𝜃(𝜏) = 𝜃0 + 𝜏

𝑝𝜃0
𝑟20

𝑝𝜃(𝜏) = 𝑝𝜃0

𝜑[𝐸]
𝜏

∶

⎧⎪⎪⎨⎪⎪⎩

𝑟(𝜏) = 𝑟0 + 𝜏𝑝𝑟0
𝑄2

𝑟2

𝑝𝑟(𝜏) = 𝑝𝑟0 + 𝜏
𝑄2𝑝𝑟

2
0

𝑟3

𝜃(𝜏) = 𝜃0
𝑝𝜃(𝜏) = 𝑝𝜃0

(5.8)

We take 𝐸 = 0.995, 𝐿 = 4.6, 𝑄 = 0.3, initial angle 𝜃0 = 𝜋∕2, and integrate until the final time 𝑡𝑓 = 104 by taking as basic scheme 
𝜒ℎ = 𝜑

[𝐴]
ℎ

◦𝜑[𝐵]
ℎ

◦𝜑[𝐶]
ℎ

◦𝜑[𝐷]
ℎ

◦𝜑[𝐸]
ℎ

. In Fig. 5a we depict the error in phase space by varying 𝑟0 in the interval 𝑟0 ∈ [9, 110] for methods 
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BM
[4]
6 , BCM

[4]
6 and the new processed methods 𝜓̂ [6,4] and 𝜓̂ [8,4]. The step size is taken so that all the methods require the same 
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Fig. 5. Particle around Reissner–Nodström black hole. (a) Maximum position error for different values of the coordinate 𝑟0 and for various 4th-order methods at 
the final time 𝑡𝑓 = 104 , evaluated with the same computational cost 𝑠∕ℎ = 0.4 (b) Efficiency diagram for different 4th-order methods with 𝑟0 = 18 and the same 𝑡𝑓 .

Fig. 6. Particle around Reissner–Nodström black hole. The evolution of the energy error (left) and position error (right) for BM
[4]
6 and 𝜓̂ [9,4] . Both simulations are 

conducted with the same computational cost 𝑠∕ℎ = 1 and a step size ℎ < 10.

computational effort. The right panel 5b shows the corresponding efficiency diagram, obtained with the same initial condition and 
𝑟0 = 18.

In addition to the improvement in the efficiency of processing methods with respect to standard compositions in this case, there 
is an important aspect to highlight. In [25], it is claimed that in these types of problems, roundoff errors grow and eventually lead to 
a drift in the conservation of the Hamiltonian when ℎ > 10.

Our tests show that this phenomenon, although still present for processed methods, is delayed with respect to standard composi-

tions, as illustrated in Fig. 6.

5.3. Motion of a charged particle under Lorentz force II

The effect of the ordering in the basic method 𝜒ℎ is clearly visible e.g. in Fig. 4. We observe that, for some values of the parameter 
𝛼, the error is up to 100 times smaller for the same scheme, and this may somehow conceal the potential advantages of one particular 
method with respect to others.

We should take into account, however, that the methods considered in this work are all based in compositions of an arbitrary 
first-order scheme 𝜒ℎ and its adjoint 𝜒∗

ℎ
, and not just on the Lie–Trotter splitting (5.6). It makes sense, then, to analyze the relative 

performance of the different methods on a given problem for another choice of 𝜒ℎ . To do that, we consider again the problem (5.2)

and take the explicit Euler method as 𝜒ℎ, so that 𝜒∗
ℎ

is given by the implicit Euler method. Fig. 7 collects the results achieved by 4th-

order compositions and constitutes the analogous to Fig. 2. We see that the overall efficiency of the schemes essentially corresponds 
97

to what is expected based on the effective errors estimated in sections 3 and 4 and illustrated in the determination of traces for the 
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Fig. 7. Motion of a charged particle under Lorentz force. (a) Maximum position error for different values of the parameter 𝛼 and for various 4th-order methods 
at the final time 𝑡𝑓 = 200, evaluated with the same computational cost 𝑠∕ℎ = 40. 𝜒ℎ and 𝜒∗

ℎ
correspond to the explicit and implicit Euler methods, respectively. 

(b) Efficiency diagram for different 4th-order methods with 𝛼 = 0.07 and 𝑡𝑓 = 200.

Fig. 8. Motion of a charged particle under Lorentz force. (a) Maximum position error for different values of the parameter 𝛼 and for various 4th-order methods 
at the final time 𝑡𝑓 = 200, evaluated with the same computational cost 𝑠∕ℎ = 40. Here 𝜒ℎ and 𝜒∗

ℎ
correspond to the explicit and implicit Euler methods, respectively. 

(b) Efficiency diagram for different 4th-order methods with 𝛼 = 0.07 and 𝑡𝑓 = 200.

linear problem (3.3). Fig. 8 is obtained by 6th-order methods. The results achieved by interchanging the role of Euler explicit and 
Euler implicit are similar.

6. Concluding remarks

We have presented new families of processed splitting methods of order 4 and 6 especially designed to be applied to problems 
which can be separated into three or more parts, each of them being explicitly integrable. The construction strategy is as follows. 
First we determine the kernel, taking more stages than strictly required for solving the order conditions, so that the free parameters 
are chosen so as to minimize not only the first term in the asymptotic expansion of the truncation error, but also higher order terms, 
while keeping the size of the coefficients of the method reasonably small by keeping track of the 1-norm. The methods thus obtained 
are applied by computing the trace of the solution of a linear system defined by three different random matrices. This simple test 
allows us not only to check the effective order but also to discard schemes with large error constants. Second, for the most successful 
kernels we determine a particular processor 𝜋ℎ also as a composition of elementary maps, whereas its adjoint 𝜋∗

ℎ
is taken as an 

approximation for the inverse 𝜋−1
ℎ

. In this way the overall integrator is still time-symmetric, leading to good preservation properties.

As the results gathered in Tables 5 and 7 show, increasing the number of stages allows one to get kernels with smaller effective 
errors and coefficients, the observed pattern closely following the rule of thumb formulated in [17]. Nevertheless, this efficiency 
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pattern is not always followed when the methods are applied in practice, as shown by the examples collected here. This is specially 
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Table 9

Coefficients of processors for methods of order 4 and 6.

𝜋(9,4)

𝛽1 = −0.28566586026506785 𝛽2 = 0.015761586550701766
𝛽3 = −0.04362530065430363 𝛽4 = −0.03618407560045836
𝛽5 = 0.05244978481197771 𝛽6 = 0.28558661670075497
𝛽7 = 0.011677248456395364

𝜋(11,6)

𝛽1 = 0.2861698495034459 𝛽2 = 0.4134261834337682
𝛽3 = 0.10540576774873363 𝛽4 = −0.04664449698814812
𝛽5 = 0.05672335497036459 𝛽6 = 0.4990659695885505
𝛽7 = −0.3426195751795226 𝛽8 = 0.3464936779661353
𝛽9 = −0.23813674914660654 𝛽10 = 0.24491881441628852
𝛽11 = −0.49669544275221306 𝛽12 = −0.3122980257722082
𝛽13 = 0.03146400131096136 𝛽14 = −0.030063016455253767
𝛽15 = 0.31240611169589994 𝛽16 = −0.10319811497811636
𝛽17 = −0.42098894976942247 𝛽18 = −0.2839790222445134
𝛽19 = −0.039440980719714046 𝛽20 = −0.020860135690795974
𝛽21 = 0.05463728247473808 𝛽22 = −0.16673300456832169
𝛽23 = 0.1509465011559501

true when the basic map 𝜒ℎ is formed as a composition of the exact solution of each subproblem. On the contrary, if 𝜒ℎ is a 
composition of first-order approximations, then the observed results agree nicely with the theoretical pattern.

A possible explanation for this behavior is related to the way the kernels are optimized. Specifically, in the optimization process 
carried out here, we have assumed that, for methods of order 𝑟, each Lie operator 𝐸𝑟+1,𝑗 , 𝑗 = 1, 2, … in the basis of Table 3 contributes 
equally to the error, but this not what always happens in practice. To see this point, let us consider a system that is separable into 
just two parts, say 𝐴 and 𝐵, and the Hall basis for the corresponding free Lie algebra generated by 𝐴 and 𝐵 (similar considerations 
follow for any other Hall–Viennot basis [24]), which we denote as 𝐸̃𝑖,𝑗 . Then,

𝐸̃1,1 = 𝐴, 𝐸̃1,2 = 𝐵, 𝐸̃2,1 = [𝐴,𝐵], 𝐸̃3,1 = [𝐴, [𝐴,𝐵]], 𝐸̃3,2 = [𝐵, [𝐴,𝐵]],

etc. Now, if we assume that the contribution of each 𝐸̃𝑟+1,𝑗 , 𝑗 = 1, 2, … to the error is similar, this is clearly not the case for the 
terms 𝐸𝑟+1,𝑗 , 𝑗 = 1, 2, … in previous basis of Table 3: in fact, for the 4th- and 6th-order methods, the elements 𝐸𝑟+1,1 = 𝑌𝑟+1, 𝑟 = 4, 6
provide the smallest contribution to the error. On the other hand, if 𝜒ℎ is taken as the explicit Euler method and the linear problem 
𝑈̇ = 𝐴𝑈 is considered, then

𝜒ℎ = (𝐼 + ℎ𝐴) = exp
(
ℎ𝐴− 1

2
ℎ2𝐴2 + 1

3
ℎ3𝐴3 +…

)
so that 𝐸𝑛,1 = 𝑌𝑛 = (−1)𝑛+1 1

𝑛
𝐴𝑛 and 𝐸𝑛,𝑗 = 0, 𝑗 > 1, since [𝑌𝑗 , 𝑌𝑘] = 0. In consequence, the only surviving term at order 𝑟 +1 is 𝐸𝑟+1,1. 

Thus, for problems which are close to linear, when 𝜒ℎ is taken as the explicit (or implicit) Euler method, we expect an important 
contribution from this term to the overall error. Notice that is the case for the examples examined here.
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Appendix A

For reader’s convenience, we collect in Table 9 the coefficients for two particular processors:

𝜋(9,4) = 𝜒∗
𝛽7ℎ

◦𝜒𝛽6ℎ
◦𝜒∗

𝛽5ℎ
◦𝜒𝛽4ℎ

◦𝜒∗
𝛽3ℎ

◦𝜒𝛽2ℎ
◦𝜒∗

𝛽1ℎ
,

and

𝜋(11,6) = 𝜒∗
𝛽23ℎ

◦𝜒𝛽22ℎ
◦⋯◦◦𝜒𝛽2ℎ

◦𝜒∗
𝛽1ℎ

,

corresponding to the kernels with 𝑠 = 9 and 𝑠 = 11 of effective order 4 and 6 of Tables 6 and 8, respectively.
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